File: fppola.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (840 lines) | stat: -rw-r--r-- 27,525 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
      subroutine fppola(iopt1,iopt2,iopt3,m,u,v,z,w,rad,s,nuest,nvest,
     * eta,tol,maxit,ib1,ib3,nc,ncc,intest,nrest,nu,tu,nv,tv,c,fp,sup,
     * fpint,coord,f,ff,row,cs,cosi,a,q,bu,bv,spu,spv,h,index,nummer,
     * wrk,lwrk,ier)
c  ..scalar arguments..
      integer iopt1,iopt2,iopt3,m,nuest,nvest,maxit,ib1,ib3,nc,ncc,
     * intest,nrest,nu,nv,lwrk,ier
      real*8 s,eta,tol,fp,sup
c  ..array arguments..
      integer index(nrest),nummer(m)
      real*8 u(m),v(m),z(m),w(m),tu(nuest),tv(nvest),c(nc),fpint(intest)
     *,
     * coord(intest),f(ncc),ff(nc),row(nvest),cs(nvest),cosi(5,nvest),
     * a(ncc,ib1),q(ncc,ib3),bu(nuest,5),bv(nvest,5),spu(m,4),spv(m,4),
     * h(ib3),wrk(lwrk)
c  ..user supplied function..
      real*8 rad
c  ..local scalars..
      real*8 acc,arg,co,c1,c2,c3,c4,dmax,eps,fac,fac1,fac2,fpmax,fpms,
     * f1,f2,f3,hui,huj,p,pi,pinv,piv,pi2,p1,p2,p3,r,ratio,si,sigma,
     * sq,store,uu,u2,u3,wi,zi,rn,one,two,three,con1,con4,con9,half,ten
      integer i,iband,iband3,iband4,ich1,ich3,ii,il,in,ipar,ipar1,irot,
     * iter,i1,i2,i3,j,jrot,j1,j2,k,l,la,lf,lh,ll,lu,lv,lwest,l1,l2,
     * l3,l4,ncof,ncoff,nvv,nv4,nreg,nrint,nrr,nr1,nuu,nu4,num,num1,
     * numin,nvmin,rank,iband1
c  ..local arrays..
      real*8 hu(4),hv(4)
c  ..function references..
      real*8 abs,atan,cos,fprati,sin,sqrt
      integer min0
c  ..subroutine references..
c    fporde,fpbspl,fpback,fpgivs,fprota,fprank,fpdisc,fprppo
c  ..
c  set constants
      one = 1
      two = 2
      three = 3
      ten = 10
      half = 0.5e0
      con1 = 0.1e0
      con9 = 0.9e0
      con4 = 0.4e-01
      pi = atan(one)*4
      pi2 = pi+pi
      ipar = iopt2*(iopt2+3)/2
      ipar1 = ipar+1
      eps = sqrt(eta)
      if(iopt1.lt.0) go to 90
      numin = 9
      nvmin = 9+iopt2*(iopt2+1)
c  calculation of acc, the absolute tolerance for the root of f(p)=s.
      acc = tol*s
      if(iopt1.eq.0) go to 10
      if(s.lt.sup) then
        if (nv.lt.nvmin) go to 70
        go to 90
      endif
c  if iopt1 = 0 we begin by computing the weighted least-squares
c  polymomial of the form
c     s(u,v) = f(1)*(1-u**3)+f(2)*u**3+f(3)*(u**2-u**3)+f(4)*(u-u**3)
c  where f(4) = 0 if iopt2> 0 , f(3) = 0 if iopt2 > 1 and
c        f(2) = 0 if iopt3> 0.
c  the corresponding weighted sum of squared residuals gives the upper
c  bound sup for the smoothing factor s.
  10  sup = 0.
      do 20 i=1,4
         f(i) = 0.
         do 20 j=1,4
            a(i,j) = 0.
