1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
subroutine fppogr(iopt,ider,u,mu,v,mv,z,mz,z0,r,s,nuest,nvest,
* tol,maxit,nc,nu,tu,nv,tv,c,fp,fp0,fpold,reducu,reducv,fpintu,
* fpintv,dz,step,lastdi,nplusu,nplusv,lasttu,nru,nrv,nrdatu,
* nrdatv,wrk,lwrk,ier)
c ..
c ..scalar arguments..
integer mu,mv,mz,nuest,nvest,maxit,nc,nu,nv,lastdi,nplusu,nplusv,
* lasttu,lwrk,ier
real*8 z0,r,s,tol,fp,fp0,fpold,reducu,reducv,step
c ..array arguments..
integer iopt(3),ider(2),nrdatu(nuest),nrdatv(nvest),nru(mu),
* nrv(mv)
real*8 u(mu),v(mv),z(mz),tu(nuest),tv(nvest),c(nc),fpintu(nuest),
* fpintv(nvest),dz(3),wrk(lwrk)
c ..local scalars..
real*8 acc,fpms,f1,f2,f3,p,per,pi,p1,p2,p3,vb,ve,zmax,zmin,rn,one,
*
* con1,con4,con9
integer i,ich1,ich3,ifbu,ifbv,ifsu,ifsv,istart,iter,i1,i2,j,ju,
* ktu,l,l1,l2,l3,l4,mpm,mumin,mu0,mu1,nn,nplu,nplv,npl1,nrintu,
* nrintv,nue,numax,nve,nvmax
c ..local arrays..
integer idd(2)
real*8 dzz(3)
c ..function references..
real*8 abs,datan2,fprati
integer max0,min0
c ..subroutine references..
c fpknot,fpopdi
c ..
c set constants
one = 1d0
con1 = 0.1e0
con9 = 0.9e0
con4 = 0.4e-01
c initialization
ifsu = 0
ifsv = 0
ifbu = 0
ifbv = 0
p = -one
mumin = 4-iopt(3)
if(ider(1).ge.0) mumin = mumin-1
if(iopt(2).eq.1 .and. ider(2).eq.1) mumin = mumin-1
pi = datan2(0d0,-one)
per = pi+pi
vb = v(1)
ve = vb+per
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 1: determination of the number of knots and their position. c
c **************************************************************** c
c given a set of knots we compute the least-squares spline sinf(u,v) c
c and the corresponding sum of squared residuals fp = f(p=inf). c
c if iopt(1)=-1 sinf(u,v) is the requested approximation. c
c if iopt(1)>=0 we check whether we can accept the knots: c
c if fp <= s we will continue with the current set of knots. c
c if fp > s we will increase the number of knots and compute the c
c corresponding least-squares spline until finally fp <= s. c
c the initial choice of knots depends on the value of s and iopt. c
c if s=0 we have spline interpolation; in that case the number of c
c knots in the u-direction equals nu=numax=mu+5+iopt(2)+iopt(3) c
c and in the v-direction nv=nvmax=mv+7. c
c if s>0 and c
c iopt(1)=0 we first compute the least-squares polynomial,i.e. a c
c spline without interior knots : nu=8 ; nv=8. c
c iopt(1)=1 we start with the set of knots found at the last call c
c of the routine, except for the case that s > fp0; then we c
c compute the least-squares polynomial directly. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
if(iopt(1).lt.0) go to 120
c acc denotes the absolute tolerance for the root of f(p)=s.
acc = tol*s
c numax and nvmax denote the number of knots needed for interpolation.
numax = mu+5+iopt(2)+iopt(3)
nvmax = mv+7
nue = min0(numax,nuest)
nve = min0(nvmax,nvest)
if(s.gt.0.) go to 100
c if s = 0, s(u,v) is an interpolating spline.
nu = numax
nv = nvmax
c test whether the required storage space exceeds the available one.
if(nu.gt.nuest .or. nv.gt.nvest) go to 420
c find the position of the knots in the v-direction.
