File: fppasu.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (392 lines) | stat: -rw-r--r-- 13,564 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
      subroutine fppasu(iopt,ipar,idim,u,mu,v,mv,z,mz,s,nuest,nvest,
     * tol,maxit,nc,nu,tu,nv,tv,c,fp,fp0,fpold,reducu,reducv,fpintu,
     * fpintv,lastdi,nplusu,nplusv,nru,nrv,nrdatu,nrdatv,wrk,lwrk,ier)
c  ..
c  ..scalar arguments..
      real*8 s,tol,fp,fp0,fpold,reducu,reducv
      integer iopt,idim,mu,mv,mz,nuest,nvest,maxit,nc,nu,nv,lastdi,
     * nplusu,nplusv,lwrk,ier
c  ..array arguments..
      real*8 u(mu),v(mv),z(mz*idim),tu(nuest),tv(nvest),c(nc*idim),
     * fpintu(nuest),fpintv(nvest),wrk(lwrk)
      integer ipar(2),nrdatu(nuest),nrdatv(nvest),nru(mu),nrv(mv)
c  ..local scalars
      real*8 acc,fpms,f1,f2,f3,p,p1,p2,p3,rn,one,con1,con9,con4,
     * peru,perv,ub,ue,vb,ve
      integer i,ich1,ich3,ifbu,ifbv,ifsu,ifsv,iter,j,lau1,lav1,laa,
     * l,lau,lav,lbu,lbv,lq,lri,lsu,lsv,l1,l2,l3,l4,mm,mpm,mvnu,ncof,
     * nk1u,nk1v,nmaxu,nmaxv,nminu,nminv,nplu,nplv,npl1,nrintu,
     * nrintv,nue,nuk,nve,nuu,nvv
c  ..function references..
      real*8 abs,fprati
      integer max0,min0
c  ..subroutine references..
c    fpgrpa,fpknot
c  ..
c   set constants
      one = 1
      con1 = 0.1e0
      con9 = 0.9e0
      con4 = 0.4e-01
c  set boundaries of the approximation domain
      ub = u(1)
      ue = u(mu)
      vb = v(1)
      ve = v(mv)
c  we partition the working space.
      lsu = 1
      lsv = lsu+mu*4
      lri = lsv+mv*4
      mm = max0(nuest,mv)
      lq = lri+mm*idim
      mvnu = nuest*mv*idim
      lau = lq+mvnu
      nuk = nuest*5
      lbu = lau+nuk
      lav = lbu+nuk
      nuk = nvest*5
      lbv = lav+nuk
      laa = lbv+nuk
      lau1 = lau
      if(ipar(1).eq.0) go to 10
      peru = ue-ub
      lau1 = laa
      laa = laa+4*nuest
  10  lav1 = lav
      if(ipar(2).eq.0) go to 20
      perv = ve-vb
      lav1 = laa
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 1: determination of the number of knots and their position.     c
c ****************************************************************     c
c  given a set of knots we compute the least-squares spline sinf(u,v), c
c  and the corresponding sum of squared residuals fp=f(p=inf).         c
c  if iopt=-1  sinf(u,v) is the requested approximation.               c
c  if iopt=0 or iopt=1 we check whether we can accept the knots:       c
c    if fp <=s we will continue with the current set of knots.         c
c    if fp > s we will increase the number of knots and compute the    c
c       corresponding least-squares spline until finally fp<=s.        c
c    the initial choice of knots depends on the value of s and iopt.   c
c    if s=0 we have spline interpolation; in that case the number of   c
c    knots equals nmaxu = mu+4+2*ipar(1) and  nmaxv = mv+4+2*ipar(2)   c
c    if s>0 and                                                        c
c     *iopt=0 we first compute the least-squares polynomial            c
c          nu=nminu=8 and nv=nminv=8                                   c
c     *iopt=1 we start with the knots found at the last call of the    c
c      routine, except for the case that s > fp0; then we can compute  c
c      the least-squares polynomial directly.                          c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c  determine the number of knots for polynomial approximation.