 20   continue
      do 50 i=1,m
         wi = w(i)
         zi = z(i)*wi
         uu = u(i)
         u2 = uu*uu
         u3 = uu*u2
         h(1) = (one-u3)*wi
         h(2) = u3*wi
         h(3) = u2*(one-uu)*wi
         h(4) = uu*(one-u2)*wi
         if(iopt3.ne.0) h(2) = 0.
         if(iopt2.gt.1) h(3) = 0.
         if(iopt2.gt.0) h(4) = 0.
         do 40 j=1,4
            piv = h(j)
            if(piv.eq.0.) go to 40
            call fpgivs(piv,a(j,1),co,si)
            call fprota(co,si,zi,f(j))
            if(j.eq.4) go to 40
            j1 = j+1
            j2 = 1
            do 30 l=j1,4
               j2 = j2+1
               call fprota(co,si,h(l),a(j,j2))
  30        continue
  40     continue
         sup = sup+zi*zi
  50  continue
      if(a(4,1).ne.0.) f(4) = f(4)/a(4,1)
      if(a(3,1).ne.0.) f(3) = (f(3)-a(3,2)*f(4))/a(3,1)
      if(a(2,1).ne.0.) f(2) = (f(2)-a(2,2)*f(3)-a(2,3)*f(4))/a(2,1)
      if(a(1,1).ne.0.)
     * f(1) = (f(1)-a(1,2)*f(2)-a(1,3)*f(3)-a(1,4)*f(4))/a(1,1)
c  find the b-spline representation of this least-squares polynomial
      c1 = f(1)
      c4 = f(2)
      c2 = f(4)/three+c1
      c3 = (f(3)+two*f(4))/three+c1
      nu = 8
      nv = 8
      do 60 i=1,4
         c(i) = c1
         c(i+4) = c2
         c(i+8) = c3
         c(i+12) = c4
         tu(i) = 0.
         tu(i+4) = one
         rn = 2*i-9
         tv(i) = rn*pi
         rn = 2*i-1
         tv(i+4) = rn*pi
  60  continue
      fp = sup
c  test whether the least-squares polynomial is an acceptable solution
      fpms = sup-s
      if(fpms.lt.acc) go to 960
c  test whether we cannot further increase the number of knots.
  70  if(nuest.lt.numin .or. nvest.lt.nvmin) go to 950
c  find the initial set of interior knots of the spline in case iopt1=0.
      nu = numin
      nv = nvmin
      tu(5) = half
      nvv = nv-8
      rn = nvv+1
      fac = pi2/rn
      do 80 i=1,nvv
         rn = i
         tv(i+4) = rn*fac-pi
  80  continue
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c  part 1 : computation of least-squares bicubic splines.              c
c  ******************************************************              c
c  if iopt1<0 we compute the least-squares bicubic spline according    c
c  to the given set of knots.                                          c
c  if iopt1>=0 we compute least-squares bicubic splines with in-       c
c  creasing numbers of knots until the corresponding sum f(p=inf)<=s.  c
c  the initial set of knots then depends on the value of iopt1         c
c    if iopt1=0 we start with one interior knot in the u-direction     c
c              (0.5) and 1+iopt2*(iopt2+1) in the v-direction.         c
c    if iopt1>0 we start with the set of knots found at the last       c
c              call of the routine.                                    c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c  main loop for the different sets of knots. m is a save upper bound
c  for the number of trials.
  90  do 570 iter=1,m
c  find the position of the additional knots which are needed for the
c  b-spline representation of s(u,v).
         l1 = 4
         l2 = l1
         l3 = nv-3
         l4 = l3
         tv(l2) = -pi
         tv(l3) = pi
         do 120 i=1,3
            l1 = l1+1
            l2 = l2-1
            l3 = l3+1
            l4 = l4-1
            tv(l2) = tv(l4)-pi2
            tv(l3) = tv(l1)+pi2
 120     continue
        l = nu
        do 130 i=1,4
          tu(i) = 0.
          tu(l) = one
          l = l-1
 130    continue
c  find nrint, the total number of knot intervals and nreg, the number
c  of panels in which the approximation domain is subdivided by the
c  intersection of knots.
