1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
subroutine fpsphe(iopt,m,teta,phi,r,w,s,ntest,npest,eta,tol,maxit,
*
* ib1,ib3,nc,ncc,intest,nrest,nt,tt,np,tp,c,fp,sup,fpint,coord,f,
* ff,row,coco,cosi,a,q,bt,bp,spt,spp,h,index,nummer,wrk,lwrk,ier)
c ..
c ..scalar arguments..
integer iopt,m,ntest,npest,maxit,ib1,ib3,nc,ncc,intest,nrest,
* nt,np,lwrk,ier
real*8 s,eta,tol,fp,sup
c ..array arguments..
real*8 teta(m),phi(m),r(m),w(m),tt(ntest),tp(npest),c(nc),
* fpint(intest),coord(intest),f(ncc),ff(nc),row(npest),coco(npest),
*
* cosi(npest),a(ncc,ib1),q(ncc,ib3),bt(ntest,5),bp(npest,5),
* spt(m,4),spp(m,4),h(ib3),wrk(lwrk)
integer index(nrest),nummer(m)
c ..local scalars..
real*8 aa,acc,arg,cn,co,c1,dmax,d1,d2,eps,facc,facs,fac1,fac2,fn,
* fpmax,fpms,f1,f2,f3,hti,htj,p,pi,pinv,piv,pi2,p1,p2,p3,ri,si,
* sigma,sq,store,wi,rn,one,con1,con9,con4,half,ten
integer i,iband,iband1,iband3,iband4,ich1,ich3,ii,ij,il,in,irot,
* iter,i1,i2,i3,j,jlt,jrot,j1,j2,l,la,lf,lh,ll,lp,lt,lwest,l1,l2,
* l3,l4,ncof,ncoff,npp,np4,nreg,nrint,nrr,nr1,ntt,nt4,nt6,num,
* num1,rank
c ..local arrays..
real*8 ht(4),hp(4)
c ..function references..
real*8 abs,atan,fprati,sqrt,cos,sin
integer min0
c ..subroutine references..
c fpback,fpbspl,fpgivs,fpdisc,fporde,fprank,fprota,fprpsp
c ..
c set constants
one = 0.1e+01
con1 = 0.1e0
con9 = 0.9e0
con4 = 0.4e-01
half = 0.5e0
ten = 0.1e+02
pi = atan(one)*4
pi2 = pi+pi
eps = sqrt(eta)
if(iopt.lt.0) go to 70
c calculation of acc, the absolute tolerance for the root of f(p)=s.
acc = tol*s
if(iopt.eq.0) go to 10
if(s.lt.sup) then
if (np.lt.11) go to 60
go to 70
endif
c if iopt=0 we begin by computing the weighted least-squares polynomial
c of the form
c s(teta,phi) = c1*f1(teta) + cn*fn(teta)
c where f1(teta) and fn(teta) are the cubic polynomials satisfying
c f1(0) = 1, f1(pi) = f1'(0) = f1'(pi) = 0 ; fn(teta) = 1-f1(teta).
c the corresponding weighted sum of squared residuals gives the upper
c bound sup for the smoothing factor s.
10 sup = 0.
d1 = 0.
d2 = 0.
c1 = 0.
cn = 0.
fac1 = pi*(one + half)
fac2 = (one + one)/pi**3
aa = 0.
do 40 i=1,m
wi = w(i)
ri = r(i)*wi
arg = teta(i)
fn = fac2*arg*arg*(fac1-arg)
f1 = (one-fn)*wi
fn = fn*wi
if(fn.eq.0.) go to 20
call fpgivs(fn,d1,co,si)
call fprota(co,si,f1,aa)
call fprota(co,si,ri,cn)
20 if(f1.eq.0.) go to 30
call fpgivs(f1,d2,co,si)
call fprota(co,si,ri,c1)
30 sup = sup+ri*ri
40 continue
if(d2.ne.0.) c1 = c1/d2
if(d1.ne.0.) cn = (cn-aa*c1)/d1
c find the b-spline representation of this least-squares polynomial
nt = 8
np = 8
do 50 i=1,4
c(i) = c1
c(i+4) = c1
c(i+8) = cn
c(i+12) = cn
tt(i) = 0.
tt(i+4) = pi
tp(i) = 0.
tp(i+4) = pi2
50 continue
fp = sup
c test whether the least-squares polynomial is an acceptable solution
fpms = sup-s
if(fpms.lt.acc) go to 960
c test whether we cannot further increase the number of knots.