  20  nminu = 8
      nminv = 8
      if(iopt.lt.0) go to 100
c  acc denotes the absolute tolerance for the root of f(p)=s.
      acc = tol*s
c  find nmaxu and nmaxv which denote the number of knots in u- and v-
c  direction in case of spline interpolation.
      nmaxu = mu+4+2*ipar(1)
      nmaxv = mv+4+2*ipar(2)
c  find nue and nve which denote the maximum number of knots
c  allowed in each direction
      nue = min0(nmaxu,nuest)
      nve = min0(nmaxv,nvest)
      if(s.gt.0.) go to 60
c  if s = 0, s(u,v) is an interpolating spline.
      nu = nmaxu
      nv = nmaxv
c  test whether the required storage space exceeds the available one.
      if(nv.gt.nvest .or. nu.gt.nuest) go to 420
c  find the position of the interior knots in case of interpolation.
c  the knots in the u-direction.
      nuu = nu-8
      if(nuu.eq.0) go to 40
      i = 5
      j = 3-ipar(1)
      do 30 l=1,nuu
        tu(i) = u(j)
        i = i+1
        j = j+1
  30  continue
c  the knots in the v-direction.
  40  nvv = nv-8
      if(nvv.eq.0) go to 60
      i = 5
      j = 3-ipar(2)
      do 50 l=1,nvv
        tv(i) = v(j)
        i = i+1
        j = j+1
  50  continue
      go to 100
c  if s > 0 our initial choice of knots depends on the value of iopt.
  60  if(iopt.eq.0) go to 90
      if(fp0.le.s) go to 90
c  if iopt=1 and fp0 > s we start computing the least- squares spline
c  according to the set of knots found at the last call of the routine.
c  we determine the number of grid coordinates u(i) inside each knot
c  interval (tu(l),tu(l+1)).
      l = 5
      j = 1
      nrdatu(1) = 0
      mpm = mu-1
      do 70 i=2,mpm
        nrdatu(j) = nrdatu(j)+1
        if(u(i).lt.tu(l)) go to 70
        nrdatu(j) = nrdatu(j)-1
        l = l+1
        j = j+1
        nrdatu(j) = 0
  70  continue
c  we determine the number of grid coordinates v(i) inside each knot
c  interval (tv(l),tv(l+1)).
      l = 5
      j = 1
      nrdatv(1) = 0
      mpm = mv-1
      do 80 i=2,mpm
        nrdatv(j) = nrdatv(j)+1
        if(v(i).lt.tv(l)) go to 80
        nrdatv(j) = nrdatv(j)-1
        l = l+1
        j = j+1
        nrdatv(j) = 0
  80  continue
      go to 100
c  if iopt=0 or iopt=1 and s>=fp0, we start computing the least-squares
c  polynomial (which is a spline without interior knots).
  90  nu = nminu
      nv = nminv
      nrdatu(1) = mu-2
      nrdatv(1) = mv-2
      lastdi = 0
      nplusu = 0
      nplusv = 0
      fp0 = 0.
      fpold = 0.
      reducu = 0.
      reducv = 0.
 100  mpm = mu+mv
      ifsu = 0
      ifsv = 0
      ifbu = 0
      ifbv = 0
      p = -one
c  main loop for the different sets of knots.mpm=mu+mv is a save upper
c  bound for the number of trials.
      do 250 iter=1,mpm
        if(nu.eq.nminu .and. nv.eq.nminv) ier = -2
c  find nrintu (nrintv) which is the number of knot intervals in the
c  u-direction (v-direction).
        nrintu = nu-nminu+1
        nrintv = nv-nminv+1
c  find ncof, the number of b-spline coefficients for the current set
c  of knots.
        nk1u = nu-4
        nk1v = nv-4
        ncof = nk1u*nk1v
c  find the position of the additional knots which are needed for the
c  b-spline representation of s(u,v).
