1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
subroutine parcur(iopt,ipar,idim,m,u,mx,x,w,ub,ue,k,s,nest,n,t,
* nc,c,fp,wrk,lwrk,iwrk,ier)
c given the ordered set of m points x(i) in the idim-dimensional space
c and given also a corresponding set of strictly increasing values u(i)
c and the set of positive numbers w(i),i=1,2,...,m, subroutine parcur
c determines a smooth approximating spline curve s(u), i.e.
c x1 = s1(u)
c x2 = s2(u) ub <= u <= ue
c .........
c xidim = sidim(u)
c with sj(u),j=1,2,...,idim spline functions of degree k with common
c knots t(j),j=1,2,...,n.
c if ipar=1 the values ub,ue and u(i),i=1,2,...,m must be supplied by
c the user. if ipar=0 these values are chosen automatically by parcur
c as v(1) = 0
c v(i) = v(i-1) + dist(x(i),x(i-1)) ,i=2,3,...,m
c u(i) = v(i)/v(m) ,i=1,2,...,m
c ub = u(1) = 0, ue = u(m) = 1.
c if iopt=-1 parcur calculates the weighted least-squares spline curve
c according to a given set of knots.
c if iopt>=0 the number of knots of the splines sj(u) and the position
c t(j),j=1,2,...,n is chosen automatically by the routine. the smooth-
c ness of s(u) is then achieved by minimalizing the discontinuity
c jumps of the k-th derivative of s(u) at the knots t(j),j=k+2,k+3,...,
c n-k-1. the amount of smoothness is determined by the condition that
c f(p)=sum((w(i)*dist(x(i),s(u(i))))**2) be <= s, with s a given non-
c negative constant, called the smoothing factor.
c the fit s(u) is given in the b-spline representation and can be
c evaluated by means of subroutine curev.
c
c calling sequence:
c call parcur(iopt,ipar,idim,m,u,mx,x,w,ub,ue,k,s,nest,n,t,nc,c,
c * fp,wrk,lwrk,iwrk,ier)
c
c parameters:
c iopt : integer flag. on entry iopt must specify whether a weighted
c least-squares spline curve (iopt=-1) or a smoothing spline
c curve (iopt=0 or 1) must be determined.if iopt=0 the routine
c will start with an initial set of knots t(i)=ub,t(i+k+1)=ue,
c i=1,2,...,k+1. if iopt=1 the routine will continue with the
c knots found at the last call of the routine.
c attention: a call with iopt=1 must always be immediately
c preceded by another call with iopt=1 or iopt=0.
c unchanged on exit.
c ipar : integer flag. on entry ipar must specify whether (ipar=1)
c the user will supply the parameter values u(i),ub and ue
c or whether (ipar=0) these values are to be calculated by
c parcur. unchanged on exit.
c idim : integer. on entry idim must specify the dimension of the
c curve. 0 < idim < 11.
c unchanged on exit.
c m : integer. on entry m must specify the number of data points.
c m > k. unchanged on exit.
c u : real array of dimension at least (m). in case ipar=1,before
c entry, u(i) must be set to the i-th value of the parameter
c variable u for i=1,2,...,m. these values must then be
c supplied in strictly ascending order and will be unchanged
c on exit. in case ipar=0, on exit,array u will contain the
c values u(i) as determined by parcur.
c mx : integer. on entry mx must specify the actual dimension of
c the array x as declared in the calling (sub)program. mx must
c not be too small (see x). unchanged on exit.
c x : real array of dimension at least idim*m.
c before entry, x(idim*(i-1)+j) must contain the j-th coord-
c inate of the i-th data point for i=1,2,...,m and j=1,2,...,
c idim. unchanged on exit.
c w : real array of dimension at least (m). before entry, w(i)
c must be set to the i-th value in the set of weights. the
c w(i) must be strictly positive. unchanged on exit.
c see also further comments.
c ub,ue : real values. on entry (in case ipar=1) ub and ue must
c contain the lower and upper bound for the parameter u.
c ub <=u(1), ue>= u(m). if ipar = 0 these values will
c automatically be set to 0 and 1 by parcur.