60 if(npest.lt.11 .or. ntest.lt.9) go to 950
c find the initial set of interior knots of the spherical spline in
c case iopt = 0.
np = 11
tp(5) = pi*half
tp(6) = pi
tp(7) = tp(5)+pi
nt = 9
tt(5) = tp(5)
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 1 : computation of least-squares spherical splines. c
c ******************************************************** c
c if iopt < 0 we compute the least-squares spherical spline according c
c to the given set of knots. c
c if iopt >=0 we compute least-squares spherical splines with increas-c
c ing numbers of knots until the corresponding sum f(p=inf)<=s. c
c the initial set of knots then depends on the value of iopt: c
c if iopt=0 we start with one interior knot in the teta-direction c
c (pi/2) and three in the phi-direction (pi/2,pi,3*pi/2). c
c if iopt>0 we start with the set of knots found at the last call c
c of the routine. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c main loop for the different sets of knots. m is a save upper bound
c for the number of trials.
70 do 570 iter=1,m
c find the position of the additional knots which are needed for the
c b-spline representation of s(teta,phi).
l1 = 4
l2 = l1
l3 = np-3
l4 = l3
tp(l2) = 0.
tp(l3) = pi2
do 80 i=1,3
l1 = l1+1
l2 = l2-1
l3 = l3+1
l4 = l4-1
tp(l2) = tp(l4)-pi2
tp(l3) = tp(l1)+pi2
80 continue
l = nt
do 90 i=1,4
tt(i) = 0.
tt(l) = pi
l = l-1
90 continue
c find nrint, the total number of knot intervals and nreg, the number
c of panels in which the approximation domain is subdivided by the
c intersection of knots.
ntt = nt-7
npp = np-7
nrr = npp/2
nr1 = nrr+1
nrint = ntt+npp
nreg = ntt*npp
c arrange the data points according to the panel they belong to.
call fporde(teta,phi,m,3,3,tt,nt,tp,np,nummer,index,nreg)
c find the b-spline coefficients coco and cosi of the cubic spline
c approximations sc(phi) and ss(phi) for cos(phi) and sin(phi).
do 100 i=1,npp
coco(i) = 0.
cosi(i) = 0.
do 100 j=1,npp
a(i,j) = 0.
100 continue
c the coefficients coco and cosi are obtained from the conditions
c sc(tp(i))=cos(tp(i)),resp. ss(tp(i))=sin(tp(i)),i=4,5,...np-4.
do 150 i=1,npp
l2 = i+3
arg = tp(l2)
call fpbspl(tp,np,3,arg,l2,hp)
do 110 j=1,npp
row(j) = 0.
110 continue
ll = i
do 120 j=1,3
if(ll.gt.npp) ll= 1
row(ll) = row(ll)+hp(j)
ll = ll+1
120 continue
facc = cos(arg)
facs = sin(arg)
do 140 j=1,npp
piv = row(j)
if(piv.eq.0.) go to 140
call fpgivs(piv,a(j,1),co,si)
call fprota(co,si,facc,coco(j))
call fprota(co,si,facs,cosi(j))
if(j.eq.npp) go to 150
j1 = j+1
i2 = 1
do 130 l=j1,npp
i2 = i2+1
call fprota(co,si,row(l),a(j,i2))
130 continue
140 continue
150 continue
call fpback(a,coco,npp,npp,coco,ncc)
call fpback(a,cosi,npp,npp,cosi,ncc)
c find ncof, the dimension of the spherical spline and ncoff, the
c number of coefficients in the standard b-spline representation.
nt4 = nt-4
np4 = np-4
ncoff = nt4*np4
ncof = 6+npp*(ntt-1)
c find the bandwidth of the observation matrix a.
iband = 4*npp
if(ntt.eq.4) iband = 3*(npp+1)
if(ntt.lt.4) iband = ncof
iband1 = iband-1
c initialize the observation matrix a.
do 160 i=1,ncof
f(i) = 0.
do 160 j=1,iband
a(i,j) = 0.
