1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
subroutine fprank(a,f,n,m,na,tol,c,sq,rank,aa,ff,h)
c subroutine fprank finds the minimum norm solution of a least-
c squares problem in case of rank deficiency.
c
c input parameters:
c a : array, which contains the non-zero elements of the observation
c matrix after triangularization by givens transformations.
c f : array, which contains the transformed right hand side.
c n : integer,wich contains the dimension of a.
c m : integer, which denotes the bandwidth of a.
c tol : real value, giving a threshold to determine the rank of a.
c
c output parameters:
c c : array, which contains the minimum norm solution.
c sq : real value, giving the contribution of reducing the rank
c to the sum of squared residuals.
c rank : integer, which contains the rank of matrix a.
c
c ..scalar arguments..
integer n,m,na,rank
real*8 tol,sq
c ..array arguments..
real*8 a(na,m),f(n),c(n),aa(n,m),ff(n),h(m)
c ..local scalars..
integer i,ii,ij,i1,i2,j,jj,j1,j2,j3,k,kk,m1,nl
real*8 cos,fac,piv,sin,yi
double precision store,stor1,stor2,stor3
c ..function references..
integer min0
c ..subroutine references..
c fpgivs,fprota
c ..
m1 = m-1
c the rank deficiency nl is considered to be the number of sufficient
c small diagonal elements of a.
nl = 0
sq = 0.
do 90 i=1,n
if(a(i,1).gt.tol) go to 90
c if a sufficient small diagonal element is found, we put it to
c zero. the remainder of the row corresponding to that zero diagonal
c element is then rotated into triangle by givens rotations .
c the rank deficiency is increased by one.
nl = nl+1
if(i.eq.n) go to 90
yi = f(i)
do 10 j=1,m1
h(j) = a(i,j+1)
10 continue
h(m) = 0.
i1 = i+1
do 60 ii=i1,n
i2 = min0(n-ii,m1)
piv = h(1)
if(piv.eq.0.) go to 30
call fpgivs(piv,a(ii,1),cos,sin)
call fprota(cos,sin,yi,f(ii))
if(i2.eq.0) go to 70
do 20 j=1,i2
j1 = j+1
call fprota(cos,sin,h(j1),a(ii,j1))
h(j) = h(j1)
20 continue
go to 50
30 if(i2.eq.0) go to 70
do 40 j=1,i2
h(j) = h(j+1)
40 continue
50 h(i2+1) = 0.
60 continue
c add to the sum of squared residuals the contribution of deleting
c the row with small diagonal element.
70 sq = sq+yi**2
90 continue
c rank denotes the rank of a.
rank = n-nl
c let b denote the (rank*n) upper trapezoidal matrix which can be
c obtained from the (n*n) upper triangular matrix a by deleting
c the rows and interchanging the columns corresponding to a zero
c diagonal element. if this matrix is factorized using givens
c transformations as b = (r) (u) where
c r is a (rank*rank) upper triangular matrix,
c u is a (rank*n) orthonormal matrix
c then the minimal least-squares solution c is given by c = b' v,
c where v is the solution of the system (r) (r)' v = g and
c g denotes the vector obtained from the old right hand side f, by
c removing the elements corresponding to a zero diagonal element of a.
c initialization.
do 100 i=1,rank
do 100 j=1,m
aa(i,j) = 0.
100 continue
c form in aa the upper triangular matrix obtained from a by
c removing rows and columns with zero diagonal elements. form in ff
c the new right hand side by removing the elements of the old right
c hand side corresponding to a deleted row.
ii = 0
do 120 i=1,n
if(a(i,1).le.tol) go to 120
ii = ii+1
ff(ii) = f(i)
aa(ii,1) = a(i,1)
jj = ii
kk = 1
j = i
j1 = min0(j-1,m1)
if(j1.eq.0) go to 120
do 110 k=1,j1
j = j-1
if(a(j,1).le.tol) go to 110
kk = kk+1
jj = jj-1
aa(jj,kk) = a(j,k+1)
110 continue
120 continue
c form successively in h the columns of a with a zero diagonal element.
ii = 0
do 200 i=1,n
ii = ii+1
if(a(i,1).gt.tol) go to 200
ii = ii-1
if(ii.eq.0) go to 200
jj = 1
j = i
j1 = min0(j-1,m1)
do 130 k=1,j1
j = j-1
if(a(j,1).le.tol) go to 130
h(jj) = a(j,k+1)
jj = jj+1
130 continue
do 140 kk=jj,m
h(kk) = 0.
140 continue
c rotate this column into aa by givens transformations.
jj = ii
do 190 i1=1,ii
j1 = min0(jj-1,m1)
piv = h(1)
if(piv.ne.0.) go to 160
if(j1.eq.0) go to 200
do 150 j2=1,j1
j3 = j2+1
h(j2) = h(j3)
150 continue
go to 180
160 call fpgivs(piv,aa(jj,1),cos,sin)
if(j1.eq.0) go to 200
kk = jj
do 170 j2=1,j1
j3 = j2+1
kk = kk-1
call fprota(cos,sin,h(j3),aa(kk,j3))
h(j2) = h(j3)
170 continue
180 jj = jj-1
h(j3) = 0.
190 continue
200 continue
c solve the system (aa) (f1) = ff
ff(rank) = ff(rank)/aa(rank,1)
i = rank-1
if(i.eq.0) go to 230
do 220 j=2,rank
store = ff(i)
i1 = min0(j-1,m1)
k = i
do 210 ii=1,i1
k = k+1
stor1 = ff(k)
stor2 = aa(i,ii+1)
store = store-stor1*stor2
210 continue
stor1 = aa(i,1)
ff(i) = store/stor1
i = i-1
220 continue
c solve the system (aa)' (f2) = f1
230 ff(1) = ff(1)/aa(1,1)
if(rank.eq.1) go to 260
do 250 j=2,rank
store = ff(j)
i1 = min0(j-1,m1)
k = j
do 240 ii=1,i1
k = k-1
stor1 = ff(k)
stor2 = aa(k,ii+1)
store = store-stor1*stor2
240 continue
stor1 = aa(j,1)
ff(j) = store/stor1
250 continue
c premultiply f2 by the transpoze of a.
260 k = 0
do 280 i=1,n
store = 0.
if(a(i,1).gt.tol) k = k+1
j1 = min0(i,m)
kk = k
ij = i+1
do 270 j=1,j1
ij = ij-1
if(a(ij,1).le.tol) go to 270
stor1 = a(ij,j)
stor2 = ff(kk)
store = store+stor1*stor2
kk = kk-1
270 continue
c(i) = store
280 continue
c add to the sum of squared residuals the contribution of putting
c to zero the small diagonal elements of matrix (a).
stor3 = 0.
do 310 i=1,n
if(a(i,1).gt.tol) go to 310
store = f(i)
i1 = min0(n-i,m1)
if(i1.eq.0) go to 300
do 290 j=1,i1
ij = i+j
stor1 = c(ij)
stor2 = a(i,j+1)
store = store-stor1*stor2
290 continue
300 fac = a(i,1)*c(i)
stor1 = a(i,1)
stor2 = c(i)
stor1 = stor1*stor2
stor3 = stor3+stor1*(stor1-store-store)
310 continue
fac = stor3
sq = sq+fac
return
end
|