do 10 l=1,mv
tv(l+3) = v(l)
10 continue
tv(mv+4) = ve
l1 = mv-2
l2 = mv+5
do 20 i=1,3
tv(i) = v(l1)-per
tv(l2) = v(i+1)+per
l1 = l1+1
l2 = l2+1
20 continue
c if not all the derivative values g(i,j) are given, we will first
c estimate these values by computing a least-squares spline
idd(1) = ider(1)
if(idd(1).eq.0) idd(1) = 1
if(idd(1).gt.0) dz(1) = z0
idd(2) = ider(2)
if(ider(1).lt.0) go to 30
if(iopt(2).eq.0 .or. ider(2).ne.0) go to 70
c we set up the knots in the u-direction for computing the least-squares
c spline.
30 i1 = 3
i2 = mu-2
nu = 4
do 40 i=1,mu
if(i1.gt.i2) go to 50
nu = nu+1
tu(nu) = u(i1)
i1 = i1+2
40 continue
50 do 60 i=1,4
tu(i) = 0.
nu = nu+1
tu(nu) = r
60 continue
c we compute the least-squares spline for estimating the derivatives.
call fpopdi(ifsu,ifsv,ifbu,ifbv,u,mu,v,mv,z,mz,z0,dz,iopt,idd,
* tu,nu,tv,nv,nuest,nvest,p,step,c,nc,fp,fpintu,fpintv,nru,nrv,
* wrk,lwrk)
ifsu = 0
c if all the derivatives at the origin are known, we compute the
c interpolating spline.
c we set up the knots in the u-direction, needed for interpolation.
70 nn = numax-8
if(nn.eq.0) go to 95
ju = 2-iopt(2)
do 80 l=1,nn
tu(l+4) = u(ju)
ju = ju+1
80 continue
nu = numax
l = nu
do 90 i=1,4
tu(i) = 0.
tu(l) = r
l = l-1
90 continue
c we compute the interpolating spline.
95 call fpopdi(ifsu,ifsv,ifbu,ifbv,u,mu,v,mv,z,mz,z0,dz,iopt,idd,
* tu,nu,tv,nv,nuest,nvest,p,step,c,nc,fp,fpintu,fpintv,nru,nrv,
* wrk,lwrk)
go to 430
c if s>0 our initial choice of knots depends on the value of iopt(1).
100 ier = 0
if(iopt(1).eq.0) go to 115
step = -step
if(fp0.le.s) go to 115
c if iopt(1)=1 and fp0 > s we start computing the least-squares spline
c according to the set of knots found at the last call of the routine.
c we determine the number of grid coordinates u(i) inside each knot
c interval (tu(l),tu(l+1)).
l = 5
j = 1
nrdatu(1) = 0
mu0 = 2-iopt(2)
mu1 = mu-2+iopt(3)
do 105 i=mu0,mu1
nrdatu(j) = nrdatu(j)+1
if(u(i).lt.tu(l)) go to 105
nrdatu(j) = nrdatu(j)-1
l = l+1
j = j+1
nrdatu(j) = 0
105 continue
c we determine the number of grid coordinates v(i) inside each knot
c interval (tv(l),tv(l+1)).
l = 5
j = 1
nrdatv(1) = 0
do 110 i=2,mv
nrdatv(j) = nrdatv(j)+1
if(v(i).lt.tv(l)) go to 110
nrdatv(j) = nrdatv(j)-1
l = l+1
j = j+1
nrdatv(j) = 0
110 continue
idd(1) = ider(1)
idd(2) = ider(2)
go to 120
c if iopt(1)=0 or iopt(1)=1 and s >= fp0,we start computing the least-
c squares polynomial (which is a spline without interior knots).
115 ier = -2
idd(1) = ider(1)
idd(2) = 1
nu = 8
nv = 8
nrdatu(1) = mu-3+iopt(2)+iopt(3)
nrdatv(1) = mv-1
lastdi = 0
nplusu = 0
nplusv = 0
fp0 = 0.
fpold = 0.
reducu = 0.
reducv = 0.
c main loop for the different sets of knots.mpm=mu+mv is a save upper
c bound for the number of trials.