160 continue
c initialize the sum of squared residuals.
fp = 0.
c fetch the data points in the new order. main loop for the
c different panels.
do 340 num=1,nreg
c fix certain constants for the current panel; jrot records the column
c number of the first non-zero element in a row of the observation
c matrix according to a data point of the panel.
num1 = num-1
lt = num1/npp
l1 = lt+4
lp = num1-lt*npp+1
l2 = lp+3
lt = lt+1
jrot = 0
if(lt.gt.2) jrot = 3+(lt-3)*npp
c test whether there are still data points in the current panel.
in = index(num)
170 if(in.eq.0) go to 340
c fetch a new data point.
wi = w(in)
ri = r(in)*wi
c evaluate for the teta-direction, the 4 non-zero b-splines at teta(in)
call fpbspl(tt,nt,3,teta(in),l1,ht)
c evaluate for the phi-direction, the 4 non-zero b-splines at phi(in)
call fpbspl(tp,np,3,phi(in),l2,hp)
c store the value of these b-splines in spt and spp resp.
do 180 i=1,4
spp(in,i) = hp(i)
spt(in,i) = ht(i)
180 continue
c initialize the new row of observation matrix.
do 190 i=1,iband
h(i) = 0.
190 continue
c calculate the non-zero elements of the new row by making the cross
c products of the non-zero b-splines in teta- and phi-direction and
c by taking into account the conditions of the spherical splines.
do 200 i=1,npp
row(i) = 0.
200 continue
c take into account the condition (3) of the spherical splines.
ll = lp
do 210 i=1,4
if(ll.gt.npp) ll=1
row(ll) = row(ll)+hp(i)
ll = ll+1
210 continue
c take into account the other conditions of the spherical splines.
if(lt.gt.2 .and. lt.lt.(ntt-1)) go to 230
facc = 0.
facs = 0.
do 220 i=1,npp
facc = facc+row(i)*coco(i)
facs = facs+row(i)*cosi(i)
220 continue
c fill in the non-zero elements of the new row.
230 j1 = 0
do 280 j =1,4
jlt = j+lt
htj = ht(j)
if(jlt.gt.2 .and. jlt.le.nt4) go to 240
j1 = j1+1
h(j1) = h(j1)+htj
go to 280
240 if(jlt.eq.3 .or. jlt.eq.nt4) go to 260
do 250 i=1,npp
j1 = j1+1
h(j1) = row(i)*htj
250 continue
go to 280
260 if(jlt.eq.3) go to 270
h(j1+1) = facc*htj
h(j1+2) = facs*htj
h(j1+3) = htj
j1 = j1+2
go to 280
270 h(1) = h(1)+htj
h(2) = facc*htj
h(3) = facs*htj
j1 = 3
280 continue
do 290 i=1,iband
h(i) = h(i)*wi
290 continue
c rotate the row into triangle by givens transformations.
irot = jrot
do 310 i=1,iband
irot = irot+1
piv = h(i)
if(piv.eq.0.) go to 310
c calculate the parameters of the givens transformation.
call fpgivs(piv,a(irot,1),co,si)
c apply that transformation to the right hand side.
call fprota(co,si,ri,f(irot))
if(i.eq.iband) go to 320
c apply that transformation to the left hand side.
i2 = 1
i3 = i+1
do 300 j=i3,iband
i2 = i2+1
call fprota(co,si,h(j),a(irot,i2))
300 continue
310 continue
c add the contribution of the row to the sum of squares of residual
c right hand sides.
320 fp = fp+ri**2
c find the number of the next data point in the panel.
in = nummer(in)
go to 170
340 continue
c find dmax, the maximum value for the diagonal elements in the reduced
c triangle.
dmax = 0.
do 350 i=1,ncof
if(a(i,1).le.dmax) go to 350
dmax = a(i,1)
350 continue
c check whether the observation matrix is rank deficient.
sigma = eps*dmax
do 360 i=1,ncof
if(a(i,1).le.sigma) go to 370
360 continue
c backward substitution in case of full rank.
call fpback(a,f,ncof,iband,c,ncc)
rank = ncof
do 365 i=1,ncof
q(i,1) = a(i,1)/dmax
365 continue
go to 390
c in case of rank deficiency, find the minimum norm solution.
370 lwest = ncof*iband+ncof+iband
if(lwrk.lt.lwest) go to 925
lf = 1
lh = lf+ncof
la = lh+iband
do 380 i=1,ncof
ff(i) = f(i)
do 380 j=1,iband
q(i,j) = a(i,j)
380 continue
call fprank(q,ff,ncof,iband,ncc,sigma,c,sq,rank,wrk(la),
* wrk(lf),wrk(lh))
do 385 i=1,ncof
q(i,1) = q(i,1)/dmax
385 continue
c add to the sum of squared residuals, the contribution of reducing
c the rank.
fp = fp+sq
c find the coefficients in the standard b-spline representation of
c the spherical spline.