        nuu = nu-7
        nvv = nv-7
        nrr = nvv/2
        nr1 = nrr+1
        nrint = nuu+nvv
        nreg = nuu*nvv
c  arrange the data points according to the panel they belong to.
        call fporde(u,v,m,3,3,tu,nu,tv,nv,nummer,index,nreg)
        if(iopt2.eq.0) go to 195
c  find the b-spline coefficients cosi of the cubic spline
c  approximations for cr(v)=rad(v)*cos(v) and sr(v) = rad(v)*sin(v)
c  if iopt2=1, and additionally also for cr(v)**2,sr(v)**2 and
c  2*cr(v)*sr(v) if iopt2=2
        do 140 i=1,nvv
           do 135 j=1,ipar
              cosi(j,i) = 0.
 135       continue
           do 140 j=1,nvv
              a(i,j) = 0.
 140    continue
c  the coefficients cosi are obtained from interpolation conditions
c  at the knots tv(i),i=4,5,...nv-4.
        do 175 i=1,nvv
           l2 = i+3
           arg = tv(l2)
           call fpbspl(tv,nv,3,arg,l2,hv)
           do 145 j=1,nvv
              row(j) = 0.
 145       continue
           ll = i
           do 150 j=1,3
              if(ll.gt.nvv) ll= 1
              row(ll) = row(ll)+hv(j)
              ll = ll+1
 150       continue
           co = cos(arg)
           si = sin(arg)
           r = rad(arg)
           cs(1) = co*r
           cs(2) = si*r
           if(iopt2.eq.1) go to 155
           cs(3) = cs(1)*cs(1)
           cs(4) = cs(2)*cs(2)
           cs(5) = cs(1)*cs(2)
 155       do 170 j=1,nvv
              piv = row(j)
              if(piv.eq.0.) go to 170
              call fpgivs(piv,a(j,1),co,si)
              do 160 l=1,ipar
                 call fprota(co,si,cs(l),cosi(l,j))
 160          continue
              if(j.eq.nvv) go to 175
              j1 = j+1
              j2 = 1
              do 165 l=j1,nvv
                 j2 = j2+1
                 call fprota(co,si,row(l),a(j,j2))
 165          continue
 170       continue
 175    continue
         do 190 l=1,ipar
            do 180 j=1,nvv
               cs(j) = cosi(l,j)
 180        continue
            call fpback(a,cs,nvv,nvv,cs,ncc)
            do 185 j=1,nvv
               cosi(l,j) = cs(j)
 185        continue
 190     continue
c  find ncof, the dimension of the spline and ncoff, the number
c  of coefficients in the standard b-spline representation.
 195    nu4 = nu-4
        nv4 = nv-4
        ncoff = nu4*nv4
        ncof = ipar1+nvv*(nu4-1-iopt2-iopt3)
c  find the bandwidth of the observation matrix a.
        iband = 4*nvv
        if(nuu-iopt2-iopt3.le.1) iband = ncof
        iband1 = iband-1
c  initialize the observation matrix a.
        do 200 i=1,ncof
          f(i) = 0.
          do 200 j=1,iband
            a(i,j) = 0.
 200    continue
c  initialize the sum of squared residuals.
        fp = 0.
        ratio = one+tu(6)/tu(5)
c  fetch the data points in the new order. main loop for the
c  different panels.
        do 380 num=1,nreg
c  fix certain constants for the current panel; jrot records the column
c  number of the first non-zero element in a row of the observation
c  matrix according to a data point of the panel.
          num1 = num-1
          lu = num1/nvv
          l1 = lu+4
          lv = num1-lu*nvv+1
          l2 = lv+3
          jrot = 0
          if(lu.gt.iopt2) jrot = ipar1+(lu-iopt2-1)*nvv
          lu = lu+1
c  test whether there are still data points in the current panel.
          in = index(num)
 210      if(in.eq.0) go to 380
c  fetch a new data point.
