1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
subroutine fpopsp(ifsu,ifsv,ifbu,ifbv,u,mu,v,mv,r,mr,r0,r1,dr,
* iopt,ider,tu,nu,tv,nv,nuest,nvest,p,step,c,nc,fp,fpu,fpv,
* nru,nrv,wrk,lwrk)
c given the set of function values r(i,j) defined on the rectangular
c grid (u(i),v(j)),i=1,2,...,mu;j=1,2,...,mv, fpopsp determines a
c smooth bicubic spline approximation with given knots tu(i),i=1,..,nu
c in the u-direction and tv(j),j=1,2,...,nv in the v-direction. this
c spline sp(u,v) will be periodic in the variable v and will satisfy
c the following constraints
c
c s(tu(1),v) = dr(1) , tv(4) <=v<= tv(nv-3)
c
c s(tu(nu),v) = dr(4) , tv(4) <=v<= tv(nv-3)
c
c and (if iopt(2) = 1)
c
c d s(tu(1),v)
c ------------ = dr(2)*cos(v)+dr(3)*sin(v) , tv(4) <=v<= tv(nv-3)
c d u
c
c and (if iopt(3) = 1)
c
c d s(tu(nu),v)
c ------------- = dr(5)*cos(v)+dr(6)*sin(v) , tv(4) <=v<= tv(nv-3)
c d u
c
c where the parameters dr(i) correspond to the derivative values at the
c poles as defined in subroutine spgrid.
c
c the b-spline coefficients of sp(u,v) are determined as the least-
c squares solution of an overdetermined linear system which depends
c on the value of p and on the values dr(i),i=1,...,6. the correspond-
c ing sum of squared residuals sq is a simple quadratic function in
c the variables dr(i). these may or may not be provided. the values
c dr(i) which are not given will be determined so as to minimize the
c resulting sum of squared residuals sq. in that case the user must
c provide some initial guess dr(i) and some estimate (dr(i)-step,
c dr(i)+step) of the range of possible values for these latter.
c
c sp(u,v) also depends on the parameter p (p>0) in such a way that
c - if p tends to infinity, sp(u,v) becomes the least-squares spline
c with given knots, satisfying the constraints.
c - if p tends to zero, sp(u,v) becomes the least-squares polynomial,
c satisfying the constraints.
c - the function f(p)=sumi=1,mu(sumj=1,mv((r(i,j)-sp(u(i),v(j)))**2)
c is continuous and strictly decreasing for p>0.
c
c ..scalar arguments..
integer ifsu,ifsv,ifbu,ifbv,mu,mv,mr,nu,nv,nuest,nvest,
* nc,lwrk
real*8 r0,r1,p,fp
c ..array arguments..
integer ider(4),nru(mu),nrv(mv),iopt(3)
real*8 u(mu),v(mv),r(mr),dr(6),tu(nu),tv(nv),c(nc),fpu(nu),fpv(nv)
*,
* wrk(lwrk),step(2)
c ..local scalars..
real*8 sq,sqq,sq0,sq1,step1,step2,three
integer i,id0,iop0,iop1,i1,j,l,lau,lav1,lav2,la0,la1,lbu,lbv,lb0,
* lb1,lc0,lc1,lcs,lq,lri,lsu,lsv,l1,l2,mm,mvnu,number
c ..local arrays..
integer nr(6)
real*8 delta(6),drr(6),sum(6),a(6,6),g(6)
c ..function references..
integer max0
c ..subroutine references..
c fpgrsp,fpsysy
c ..
c set constant
three = 3
c we partition the working space
lsu = 1
lsv = lsu+4*mu
lri = lsv+4*mv
mm = max0(nuest,mv+nvest)
lq = lri+mm
mvnu = nuest*(mv+nvest-8)
lau = lq+mvnu
lav1 = lau+5*nuest
lav2 = lav1+6*nvest
lbu = lav2+4*nvest
lbv = lbu+5*nuest
la0 = lbv+5*nvest
la1 = la0+2*mv
lb0 = la1+2*mv
lb1 = lb0+2*nvest
lc0 = lb1+2*nvest
lc1 = lc0+nvest
lcs = lc1+nvest
c we calculate the smoothing spline sp(u,v) according to the input
c values dr(i),i=1,...,6.
iop0 = iopt(2)
iop1 = iopt(3)
id0 = ider(1)
id1 = ider(3)
call fpgrsp(ifsu,ifsv,ifbu,ifbv,0,u,mu,v,mv,r,mr,dr,
* iop0,iop1,tu,nu,tv,nv,p,c,nc,sq,fp,fpu,fpv,mm,mvnu,
* wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1),
* wrk(lav2),wrk(lbu),wrk(lbv),wrk(la0),wrk(la1),wrk(lb0),
* wrk(lb1),wrk(lc0),wrk(lc1),wrk(lcs),nru,nrv)
sq0 = 0.
sq1 = 0.
if(id0.eq.0) sq0 = (r0-dr(1))**2
if(id1.eq.0) sq1 = (r1-dr(4))**2
sq = sq+sq0+sq1
c in case all derivative values dr(i) are given (step<=0) or in case
c we have spline interpolation, we accept this spline as a solution.