390 call fprpsp(nt,np,coco,cosi,c,ff,ncoff)
c test whether the least-squares spline is an acceptable solution.
if(iopt.lt.0) then
if (fp.le.0) go to 970
go to 980
endif
fpms = fp-s
if(abs(fpms).le.acc) then
if (fp.le.0) go to 970
go to 980
endif
c if f(p=inf) < s, accept the choice of knots.
if(fpms.lt.0.) go to 580
c test whether we cannot further increase the number of knots.
if(ncof.gt.m) go to 935
c search where to add a new knot.
c find for each interval the sum of squared residuals fpint for the
c data points having the coordinate belonging to that knot interval.
c calculate also coord which is the same sum, weighted by the position
c of the data points considered.
do 450 i=1,nrint
fpint(i) = 0.
coord(i) = 0.
450 continue
do 490 num=1,nreg
num1 = num-1
lt = num1/npp
l1 = lt+1
lp = num1-lt*npp
l2 = lp+1+ntt
jrot = lt*np4+lp
in = index(num)
460 if(in.eq.0) go to 490
store = 0.
i1 = jrot
do 480 i=1,4
hti = spt(in,i)
j1 = i1
do 470 j=1,4
j1 = j1+1
store = store+hti*spp(in,j)*c(j1)
470 continue
i1 = i1+np4
480 continue
store = (w(in)*(r(in)-store))**2
fpint(l1) = fpint(l1)+store
coord(l1) = coord(l1)+store*teta(in)
fpint(l2) = fpint(l2)+store
coord(l2) = coord(l2)+store*phi(in)
in = nummer(in)
go to 460
490 continue
c find the interval for which fpint is maximal on the condition that
c there still can be added a knot.
l1 = 1
l2 = nrint
if(ntest.lt.nt+1) l1=ntt+1
if(npest.lt.np+2) l2=ntt
c test whether we cannot further increase the number of knots.
if(l1.gt.l2) go to 950
500 fpmax = 0.
l = 0
do 510 i=l1,l2
if(fpmax.ge.fpint(i)) go to 510
l = i
fpmax = fpint(i)
510 continue
if(l.eq.0) go to 930
c calculate the position of the new knot.
arg = coord(l)/fpint(l)
c test in what direction the new knot is going to be added.
if(l.gt.ntt) go to 530
c addition in the teta-direction
l4 = l+4
fpint(l) = 0.
fac1 = tt(l4)-arg
fac2 = arg-tt(l4-1)
if(fac1.gt.(ten*fac2) .or. fac2.gt.(ten*fac1)) go to 500
j = nt
do 520 i=l4,nt
tt(j+1) = tt(j)
j = j-1
520 continue
tt(l4) = arg
nt = nt+1
go to 570
c addition in the phi-direction
530 l4 = l+4-ntt
if(arg.lt.pi) go to 540
arg = arg-pi
l4 = l4-nrr
540 fpint(l) = 0.
fac1 = tp(l4)-arg
fac2 = arg-tp(l4-1)
if(fac1.gt.(ten*fac2) .or. fac2.gt.(ten*fac1)) go to 500
ll = nrr+4
j = ll
do 550 i=l4,ll
tp(j+1) = tp(j)
j = j-1
550 continue
tp(l4) = arg
np = np+2
nrr = nrr+1
do 560 i=5,ll
j = i+nrr
tp(j) = tp(i)+pi
560 continue
c restart the computations with the new set of knots.