          wi = w(in)
          zi = z(in)*wi
c  evaluate for the u-direction, the 4 non-zero b-splines at u(in)
          call fpbspl(tu,nu,3,u(in),l1,hu)
c  evaluate for the v-direction, the 4 non-zero b-splines at v(in)
          call fpbspl(tv,nv,3,v(in),l2,hv)
c  store the value of these b-splines in spu and spv resp.
          do 220 i=1,4
            spu(in,i) = hu(i)
            spv(in,i) = hv(i)
 220      continue
c  initialize the new row of observation matrix.
          do 240 i=1,iband
            h(i) = 0.
 240      continue
c  calculate the non-zero elements of the new row by making the cross
c  products of the non-zero b-splines in u- and v-direction and
c  by taking into account the conditions of the splines.
          do 250 i=1,nvv
             row(i) = 0.
 250      continue
c  take into account the periodicity condition of the bicubic splines.
          ll = lv
          do 260 i=1,4
             if(ll.gt.nvv) ll=1
             row(ll) = row(ll)+hv(i)
             ll = ll+1
 260      continue
c  take into account the other conditions of the splines.
          if(iopt2.eq.0 .or. lu.gt.iopt2+1) go to 280
          do 270 l=1,ipar
             cs(l) = 0.
             do 270 i=1,nvv
                cs(l) = cs(l)+row(i)*cosi(l,i)
 270     continue
c  fill in the non-zero elements of the new row.
 280     j1 = 0
         do 330 j =1,4
            jlu = j+lu
            huj = hu(j)
            if(jlu.gt.iopt2+2) go to 320
            go to (290,290,300,310),jlu
 290        h(1) = huj
            j1 = 1
            go to 330
 300        h(1) = h(1)+huj
            h(2) = huj*cs(1)
            h(3) = huj*cs(2)
            j1 = 3
            go to 330
 310        h(1) = h(1)+huj
            h(2) = h(2)+huj*ratio*cs(1)
            h(3) = h(3)+huj*ratio*cs(2)
            h(4) = huj*cs(3)
            h(5) = huj*cs(4)
            h(6) = huj*cs(5)
            j1 = 6
            go to 330
 320        if(jlu.gt.nu4 .and. iopt3.ne.0) go to 330
            do 325 i=1,nvv
               j1 = j1+1
               h(j1) = row(i)*huj
 325        continue
 330      continue
          do 335 i=1,iband
            h(i) = h(i)*wi
 335      continue
c  rotate the row into triangle by givens transformations.
          irot = jrot
          do 350 i=1,iband
            irot = irot+1
            piv = h(i)
            if(piv.eq.0.) go to 350
c  calculate the parameters of the givens transformation.
            call fpgivs(piv,a(irot,1),co,si)
c  apply that transformation to the right hand side.
            call fprota(co,si,zi,f(irot))
            if(i.eq.iband) go to 360
c  apply that transformation to the left hand side.
            i2 = 1
            i3 = i+1
            do 340 j=i3,iband
              i2 = i2+1
              call fprota(co,si,h(j),a(irot,i2))
 340        continue
 350      continue
c  add the contribution of the row to the sum of squares of residual
c  right hand sides.
 360      fp = fp+zi**2
c  find the number of the next data point in the panel.
          in = nummer(in)
          go to 210
 380    continue
c  find dmax, the maximum value for the diagonal elements in the reduced
c  triangle.
        dmax = 0.
        do 390 i=1,ncof
          if(a(i,1).le.dmax) go to 390
          dmax = a(i,1)
 390    continue
c  check whether the observation matrix is rank deficient.
        sigma = eps*dmax
        do 400 i=1,ncof
          if(a(i,1).le.sigma) go to 410
 400    continue
c  backward substitution in case of full rank.
        call fpback(a,f,ncof,iband,c,ncc)
        rank = ncof
        do 405 i=1,ncof
          q(i,1) = a(i,1)/dmax
 405    continue
        go to 430
c  in case of rank deficiency, find the minimum norm solution.