c k : integer. on entry k must specify the degree of the splines.
c 1<=k<=5. it is recommended to use cubic splines (k=3).
c the user is strongly dissuaded from choosing k even,together
c with a small s-value. unchanged on exit.
c s : real.on entry (in case iopt>=0) s must specify the smoothing
c factor. s >=0. unchanged on exit.
c for advice on the choice of s see further comments.
c nest : integer. on entry nest must contain an over-estimate of the
c total number of knots of the splines returned, to indicate
c the storage space available to the routine. nest >=2*k+2.
c in most practical situation nest=m/2 will be sufficient.
c always large enough is nest=m+k+1, the number of knots
c needed for interpolation (s=0). unchanged on exit.
c n : integer.
c unless ier = 10 (in case iopt >=0), n will contain the
c total number of knots of the smoothing spline curve returned
c if the computation mode iopt=1 is used this value of n
c should be left unchanged between subsequent calls.
c in case iopt=-1, the value of n must be specified on entry.
c t : real array of dimension at least (nest).
c on succesful exit, this array will contain the knots of the
c spline curve,i.e. the position of the interior knots t(k+2),
c t(k+3),..,t(n-k-1) as well as the position of the additional
c t(1)=t(2)=...=t(k+1)=ub and t(n-k)=...=t(n)=ue needed for
c the b-spline representation.
c if the computation mode iopt=1 is used, the values of t(1),
c t(2),...,t(n) should be left unchanged between subsequent
c calls. if the computation mode iopt=-1 is used, the values
c t(k+2),...,t(n-k-1) must be supplied by the user, before
c entry. see also the restrictions (ier=10).
c nc : integer. on entry nc must specify the actual dimension of
c the array c as declared in the calling (sub)program. nc
c must not be too small (see c). unchanged on exit.
c c : real array of dimension at least (nest*idim).
c on succesful exit, this array will contain the coefficients
c in the b-spline representation of the spline curve s(u),i.e.
c the b-spline coefficients of the spline sj(u) will be given
c in c(n*(j-1)+i),i=1,2,...,n-k-1 for j=1,2,...,idim.
c fp : real. unless ier = 10, fp contains the weighted sum of
c squared residuals of the spline curve returned.
c wrk : real array of dimension at least m*(k+1)+nest*(6+idim+3*k).
c used as working space. if the computation mode iopt=1 is
c used, the values wrk(1),...,wrk(n) should be left unchanged
c between subsequent calls.
c lwrk : integer. on entry,lwrk must specify the actual dimension of
c the array wrk as declared in the calling (sub)program. lwrk
c must not be too small (see wrk). unchanged on exit.
c iwrk : integer array of dimension at least (nest).
c used as working space. if the computation mode iopt=1 is
c used,the values iwrk(1),...,iwrk(n) should be left unchanged
c between subsequent calls.
c ier : integer. unless the routine detects an error, ier contains a
c non-positive value on exit, i.e.
c ier=0 : normal return. the curve returned has a residual sum of
c squares fp such that abs(fp-s)/s <= tol with tol a relat-
c ive tolerance set to 0.001 by the program.
c ier=-1 : normal return. the curve returned is an interpolating
c spline curve (fp=0).
c ier=-2 : normal return. the curve returned is the weighted least-
c squares polynomial curve of degree k.in this extreme case
c fp gives the upper bound fp0 for the smoothing factor s.
c ier=1 : error. the required storage space exceeds the available
c storage space, as specified by the parameter nest.
c probably causes : nest too small. if nest is already
c large (say nest > m/2), it may also indicate that s is
c too small
c the approximation returned is the least-squares spline
c curve according to the knots t(1),t(2),...,t(n). (n=nest)
c the parameter fp gives the corresponding weighted sum of
c squared residuals (fp>s).
c ier=2 : error. a theoretically impossible result was found during
c the iteration proces for finding a smoothing spline curve
c with fp = s. probably causes : s too small.
c there is an approximation returned but the corresponding
c weighted sum of squared residuals does not satisfy the
c condition abs(fp-s)/s < tol.