570 continue
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 2: determination of the smoothing spherical spline. c
c ******************************************************** c
c we have determined the number of knots and their position. we now c
c compute the coefficients of the smoothing spline sp(teta,phi). c
c the observation matrix a is extended by the rows of a matrix, expres-c
c sing that sp(teta,phi) must be a constant function in the variable c
c phi and a cubic polynomial in the variable teta. the corresponding c
c weights of these additional rows are set to 1/(p). iteratively c
c we than have to determine the value of p such that f(p) = sum((w(i)* c
c (r(i)-sp(teta(i),phi(i))))**2) be = s. c
c we already know that the least-squares polynomial corresponds to p=0,c
c and that the least-squares spherical spline corresponds to p=infin. c
c the iteration process makes use of rational interpolation. since f(p)c
c is a convex and strictly decreasing function of p, it can be approx- c
c imated by a rational function of the form r(p) = (u*p+v)/(p+w). c
c three values of p (p1,p2,p3) with corresponding values of f(p) (f1= c
c f(p1)-s,f2=f(p2)-s,f3=f(p3)-s) are used to calculate the new value c
c of p such that r(p)=s. convergence is guaranteed by taking f1>0,f3<0.c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c evaluate the discontinuity jumps of the 3-th order derivative of
c the b-splines at the knots tt(l),l=5,...,nt-4.
580 call fpdisc(tt,nt,5,bt,ntest)
c evaluate the discontinuity jumps of the 3-th order derivative of
c the b-splines at the knots tp(l),l=5,...,np-4.
call fpdisc(tp,np,5,bp,npest)
c initial value for p.
p1 = 0.
f1 = sup-s
p3 = -one
f3 = fpms
p = 0.
do 585 i=1,ncof
p = p+a(i,1)
585 continue
rn = ncof
p = rn/p
c find the bandwidth of the extended observation matrix.
iband4 = iband+3
if(ntt.le.4) iband4 = ncof
iband3 = iband4 -1
ich1 = 0
ich3 = 0
c iteration process to find the root of f(p)=s.
do 920 iter=1,maxit
pinv = one/p
c store the triangularized observation matrix into q.
do 600 i=1,ncof
ff(i) = f(i)
do 590 j=1,iband4
q(i,j) = 0.
590 continue
do 600 j=1,iband
q(i,j) = a(i,j)
600 continue
c extend the observation matrix with the rows of a matrix, expressing
c that for teta=cst. sp(teta,phi) must be a constant function.
nt6 = nt-6
do 720 i=5,np4
ii = i-4
do 610 l=1,npp
row(l) = 0.
610 continue
ll = ii
do 620 l=1,5
if(ll.gt.npp) ll=1
row(ll) = row(ll)+bp(ii,l)
ll = ll+1
620 continue
facc = 0.
facs = 0.
do 630 l=1,npp
facc = facc+row(l)*coco(l)
facs = facs+row(l)*cosi(l)
630 continue
do 720 j=1,nt6
c initialize the new row.
do 640 l=1,iband
h(l) = 0.
640 continue
c fill in the non-zero elements of the row. jrot records the column
c number of the first non-zero element in the row.
jrot = 4+(j-2)*npp
if(j.gt.1 .and. j.lt.nt6) go to 650
h(1) = facc
h(2) = facs
if(j.eq.1) jrot = 2
go to 670
650 do 660 l=1,npp
h(l)=row(l)
660 continue
670 do 675 l=1,iband
h(l) = h(l)*pinv
675 continue
ri = 0.
c rotate the new row into triangle by givens transformations.
do 710 irot=jrot,ncof
piv = h(1)
i2 = min0(iband1,ncof-irot)
if(piv.eq.0.) then
if (i2.le.0) go to 720
go to 690
endif
c calculate the parameters of the givens transformation.
call fpgivs(piv,q(irot,1),co,si)
c apply that givens transformation to the right hand side.
call fprota(co,si,ri,ff(irot))
if(i2.eq.0) go to 720
c apply that givens transformation to the left hand side.
do 680 l=1,i2
l1 = l+1
call fprota(co,si,h(l1),q(irot,l1))
680 continue
690 do 700 l=1,i2
h(l) = h(l+1)
700 continue
h(i2+1) = 0.
710 continue
720 continue
c extend the observation matrix with the rows of a matrix expressing
c that for phi=cst. sp(teta,phi) must be a cubic polynomial.
do 810 i=5,nt4
ii = i-4
do 810 j=1,npp
c initialize the new row
do 730 l=1,iband4
h(l) = 0.