 410    lwest = ncof*iband+ncof+iband
        if(lwrk.lt.lwest) go to 925
        lf = 1
        lh = lf+ncof
        la = lh+iband
        do 420 i=1,ncof
          ff(i) = f(i)
          do 420 j=1,iband
            q(i,j) = a(i,j)
 420    continue
        call fprank(q,ff,ncof,iband,ncc,sigma,c,sq,rank,wrk(la),
     *   wrk(lf),wrk(lh))
        do 425 i=1,ncof
          q(i,1) = q(i,1)/dmax
 425    continue
c  add to the sum of squared residuals, the contribution of reducing
c  the rank.
        fp = fp+sq
c  find the coefficients in the standard b-spline representation of
c  the spline.
 430    call fprppo(nu,nv,iopt2,iopt3,cosi,ratio,c,ff,ncoff)
c  test whether the least-squares spline is an acceptable solution.
        if(iopt1.lt.0) then
          if (fp.le.0) go to 970
          go to 980
        endif
        fpms = fp-s
        if(abs(fpms).le.acc) then
            if (fp.le.0) go to 970
            go to 980
        endif
c  if f(p=inf) < s, accept the choice of knots.
        if(fpms.lt.0.) go to 580
c  test whether we cannot further increase the number of knots
        if(m.lt.ncof) go to 935
c  search where to add a new knot.
c  find for each interval the sum of squared residuals fpint for the
c  data points having the coordinate belonging to that knot interval.
c  calculate also coord which is the same sum, weighted by the position
c  of the data points considered.
        do 450 i=1,nrint
          fpint(i) = 0.
          coord(i) = 0.
 450    continue
        do 490 num=1,nreg
          num1 = num-1
          lu = num1/nvv
          l1 = lu+1
          lv = num1-lu*nvv
          l2 = lv+1+nuu
          jrot = lu*nv4+lv
          in = index(num)
 460      if(in.eq.0) go to 490
          store = 0.
          i1 = jrot
          do 480 i=1,4
            hui = spu(in,i)
            j1 = i1
            do 470 j=1,4
              j1 = j1+1
              store = store+hui*spv(in,j)*c(j1)
 470        continue
            i1 = i1+nv4
 480      continue
          store = (w(in)*(z(in)-store))**2
          fpint(l1) = fpint(l1)+store
          coord(l1) = coord(l1)+store*u(in)
          fpint(l2) = fpint(l2)+store
          coord(l2) = coord(l2)+store*v(in)
          in = nummer(in)
          go to 460
 490    continue
c bring together the information concerning knot panels which are
c symmetric with respect to the origin.
        do 495 i=1,nrr
          l1 = nuu+i
          l2 = l1+nrr
          fpint(l1) = fpint(l1)+fpint(l2)
          coord(l1) = coord(l1)+coord(l2)-pi*fpint(l2)
 495    continue
c  find the interval for which fpint is maximal on the condition that
c  there still can be added a knot.
        l1 = 1
        l2 = nuu+nrr
        if(nuest.lt.nu+1) l1=nuu+1
        if(nvest.lt.nv+2) l2=nuu
c  test whether we cannot further increase the number of knots.
        if(l1.gt.l2) go to 950
 500    fpmax = 0.
        l = 0
        do 510 i=l1,l2
          if(fpmax.ge.fpint(i)) go to 510
          l = i
          fpmax = fpint(i)
 510    continue
        if(l.eq.0) go to 930
c  calculate the position of the new knot.
        arg = coord(l)/fpint(l)
c  test in what direction the new knot is going to be added.
        if(l.gt.nuu) go to 530
c  addition in the u-direction
        l4 = l+4
        fpint(l) = 0.