120 mpm = mu+mv
do 270 iter=1,mpm
c find nrintu (nrintv) which is the number of knot intervals in the
c u-direction (v-direction).
nrintu = nu-7
nrintv = nv-7
c find the position of the additional knots which are needed for the
c b-spline representation of s(u,v).
i = nu
do 130 j=1,4
tu(j) = 0.
tu(i) = r
i = i-1
130 continue
l1 = 4
l2 = l1
l3 = nv-3
l4 = l3
tv(l2) = vb
tv(l3) = ve
do 140 j=1,3
l1 = l1+1
l2 = l2-1
l3 = l3+1
l4 = l4-1
tv(l2) = tv(l4)-per
tv(l3) = tv(l1)+per
140 continue
c find an estimate of the range of possible values for the optimal
c derivatives at the origin.
ktu = nrdatu(1)+2-iopt(2)
if(nrintu.eq.1) ktu = mu
if(ktu.lt.mumin) ktu = mumin
if(ktu.eq.lasttu) go to 150
zmin = z0
zmax = z0
l = mv*ktu
do 145 i=1,l
if(z(i).lt.zmin) zmin = z(i)
if(z(i).gt.zmax) zmax = z(i)
145 continue
step = zmax-zmin
lasttu = ktu
c find the least-squares spline sinf(u,v).
150 call fpopdi(ifsu,ifsv,ifbu,ifbv,u,mu,v,mv,z,mz,z0,dz,iopt,idd,
* tu,nu,tv,nv,nuest,nvest,p,step,c,nc,fp,fpintu,fpintv,nru,nrv,
* wrk,lwrk)
if(step.lt.0.) step = -step
if(ier.eq.(-2)) fp0 = fp
c test whether the least-squares spline is an acceptable solution.
if(iopt(1).lt.0) go to 440
fpms = fp-s
if(abs(fpms) .lt. acc) go to 440
c if f(p=inf) < s, we accept the choice of knots.
if(fpms.lt.0.) go to 300
c if nu=numax and nv=nvmax, sinf(u,v) is an interpolating spline
if(nu.eq.numax .and. nv.eq.nvmax) go to 430
c increase the number of knots.
c if nu=nue and nv=nve we cannot further increase the number of knots
c because of the storage capacity limitation.
if(nu.eq.nue .and. nv.eq.nve) go to 420
if(ider(1).eq.0) fpintu(1) = fpintu(1)+(z0-c(1))**2
ier = 0
c adjust the parameter reducu or reducv according to the direction
c in which the last added knots were located.
if (lastdi.lt.0) go to 160
if (lastdi.eq.0) go to 155
go to 170
155 nplv = 3
idd(2) = ider(2)
fpold = fp
go to 230
160 reducu = fpold-fp
go to 175
170 reducv = fpold-fp
c store the sum of squared residuals for the current set of knots.
175 fpold = fp
c find nplu, the number of knots we should add in the u-direction.
nplu = 1
if(nu.eq.8) go to 180
npl1 = nplusu*2
rn = nplusu
if(reducu.gt.acc) npl1 = rn*fpms/reducu
nplu = min0(nplusu*2,max0(npl1,nplusu/2,1))
c find nplv, the number of knots we should add in the v-direction.
180 nplv = 3
if(nv.eq.8) go to 190
npl1 = nplusv*2
rn = nplusv
if(reducv.gt.acc) npl1 = rn*fpms/reducv
nplv = min0(nplusv*2,max0(npl1,nplusv/2,1))
c test whether we are going to add knots in the u- or v-direction.