        if(ipar(1).ne.0) go to 110
        i = nu
        do 105 j=1,4
          tu(j) = ub
          tu(i) = ue
          i = i-1
 105    continue
        go to 120
 110    l1 = 4
        l2 = l1
        l3 = nu-3
        l4 = l3
        tu(l2) = ub
        tu(l3) = ue
        do 115 j=1,3
          l1 = l1+1
          l2 = l2-1
          l3 = l3+1
          l4 = l4-1
          tu(l2) = tu(l4)-peru
          tu(l3) = tu(l1)+peru
 115    continue
 120    if(ipar(2).ne.0) go to 130
        i = nv
        do 125 j=1,4
          tv(j) = vb
          tv(i) = ve
          i = i-1
 125    continue
        go to 140
 130    l1 = 4
        l2 = l1
        l3 = nv-3
        l4 = l3
        tv(l2) = vb
        tv(l3) = ve
        do 135 j=1,3
          l1 = l1+1
          l2 = l2-1
          l3 = l3+1
          l4 = l4-1
          tv(l2) = tv(l4)-perv
          tv(l3) = tv(l1)+perv
 135    continue
c  find the least-squares spline sinf(u,v) and calculate for each knot
c  interval tu(j+3)<=u<=tu(j+4) (tv(j+3)<=v<=tv(j+4)) the sum
c  of squared residuals fpintu(j),j=1,2,...,nu-7 (fpintv(j),j=1,2,...
c  ,nv-7) for the data points having their absciss (ordinate)-value
c  belonging to that interval.
c  fp gives the total sum of squared residuals.
 140    call fpgrpa(ifsu,ifsv,ifbu,ifbv,idim,ipar,u,mu,v,mv,z,mz,tu,
     *  nu,tv,nv,p,c,nc,fp,fpintu,fpintv,mm,mvnu,wrk(lsu),wrk(lsv),
     *  wrk(lri),wrk(lq),wrk(lau),wrk(lau1),wrk(lav),wrk(lav1),
     *  wrk(lbu),wrk(lbv),nru,nrv)
        if(ier.eq.(-2)) fp0 = fp
c  test whether the least-squares spline is an acceptable solution.
        if(iopt.lt.0) go to 440
        fpms = fp-s
        if(abs(fpms) .lt. acc) go to 440
c  if f(p=inf) < s, we accept the choice of knots.
        if(fpms.lt.0.) go to 300
c  if nu=nmaxu and nv=nmaxv, sinf(u,v) is an interpolating spline.
        if(nu.eq.nmaxu .and. nv.eq.nmaxv) go to 430
c  increase the number of knots.
c  if nu=nue and nv=nve we cannot further increase the number of knots
c  because of the storage capacity limitation.
        if(nu.eq.nue .and. nv.eq.nve) go to 420
        ier = 0
c  adjust the parameter reducu or reducv according to the direction
c  in which the last added knots were located.
        if (lastdi.lt.0) go to 150
        if (lastdi.eq.0) go to 170
        go to 160
 150    reducu = fpold-fp
        go to 170
 160    reducv = fpold-fp
c  store the sum of squared residuals for the current set of knots.
 170    fpold = fp
c  find nplu, the number of knots we should add in the u-direction.
        nplu = 1
        if(nu.eq.nminu) go to 180
        npl1 = nplusu*2
        rn = nplusu
        if(reducu.gt.acc) npl1 = rn*fpms/reducu
        nplu = min0(nplusu*2,max0(npl1,nplusu/2,1))
c  find nplv, the number of knots we should add in the v-direction.
 180    nplv = 1
        if(nv.eq.nminv) go to 190
        npl1 = nplusv*2
        rn = nplusv
        if(reducv.gt.acc) npl1 = rn*fpms/reducv
        nplv = min0(nplusv*2,max0(npl1,nplusv/2,1))
 190    if (nplu.lt.nplv) go to 210
        if (nplu.eq.nplv) go to 200
        go to 230
 200    if(lastdi.lt.0) go to 230
 210    if(nu.eq.nue) go to 230
c  addition in the u-direction.
        lastdi = -1
        nplusu = nplu
        ifsu = 0
        do 220 l=1,nplusu
c  add a new knot in the u-direction
          call fpknot(u,mu,tu,nu,fpintu,nrdatu,nrintu,nuest,1)
c  test whether we cannot further increase the number of knots in the
c  u-direction.
          if(nu.eq.nue) go to 250
 220    continue
        go to 250
 230    if(nv.eq.nve) go to 210
c  addition in the v-direction.
        lastdi = 1
        nplusv = nplv
        ifsv = 0
        do 240 l=1,nplusv
c  add a new knot in the v-direction.
          call fpknot(v,mv,tv,nv,fpintv,nrdatv,nrintv,nvest,1)
c  test whether we cannot further increase the number of knots in the
c  v-direction.
          if(nv.eq.nve) go to 250
 240    continue
c  restart the computations with the new set of knots.