        fac1 = tu(l4)-arg
        fac2 = arg-tu(l4-1)
        if(fac1.gt.(ten*fac2) .or. fac2.gt.(ten*fac1)) go to 500
        j = nu
        do 520 i=l4,nu
          tu(j+1) = tu(j)
          j = j-1
 520    continue
        tu(l4) = arg
        nu = nu+1
        go to 570
c  addition in the v-direction
 530    l4 = l+4-nuu
        fpint(l) = 0.
        fac1 = tv(l4)-arg
        fac2 = arg-tv(l4-1)
        if(fac1.gt.(ten*fac2) .or. fac2.gt.(ten*fac1)) go to 500
        ll = nrr+4
        j = ll
        do 550 i=l4,ll
          tv(j+1) = tv(j)
          j = j-1
 550    continue
        tv(l4) = arg
        nv = nv+2
        nrr = nrr+1
        do 560 i=5,ll
          j = i+nrr
          tv(j) = tv(i)+pi
 560    continue
c  restart the computations with the new set of knots.
 570  continue
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 2: determination of the smoothing bicubic spline.               c
c ******************************************************               c
c we have determined the number of knots and their position. we now    c
c compute the coefficients of the smoothing spline sp(u,v).            c
c the observation matrix a is extended by the rows of a matrix, expres-c
c sing that sp(u,v) must be a constant function in the variable        c
c v and a cubic polynomial in the variable u. the corresponding        c
c weights of these additional rows are set to 1/(p). iteratively       c
c we than have to determine the value of p such that f(p) = sum((w(i)* c
c (z(i)-sp(u(i),v(i))))**2)  be = s.                                   c
c we already know that the least-squares polynomial corresponds to p=0,c
c and that the least-squares bicubic spline corresponds to p=infin.    c
c the iteration process makes use of rational interpolation. since f(p)c
c is a convex and strictly decreasing function of p, it can be approx- c
c imated by a rational function of the form r(p) = (u*p+v)/(p+w).      c
c three values of p (p1,p2,p3) with corresponding values of f(p) (f1=  c
c f(p1)-s,f2=f(p2)-s,f3=f(p3)-s) are used to calculate the new value   c
c of p such that r(p)=s. convergence is guaranteed by taking f1>0,f3<0.c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c  evaluate the discontinuity jumps of the 3-th order derivative of
c  the b-splines at the knots tu(l),l=5,...,nu-4.
 580  call fpdisc(tu,nu,5,bu,nuest)
c  evaluate the discontinuity jumps of the 3-th order derivative of
c  the b-splines at the knots tv(l),l=5,...,nv-4.
      call fpdisc(tv,nv,5,bv,nvest)
c  initial value for p.
      p1 = 0.
      f1 = sup-s
      p3 = -one
      f3 = fpms
      p = 0.
      do 590 i=1,ncof
        p = p+a(i,1)
 590  continue
      rn = ncof
      p = rn/p
c  find the bandwidth of the extended observation matrix.
      iband4 = iband+ipar1
      if(iband4.gt.ncof) iband4 = ncof
      iband3 = iband4 -1
      ich1 = 0
      ich3 = 0
      nuu = nu4-iopt3-1
c  iteration process to find the root of f(p)=s.
      do 920 iter=1,maxit
        pinv = one/p
c  store the triangularized observation matrix into q.
        do 630 i=1,ncof
          ff(i) = f(i)
          do 620 j=1,iband4
            q(i,j) = 0.
 620      continue
          do 630 j=1,iband
            q(i,j) = a(i,j)
 630    continue
c  extend the observation matrix with the rows of a matrix, expressing
c  that for u=constant sp(u,v) must be a constant function.
        do 720 i=5,nv4
          ii = i-4
          do 635 l=1,nvv
             row(l) = 0.
 635      continue
          ll = ii
          do 640  l=1,5
             if(ll.gt.nvv) ll=1
             row(ll) = row(ll)+bv(ii,l)
             ll = ll+1
 640      continue
          do 720 j=1,nuu
c  initialize the new row.
            do 645 l=1,iband
              h(l) = 0.