if(sq.le.0.) return
if(step(1).le.0. .and. step(2).le.0.) return
do 10 i=1,6
drr(i) = dr(i)
10 continue
c number denotes the number of derivative values dr(i) that still must
c be optimized. let us denote these parameters by g(j),j=1,...,number.
number = 0
if(id0.gt.0) go to 20
number = 1
nr(1) = 1
delta(1) = step(1)
20 if(iop0.eq.0) go to 30
if(ider(2).ne.0) go to 30
step2 = step(1)*three/(tu(5)-tu(4))
nr(number+1) = 2
nr(number+2) = 3
delta(number+1) = step2
delta(number+2) = step2
number = number+2
30 if(id1.gt.0) go to 40
number = number+1
nr(number) = 4
delta(number) = step(2)
40 if(iop1.eq.0) go to 50
if(ider(4).ne.0) go to 50
step2 = step(2)*three/(tu(nu)-tu(nu-4))
nr(number+1) = 5
nr(number+2) = 6
delta(number+1) = step2
delta(number+2) = step2
number = number+2
50 if(number.eq.0) return
c the sum of squared residulas sq is a quadratic polynomial in the
c parameters g(j). we determine the unknown coefficients of this
c polymomial by calculating (number+1)*(number+2)/2 different splines
c according to specific values for g(j).
do 60 i=1,number
l = nr(i)
step1 = delta(i)
drr(l) = dr(l)+step1
call fpgrsp(ifsu,ifsv,ifbu,ifbv,1,u,mu,v,mv,r,mr,drr,
* iop0,iop1,tu,nu,tv,nv,p,c,nc,sum(i),fp,fpu,fpv,mm,mvnu,
* wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1),
* wrk(lav2),wrk(lbu),wrk(lbv),wrk(la0),wrk(la1),wrk(lb0),
* wrk(lb1),wrk(lc0),wrk(lc1),wrk(lcs),nru,nrv)
if(id0.eq.0) sq0 = (r0-drr(1))**2
if(id1.eq.0) sq1 = (r1-drr(4))**2
sum(i) = sum(i)+sq0+sq1
drr(l) = dr(l)-step1
call fpgrsp(ifsu,ifsv,ifbu,ifbv,1,u,mu,v,mv,r,mr,drr,
* iop0,iop1,tu,nu,tv,nv,p,c,nc,sqq,fp,fpu,fpv,mm,mvnu,
* wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1),
* wrk(lav2),wrk(lbu),wrk(lbv),wrk(la0),wrk(la1),wrk(lb0),
* wrk(lb1),wrk(lc0),wrk(lc1),wrk(lcs),nru,nrv)
if(id0.eq.0) sq0 = (r0-drr(1))**2
if(id1.eq.0) sq1 = (r1-drr(4))**2
sqq = sqq+sq0+sq1
drr(l) = dr(l)
a(i,i) = (sum(i)+sqq-sq-sq)/step1**2
if(a(i,i).le.0.) go to 110
g(i) = (sqq-sum(i))/(step1+step1)
60 continue
if(number.eq.1) go to 90
do 80 i=2,number
l1 = nr(i)
step1 = delta(i)
drr(l1) = dr(l1)+step1
i1 = i-1
do 70 j=1,i1
l2 = nr(j)
step2 = delta(j)
drr(l2) = dr(l2)+step2
call fpgrsp(ifsu,ifsv,ifbu,ifbv,1,u,mu,v,mv,r,mr,drr,
* iop0,iop1,tu,nu,tv,nv,p,c,nc,sqq,fp,fpu,fpv,mm,mvnu,
* wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1),
* wrk(lav2),wrk(lbu),wrk(lbv),wrk(la0),wrk(la1),wrk(lb0),
* wrk(lb1),wrk(lc0),wrk(lc1),wrk(lcs),nru,nrv)
if(id0.eq.0) sq0 = (r0-drr(1))**2
if(id1.eq.0) sq1 = (r1-drr(4))**2
sqq = sqq+sq0+sq1
a(i,j) = (sq+sqq-sum(i)-sum(j))/(step1*step2)
drr(l2) = dr(l2)
70 continue
drr(l1) = dr(l1)
80 continue
c the optimal values g(j) are found as the solution of the system
c d (sq) / d (g(j)) = 0 , j=1,...,number.
90 call fpsysy(a,number,g)
do 100 i=1,number
l = nr(i)
dr(l) = dr(l)+g(i)
100 continue
c we determine the spline sp(u,v) according to the optimal values g(j).
110 call fpgrsp(ifsu,ifsv,ifbu,ifbv,0,u,mu,v,mv,r,mr,dr,
* iop0,iop1,tu,nu,tv,nv,p,c,nc,sq,fp,fpu,fpv,mm,mvnu,
* wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1),
* wrk(lav2),wrk(lbu),wrk(lbv),wrk(la0),wrk(la1),wrk(lb0),
* wrk(lb1),wrk(lc0),wrk(lc1),wrk(lcs),nru,nrv)
if(id0.eq.0) sq0 = (r0-dr(1))**2
if(id1.eq.0) sq1 = (r1-dr(4))**2
sq = sq+sq0+sq1
return
end
|