c ier=3 : error. the maximal number of iterations maxit (set to 20
c by the program) allowed for finding a smoothing curve
c with fp=s has been reached. probably causes : s too small
c there is an approximation returned but the corresponding
c weighted sum of squared residuals does not satisfy the
c condition abs(fp-s)/s < tol.
c ier=10 : error. on entry, the input data are controlled on validity
c the following restrictions must be satisfied.
c -1<=iopt<=1, 1<=k<=5, m>k, nest>2*k+2, w(i)>0,i=1,2,...,m
c 0<=ipar<=1, 0<idim<=10, lwrk>=(k+1)*m+nest*(6+idim+3*k),
c nc>=nest*idim
c if ipar=0: sum j=1,idim (x(idim*i+j)-x(idim*(i-1)+j))**2>0
c i=1,2,...,m-1.
c if ipar=1: ub<=u(1)<u(2)<...<u(m)<=ue
c if iopt=-1: 2*k+2<=n<=min(nest,m+k+1)
c ub<t(k+2)<t(k+3)<...<t(n-k-1)<ue
c (ub=0 and ue=1 in case ipar=0)
c the schoenberg-whitney conditions, i.e. there
c must be a subset of data points uu(j) such that
c t(j) < uu(j) < t(j+k+1), j=1,2,...,n-k-1
c if iopt>=0: s>=0
c if s=0 : nest >= m+k+1
c if one of these conditions is found to be violated,control
c is immediately repassed to the calling program. in that
c case there is no approximation returned.
c
c further comments:
c by means of the parameter s, the user can control the tradeoff
c between closeness of fit and smoothness of fit of the approximation.
c if s is too large, the curve will be too smooth and signal will be
c lost ; if s is too small the curve will pick up too much noise. in
c the extreme cases the program will return an interpolating curve if
c s=0 and the least-squares polynomial curve of degree k if s is
c very large. between these extremes, a properly chosen s will result
c in a good compromise between closeness of fit and smoothness of fit.
c to decide whether an approximation, corresponding to a certain s is
c satisfactory the user is highly recommended to inspect the fits
c graphically.
c recommended values for s depend on the weights w(i). if these are
c taken as 1/d(i) with d(i) an estimate of the standard deviation of
c x(i), a good s-value should be found in the range (m-sqrt(2*m),m+
c sqrt(2*m)). if nothing is known about the statistical error in x(i)
c each w(i) can be set equal to one and s determined by trial and
c error, taking account of the comments above. the best is then to
c start with a very large value of s ( to determine the least-squares
c polynomial curve and the upper bound fp0 for s) and then to
c progressively decrease the value of s ( say by a factor 10 in the
c beginning, i.e. s=fp0/10, fp0/100,...and more carefully as the
c approximating curve shows more detail) to obtain closer fits.
c to economize the search for a good s-value the program provides with
c different modes of computation. at the first call of the routine, or
c whenever he wants to restart with the initial set of knots the user
c must set iopt=0.
c if iopt=1 the program will continue with the set of knots found at
c the last call of the routine. this will save a lot of computation
c time if parcur is called repeatedly for different values of s.
c the number of knots of the spline returned and their location will
c depend on the value of s and on the complexity of the shape of the
c curve underlying the data. but, if the computation mode iopt=1 is
c used, the knots returned may also depend on the s-values at previous
c calls (if these were smaller). therefore, if after a number of
c trials with different s-values and iopt=1, the user can finally
c accept a fit as satisfactory, it may be worthwhile for him to call
c parcur once more with the selected value for s but now with iopt=0.
c indeed, parcur may then return an approximation of the same quality
c of fit but with fewer knots and therefore better if data reduction
c is also an important objective for the user.
c
c the form of the approximating curve can strongly be affected by
c the choice of the parameter values u(i). if there is no physical
c reason for choosing a particular parameter u, often good results
c will be obtained with the choice of parcur (in case ipar=0), i.e.