 645        continue
c  fill in the non-zero elements of the row. jrot records the column
c  number of the first non-zero element in the row.
            if(j.gt.iopt2) go to 665
            if(j.eq.2) go to 655
            do 650 k=1,2
               cs(k) = 0.
               do 650 l=1,nvv
                  cs(k) = cs(k)+cosi(k,l)*row(l)
 650        continue
            h(1) = cs(1)
            h(2) = cs(2)
            jrot = 2
            go to 675
 655        do 660 k=3,5
               cs(k) = 0.
               do 660 l=1,nvv
                  cs(k) = cs(k)+cosi(k,l)*row(l)
 660        continue
            h(1) = cs(1)*ratio
            h(2) = cs(2)*ratio
            h(3) = cs(3)
            h(4) = cs(4)
            h(5) = cs(5)
            jrot = 2
            go to 675
 665        do 670 l=1,nvv
               h(l) = row(l)
 670        continue
            jrot = ipar1+1+(j-iopt2-1)*nvv
 675        do 677 l=1,iband
              h(l) = h(l)*pinv
 677        continue
            zi = 0.
c  rotate the new row into triangle by givens transformations.
            do 710 irot=jrot,ncof
              piv = h(1)
              i2 = min0(iband1,ncof-irot)
              if(piv.eq.0.) then
                 if (i2.le.0) go to 720
                 go to 690
              endif
c  calculate the parameters of the givens transformation.
              call fpgivs(piv,q(irot,1),co,si)
c  apply that givens transformation to the right hand side.
              call fprota(co,si,zi,ff(irot))
              if(i2.eq.0) go to 720
c  apply that givens transformation to the left hand side.
              do 680 l=1,i2
                l1 = l+1
                call fprota(co,si,h(l1),q(irot,l1))
 680          continue
 690          do 700 l=1,i2
                h(l) = h(l+1)
 700          continue
              h(i2+1) = 0.
 710        continue
 720    continue
c  extend the observation matrix with the rows of a matrix expressing
c  that for v=constant. sp(u,v) must be a cubic polynomial.
        do 810 i=5,nu4
          ii = i-4
          do 810 j=1,nvv
c  initialize the new row
            do 730 l=1,iband4
              h(l) = 0.
 730        continue
c  fill in the non-zero elements of the row. jrot records the column
c  number of the first non-zero element in the row.
            j1 = 1
            do 760 l=1,5
               il = ii+l-1
               if(il.eq.nu4 .and. iopt3.ne.0) go to 760
               if(il.gt.iopt2+1) go to 750
               go to (735,740,745),il
 735           h(1) = bu(ii,l)
               j1 = j+1
               go to 760
 740           h(1) = h(1)+bu(ii,l)
               h(2) = bu(ii,l)*cosi(1,j)
               h(3) = bu(ii,l)*cosi(2,j)
               j1 = j+3
               go to 760
 745           h(1) = h(1)+bu(ii,l)
               h(2) = bu(ii,l)*cosi(1,j)*ratio
               h(3) = bu(ii,l)*cosi(2,j)*ratio
               h(4) = bu(ii,l)*cosi(3,j)
               h(5) = bu(ii,l)*cosi(4,j)
               h(6) = bu(ii,l)*cosi(5,j)
               j1 = j+6
               go to 760
 750           h(j1) = bu(ii,l)
               j1 = j1+nvv
 760        continue
            do 765 l=1,iband4
              h(l) = h(l)*pinv
 765        continue
            zi = 0.
            jrot = 1
            if(ii.gt.iopt2+1) jrot = ipar1+(ii-iopt2-2)*nvv+j
c  rotate the new row into triangle by givens transformations.
            do 800 irot=jrot,ncof
              piv = h(1)
              i2 = min0(iband3,ncof-irot)
              if(piv.eq.0.) then
                if (i2.le.0) go to 810
                go to 780
              endif
c  calculate the parameters of the givens transformation.
              call fpgivs(piv,q(irot,1),co,si)
c  apply that givens transformation to the right hand side.
              call fprota(co,si,zi,ff(irot))
              if(i2.eq.0) go to 810
c  apply that givens transformation to the left hand side.
              do 770 l=1,i2
                l1 = l+1
                call fprota(co,si,h(l1),q(irot,l1))
 770          continue
 780          do 790 l=1,i2
                h(l) = h(l+1)
 790          continue
              h(i2+1) = 0.