730 continue
c fill in the non-zero elements of the row. jrot records the column
c number of the first non-zero element in the row.
j1 = 1
do 760 l=1,5
il = ii+l
ij = npp
if(il.ne.3 .and. il.ne.nt4) go to 750
j1 = j1+3-j
j2 = j1-2
ij = 0
if(il.ne.3) go to 740
j1 = 1
j2 = 2
ij = j+2
740 h(j2) = bt(ii,l)*coco(j)
h(j2+1) = bt(ii,l)*cosi(j)
750 h(j1) = h(j1)+bt(ii,l)
j1 = j1+ij
760 continue
do 765 l=1,iband4
h(l) = h(l)*pinv
765 continue
ri = 0.
jrot = 1
if(ii.gt.2) jrot = 3+j+(ii-3)*npp
c rotate the new row into triangle by givens transformations.
do 800 irot=jrot,ncof
piv = h(1)
i2 = min0(iband3,ncof-irot)
if(piv.eq.0.) then
if (i2.le.0) go to 810
go to 780
endif
c calculate the parameters of the givens transformation.
call fpgivs(piv,q(irot,1),co,si)
c apply that givens transformation to the right hand side.
call fprota(co,si,ri,ff(irot))
if(i2.eq.0) go to 810
c apply that givens transformation to the left hand side.
do 770 l=1,i2
l1 = l+1
call fprota(co,si,h(l1),q(irot,l1))
770 continue
780 do 790 l=1,i2
h(l) = h(l+1)
790 continue
h(i2+1) = 0.
800 continue
810 continue
c find dmax, the maximum value for the diagonal elements in the
c reduced triangle.
dmax = 0.
do 820 i=1,ncof
if(q(i,1).le.dmax) go to 820
dmax = q(i,1)
820 continue
c check whether the matrix is rank deficient.
sigma = eps*dmax
do 830 i=1,ncof
if(q(i,1).le.sigma) go to 840
830 continue
c backward substitution in case of full rank.
call fpback(q,ff,ncof,iband4,c,ncc)
rank = ncof
go to 845
c in case of rank deficiency, find the minimum norm solution.
840 lwest = ncof*iband4+ncof+iband4
if(lwrk.lt.lwest) go to 925
lf = 1
lh = lf+ncof
la = lh+iband4
call fprank(q,ff,ncof,iband4,ncc,sigma,c,sq,rank,wrk(la),
* wrk(lf),wrk(lh))
845 do 850 i=1,ncof
q(i,1) = q(i,1)/dmax
850 continue
c find the coefficients in the standard b-spline representation of
c the spherical spline.
call fprpsp(nt,np,coco,cosi,c,ff,ncoff)
c compute f(p).
fp = 0.
do 890 num = 1,nreg
num1 = num-1
lt = num1/npp
lp = num1-lt*npp
jrot = lt*np4+lp
in = index(num)
860 if(in.eq.0) go to 890
store = 0.
i1 = jrot
do 880 i=1,4
hti = spt(in,i)
j1 = i1
do 870 j=1,4
j1 = j1+1
store = store+hti*spp(in,j)*c(j1)
870 continue
i1 = i1+np4
880 continue
fp = fp+(w(in)*(r(in)-store))**2
in = nummer(in)
go to 860
890 continue
c test whether the approximation sp(teta,phi) is an acceptable solution
fpms = fp-s
if(abs(fpms).le.acc) go to 980
c test whether the maximum allowable number of iterations has been
c reached.
if(iter.eq.maxit) go to 940
c carry out one more step of the iteration process.
p2 = p
f2 = fpms
if(ich3.ne.0) go to 900
if((f2-f3).gt.acc) go to 895
c our initial choice of p is too large.
p3 = p2
f3 = f2
p = p*con4
if(p.le.p1) p = p1*con9 + p2*con1
go to 920
895 if(f2.lt.0.) ich3 = 1
900 if(ich1.ne.0) go to 910
if((f1-f2).gt.acc) go to 905
c our initial choice of p is too small
p1 = p2
f1 = f2
p = p/con4
if(p3.lt.0.) go to 920
if(p.ge.p3) p = p2*con1 +p3*con9
go to 920
905 if(f2.gt.0.) ich1 = 1
c test whether the iteration process proceeds as theoretically
c expected.
910 if(f2.ge.f1 .or. f2.le.f3) go to 945
c find the new value of p.
p = fprati(p1,f1,p2,f2,p3,f3)
920 continue
c error codes and messages.
925 ier = lwest
go to 990
930 ier = 5
go to 990
935 ier = 4
go to 990
940 ier = 3
go to 990
945 ier = 2
go to 990
950 ier = 1
go to 990
960 ier = -2
go to 990
970 ier = -1
fp = 0.
980 if(ncof.ne.rank) ier = -rank
990 return
end
|