 250  continue
c  test whether the least-squares polynomial is a solution of our
c  approximation problem.
 300  if(ier.eq.(-2)) go to 440
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 2: determination of the smoothing spline sp(u,v)                c
c *****************************************************                c
c  we have determined the number of knots and their position. we now   c
c  compute the b-spline coefficients of the smoothing spline sp(u,v).  c
c  this smoothing spline varies with the parameter p in such a way thatc
c  f(p)=suml=1,idim(sumi=1,mu(sumj=1,mv((z(i,j,l)-sp(u(i),v(j),l))**2) c
c  is a continuous, strictly decreasing function of p. moreover the    c
c  least-squares polynomial corresponds to p=0 and the least-squares   c
c  spline to p=infinity. iteratively we then have to determine the     c
c  positive value of p such that f(p)=s. the process which is proposed c
c  here makes use of rational interpolation. f(p) is approximated by a c
c  rational function r(p)=(u*p+v)/(p+w); three values of p (p1,p2,p3)  c
c  with corresponding values of f(p) (f1=f(p1)-s,f2=f(p2)-s,f3=f(p3)-s)c
c  are used to calculate the new value of p such that r(p)=s.          c
c  convergence is guaranteed by taking f1 > 0 and f3 < 0.              c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c  initial value for p.
      p1 = 0.
      f1 = fp0-s
      p3 = -one
      f3 = fpms
      p = one
      ich1 = 0
      ich3 = 0
c  iteration process to find the root of f(p)=s.
      do 350 iter = 1,maxit
c  find the smoothing spline sp(u,v) and the corresponding sum of
c  squared residuals fp.
        call fpgrpa(ifsu,ifsv,ifbu,ifbv,idim,ipar,u,mu,v,mv,z,mz,tu,
     *  nu,tv,nv,p,c,nc,fp,fpintu,fpintv,mm,mvnu,wrk(lsu),wrk(lsv),
     *  wrk(lri),wrk(lq),wrk(lau),wrk(lau1),wrk(lav),wrk(lav1),
     *  wrk(lbu),wrk(lbv),nru,nrv)
c  test whether the approximation sp(u,v) is an acceptable solution.
        fpms = fp-s
        if(abs(fpms).lt.acc) go to 440
c  test whether the maximum allowable number of iterations has been
c  reached.
        if(iter.eq.maxit) go to 400
c  carry out one more step of the iteration process.
        p2 = p
        f2 = fpms
        if(ich3.ne.0) go to 320
        if((f2-f3).gt.acc) go to 310
c  our initial choice of p is too large.
        p3 = p2
        f3 = f2
        p = p*con4
        if(p.le.p1) p = p1*con9 + p2*con1
        go to 350
 310    if(f2.lt.0.) ich3 = 1
 320    if(ich1.ne.0) go to 340
        if((f1-f2).gt.acc) go to 330
c  our initial choice of p is too small
        p1 = p2
        f1 = f2
        p = p/con4
        if(p3.lt.0.) go to 350
        if(p.ge.p3) p = p2*con1 + p3*con9
        go to 350
c  test whether the iteration process proceeds as theoretically
c  expected.
 330    if(f2.gt.0.) ich1 = 1
 340    if(f2.ge.f1 .or. f2.le.f3) go to 410
c  find the new value of p.
        p = fprati(p1,f1,p2,f2,p3,f3)
 350  continue
c  error codes and messages.
 400  ier = 3
      go to 440
 410  ier = 2
      go to 440
 420  ier = 1
      go to 440
 430  ier = -1
      fp = 0.
 440  return
      end