190 if (nplu.lt.nplv) go to 210
if (nplu.eq.nplv) go to 200
go to 230
200 if(lastdi.lt.0) go to 230
210 if(nu.eq.nue) go to 230
c addition in the u-direction.
lastdi = -1
nplusu = nplu
ifsu = 0
istart = 0
if(iopt(2).eq.0) istart = 1
do 220 l=1,nplusu
c add a new knot in the u-direction
call fpknot(u,mu,tu,nu,fpintu,nrdatu,nrintu,nuest,istart)
c test whether we cannot further increase the number of knots in the
c u-direction.
if(nu.eq.nue) go to 270
220 continue
go to 270
230 if(nv.eq.nve) go to 210
c addition in the v-direction.
lastdi = 1
nplusv = nplv
ifsv = 0
do 240 l=1,nplusv
c add a new knot in the v-direction.
call fpknot(v,mv,tv,nv,fpintv,nrdatv,nrintv,nvest,1)
c test whether we cannot further increase the number of knots in the
c v-direction.
if(nv.eq.nve) go to 270
240 continue
c restart the computations with the new set of knots.
270 continue
c test whether the least-squares polynomial is a solution of our
c approximation problem.
300 if(ier.eq.(-2)) go to 440
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 2: determination of the smoothing spline sp(u,v) c
c ***************************************************** c
c we have determined the number of knots and their position. we now c
c compute the b-spline coefficients of the smoothing spline sp(u,v). c
c this smoothing spline depends on the parameter p in such a way that c
c f(p) = sumi=1,mu(sumj=1,mv((z(i,j)-sp(u(i),v(j)))**2) c
c is a continuous, strictly decreasing function of p. moreover the c
c least-squares polynomial corresponds to p=0 and the least-squares c
c spline to p=infinity. then iteratively we have to determine the c
c positive value of p such that f(p)=s. the process which is proposed c
c here makes use of rational interpolation. f(p) is approximated by a c
c rational function r(p)=(u*p+v)/(p+w); three values of p (p1,p2,p3) c
c with corresponding values of f(p) (f1=f(p1)-s,f2=f(p2)-s,f3=f(p3)-s)c
c are used to calculate the new value of p such that r(p)=s. c
c convergence is guaranteed by taking f1 > 0 and f3 < 0. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c initial value for p.
p1 = 0.
f1 = fp0-s
p3 = -one
f3 = fpms
p = one
dzz(1) = dz(1)
dzz(2) = dz(2)
dzz(3) = dz(3)
ich1 = 0
ich3 = 0
c iteration process to find the root of f(p)=s.
do 350 iter = 1,maxit
c find the smoothing spline sp(u,v) and the corresponding sum f(p).
call fpopdi(ifsu,ifsv,ifbu,ifbv,u,mu,v,mv,z,mz,z0,dzz,iopt,idd,
* tu,nu,tv,nv,nuest,nvest,p,step,c,nc,fp,fpintu,fpintv,nru,nrv,
* wrk,lwrk)
c test whether the approximation sp(u,v) is an acceptable solution.
fpms = fp-s
if(abs(fpms).lt.acc) go to 440
c test whether the maximum allowable number of iterations has been
c reached.
if(iter.eq.maxit) go to 400
c carry out one more step of the iteration process.
p2 = p
f2 = fpms
if(ich3.ne.0) go to 320
if((f2-f3).gt.acc) go to 310
c our initial choice of p is too large.
p3 = p2
f3 = f2
p = p*con4
if(p.le.p1) p = p1*con9 + p2*con1
go to 350
310 if(f2.lt.0.) ich3 = 1
320 if(ich1.ne.0) go to 340
if((f1-f2).gt.acc) go to 330
c our initial choice of p is too small
p1 = p2
f1 = f2
p = p/con4
if(p3.lt.0.) go to 350
if(p.ge.p3) p = p2*con1 + p3*con9
go to 350
c test whether the iteration process proceeds as theoretically
c expected.
330 if(f2.gt.0.) ich1 = 1
340 if(f2.ge.f1 .or. f2.le.f3) go to 410
c find the new value of p.
p = fprati(p1,f1,p2,f2,p3,f3)
350 continue
c error codes and messages.
400 ier = 3
go to 440
410 ier = 2
go to 440
420 ier = 1
go to 440
430 ier = -1
fp = 0.
440 return
end
|