c v(1)=0, v(i)=v(i-1)+q(i), i=2,...,m, u(i)=v(i)/v(m), i=1,..,m
c where
c q(i)= sqrt(sum j=1,idim (xj(i)-xj(i-1))**2 )
c other possibilities for q(i) are
c q(i)= sum j=1,idim (xj(i)-xj(i-1))**2
c q(i)= sum j=1,idim abs(xj(i)-xj(i-1))
c q(i)= max j=1,idim abs(xj(i)-xj(i-1))
c q(i)= 1
c
c other subroutines required:
c fpback,fpbspl,fpchec,fppara,fpdisc,fpgivs,fpknot,fprati,fprota
c
c references:
c dierckx p. : algorithms for smoothing data with periodic and
c parametric splines, computer graphics and image
c processing 20 (1982) 171-184.
c dierckx p. : algorithms for smoothing data with periodic and param-
c etric splines, report tw55, dept. computer science,
c k.u.leuven, 1981.
c dierckx p. : curve and surface fitting with splines, monographs on
c numerical analysis, oxford university press, 1993.
c
c author:
c p.dierckx
c dept. computer science, k.u. leuven
c celestijnenlaan 200a, b-3001 heverlee, belgium.
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
c
c creation date : may 1979
c latest update : march 1987
c
c ..
c ..scalar arguments..
real*8 ub,ue,s,fp
integer iopt,ipar,idim,m,mx,k,nest,n,nc,lwrk,ier
c ..array arguments..
real*8 u(m),x(mx),w(m),t(nest),c(nc),wrk(lwrk)
integer iwrk(nest)
c ..local scalars..
real*8 tol,dist
integer i,ia,ib,ifp,ig,iq,iz,i1,i2,j,k1,k2,lwest,maxit,nmin,ncc
c ..function references
real*8 sqrt
c ..
c we set up the parameters tol and maxit
maxit = 20
tol = 0.1e-02
c before starting computations a data check is made. if the input data
c are invalid, control is immediately repassed to the calling program.
ier = 10
if(iopt.lt.(-1) .or. iopt.gt.1) go to 90
if(ipar.lt.0 .or. ipar.gt.1) go to 90
if(idim.le.0 .or. idim.gt.10) go to 90
if(k.le.0 .or. k.gt.5) go to 90
k1 = k+1
k2 = k1+1
nmin = 2*k1
if(m.lt.k1 .or. nest.lt.nmin) go to 90
ncc = nest*idim
if(mx.lt.m*idim .or. nc.lt.ncc) go to 90
lwest = m*k1+nest*(6+idim+3*k)
if(lwrk.lt.lwest) go to 90
if(ipar.ne.0 .or. iopt.gt.0) go to 40
i1 = 0
i2 = idim
u(1) = 0.
do 20 i=2,m
dist = 0.
do 10 j=1,idim
i1 = i1+1
i2 = i2+1
dist = dist+(x(i2)-x(i1))**2
10 continue
u(i) = u(i-1)+sqrt(dist)
20 continue
if(u(m).le.0.) go to 90
do 30 i=2,m
u(i) = u(i)/u(m)
30 continue
ub = 0.
ue = 1.
u(m) = ue
40 if(ub.gt.u(1) .or. ue.lt.u(m) .or. w(1).le.0.) go to 90
do 50 i=2,m
if(u(i-1).ge.u(i) .or. w(i).le.0.) go to 90
50 continue
if(iopt.ge.0) go to 70
if(n.lt.nmin .or. n.gt.nest) go to 90
j = n
do 60 i=1,k1
t(i) = ub
t(j) = ue
j = j-1
60 continue
call fpchec(u,m,t,n,k,ier)
if (ier.eq.0) go to 80
go to 90
70 if(s.lt.0.) go to 90
if(s.eq.0. .and. nest.lt.(m+k1)) go to 90
ier = 0
c we partition the working space and determine the spline curve.
80 ifp = 1
iz = ifp+nest
ia = iz+ncc
ib = ia+nest*k1
ig = ib+nest*k2
iq = ig+nest*k2
call fppara(iopt,idim,m,u,mx,x,w,ub,ue,k,s,nest,tol,maxit,k1,k2,
* n,t,ncc,c,fp,wrk(ifp),wrk(iz),wrk(ia),wrk(ib),wrk(ig),wrk(iq),
* iwrk,ier)
90 return
end
|