 800        continue
 810    continue
c  find dmax, the maximum value for the diagonal elements in the
c  reduced triangle.
        dmax = 0.
        do 820 i=1,ncof
          if(q(i,1).le.dmax) go to 820
          dmax = q(i,1)
 820    continue
c  check whether the matrix is rank deficient.
        sigma = eps*dmax
        do 830 i=1,ncof
          if(q(i,1).le.sigma) go to 840
 830    continue
c  backward substitution in case of full rank.
        call fpback(q,ff,ncof,iband4,c,ncc)
        rank = ncof
        go to 845
c  in case of rank deficiency, find the minimum norm solution.
 840    lwest = ncof*iband4+ncof+iband4
        if(lwrk.lt.lwest) go to 925
        lf = 1
        lh = lf+ncof
        la = lh+iband4
        call fprank(q,ff,ncof,iband4,ncc,sigma,c,sq,rank,wrk(la),
     *   wrk(lf),wrk(lh))
 845    do 850 i=1,ncof
           q(i,1) = q(i,1)/dmax
 850    continue
c  find the coefficients in the standard b-spline representation of
c  the polar spline.
        call fprppo(nu,nv,iopt2,iopt3,cosi,ratio,c,ff,ncoff)
c  compute f(p).
        fp = 0.
        do 890 num = 1,nreg
          num1 = num-1
          lu = num1/nvv
          lv = num1-lu*nvv
          jrot = lu*nv4+lv
          in = index(num)
 860      if(in.eq.0) go to 890
          store = 0.
          i1 = jrot
          do 880 i=1,4
            hui = spu(in,i)
            j1 = i1
            do 870 j=1,4
              j1 = j1+1
              store = store+hui*spv(in,j)*c(j1)
 870        continue
            i1 = i1+nv4
 880      continue
          fp = fp+(w(in)*(z(in)-store))**2
          in = nummer(in)
          go to 860
 890    continue
c  test whether the approximation sp(u,v) is an acceptable solution
        fpms = fp-s
        if(abs(fpms).le.acc) go to 980
c  test whether the maximum allowable number of iterations has been
c  reached.
        if(iter.eq.maxit) go to 940
c  carry out one more step of the iteration process.
        p2 = p
        f2 = fpms
        if(ich3.ne.0) go to 900
        if((f2-f3).gt.acc) go to 895
c  our initial choice of p is too large.
        p3 = p2
        f3 = f2
        p = p*con4
        if(p.le.p1) p = p1*con9 + p2*con1
        go to 920
 895    if(f2.lt.0.) ich3 = 1
 900    if(ich1.ne.0) go to 910
        if((f1-f2).gt.acc) go to 905
c  our initial choice of p is too small
        p1 = p2
        f1 = f2
        p = p/con4
        if(p3.lt.0.) go to 920
        if(p.ge.p3) p = p2*con1 +p3*con9
        go to 920
 905    if(f2.gt.0.) ich1 = 1
c  test whether the iteration process proceeds as theoretically
c  expected.
 910    if(f2.ge.f1 .or. f2.le.f3) go to 945
c  find the new value of p.
        p = fprati(p1,f1,p2,f2,p3,f3)
 920  continue
c  error codes and messages.
 925  ier = lwest
      go to 990
 930  ier = 5
      go to 990
 935  ier = 4
      go to 990
 940  ier = 3
      go to 990
 945  ier = 2
      go to 990
 950  ier = 1
      go to 990
 960  ier = -2
      go to 990
 970  ier = -1
      fp = 0.
 980  if(ncof.ne.rank) ier = -rank
 990  return
      end