File: splder.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (191 lines) | stat: -rw-r--r-- 5,715 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
      subroutine splder(t,n,c,k,nu,x,y,m,e,wrk,ier)
      implicit none  
c  subroutine splder evaluates in a number of points x(i),i=1,2,...,m
c  the derivative of order nu of a spline s(x) of degree k,given in
c  its b-spline representation.
c
c  calling sequence:
c     call splder(t,n,c,k,nu,x,y,m,e,wrk,ier)
c
c  input parameters:
c    t    : array,length n, which contains the position of the knots.
c    n    : integer, giving the total number of knots of s(x).
c    c    : array,length n, which contains the b-spline coefficients.
c    k    : integer, giving the degree of s(x).
c    nu   : integer, specifying the order of the derivative. 0<=nu<=k
c    x    : array,length m, which contains the points where the deriv-
c           ative of s(x) must be evaluated.
c    m    : integer, giving the number of points where the derivative
c           of s(x) must be evaluated
c    e    : integer, if 0 the spline is extrapolated from the end
c           spans for points not in the support, if 1 the spline
c           evaluates to zero for those points, and if 2 ier is set to
c           1 and the subroutine returns.
c    wrk  : real array of dimension n. used as working space.
c
c  output parameters:
c    y    : array,length m, giving the value of the derivative of s(x)
c           at the different points.
c    ier  : error flag
c      ier = 0 : normal return
c      ier = 1 : argument out of bounds and e == 2
c      ier =10 : invalid input data (see restrictions)
c
c  restrictions:
c    0 <= nu <= k
c    m >= 1
c    t(k+1) <= x(i) <= x(i+1) <= t(n-k) , i=1,2,...,m-1.
c
c  other subroutines required: fpbspl
c
c  references :
c    de boor c : on calculating with b-splines, j. approximation theory
c                6 (1972) 50-62.
c    cox m.g.  : the numerical evaluation of b-splines, j. inst. maths
c                applics 10 (1972) 134-149.
c   dierckx p. : curve and surface fitting with splines, monographs on
c                numerical analysis, oxford university press, 1993.
c
c  author :
c    p.dierckx
c    dept. computer science, k.u.leuven
c    celestijnenlaan 200a, b-3001 heverlee, belgium.
c    e-mail : Paul.Dierckx@cs.kuleuven.ac.be
c
c  latest update : march 1987
c
c++ pearu: 13 aug 20003
c++   - disabled cliping x values to interval [min(t),max(t)]
c++   - removed the restriction of the orderness of x values
c++   - fixed initialization of sp to double precision value
c
c  ..scalar arguments..
      integer n,k,nu,m,e,ier
c  ..array arguments..
      real*8 t(n),c(n),x(m),y(m),wrk(n)
c  ..local scalars..
      integer i,j,kk,k1,k2,l,ll,l1,l2,nk1,nk2,nn
      real*8 ak,arg,fac,sp,tb,te
c++..
      integer k3
c..++
c  ..local arrays ..
      real*8 h(6)
c  before starting computations a data check is made. if the input data
c  are invalid control is immediately repassed to the calling program.
      ier = 10
      if(nu.lt.0 .or. nu.gt.k) go to 200
c--      if(m-1) 200,30,10
c++..
      if(m.lt.1) go to 200
c..++
c--  10  do 20 i=2,m
c--        if(x(i).lt.x(i-1)) go to 200
c--  20  continue
      ier = 0
c  fetch tb and te, the boundaries of the approximation interval.
      k1 = k+1
      k3 = k1+1
      nk1 = n-k1
      tb = t(k1)
      te = t(nk1+1)
c  the derivative of order nu of a spline of degree k is a spline of
c  degree k-nu,the b-spline coefficients wrk(i) of which can be found
c  using the recurrence scheme of de boor.
      l = 1
      kk = k
      nn = n
      do 40 i=1,nk1
         wrk(i) = c(i)
  40  continue
      if(nu.eq.0) go to 100
      nk2 = nk1
      do 60 j=1,nu
         ak = kk
         nk2 = nk2-1
         l1 = l
         do 50 i=1,nk2
            l1 = l1+1
            l2 = l1+kk
            fac = t(l2)-t(l1)
            if(fac.le.0.) go to 50
            wrk(i) = ak*(wrk(i+1)-wrk(i))/fac
  50     continue
         l = l+1
         kk = kk-1
  60  continue
      if(kk.ne.0) go to 100
c  if nu=k the derivative is a piecewise constant function
      j = 1
      do 90 i=1,m
        arg = x(i)
c++..
c  check if arg is in the support
        if (arg .lt. tb .or. arg .gt. te) then
            if (e .eq. 0) then
                goto 65
            else if (e .eq. 1) then
                y(i) = 0
                goto 90
            else if (e .eq. 2) then
                ier = 1
                goto 200
            endif
        endif
c  search for knot interval t(l) <= arg < t(l+1)
 65     if(arg.ge.t(l) .or. l+1.eq.k3) go to 70
        l1 = l
        l = l-1
        j = j-1
        go to 65
c..++
  70    if(arg.lt.t(l+1) .or. l.eq.nk1) go to 80
        l = l+1
        j = j+1
        go to 70
  80    y(i) = wrk(j)
  90  continue
      go to 200

 100  l = k1
      l1 = l+1
      k2 = k1-nu
c  main loop for the different points.
      do 180 i=1,m
c  fetch a new x-value arg.
        arg = x(i)
c  check if arg is in the support
        if (arg .lt. tb .or. arg .gt. te) then
            if (e .eq. 0) then
                goto 135
            else if (e .eq. 1) then
                y(i) = 0
                goto 180
            else if (e .eq. 2) then
                ier = 1
                goto 200
            endif
        endif
c  search for knot interval t(l) <= arg < t(l+1)
 135    if(arg.ge.t(l) .or. l1.eq.k3) go to 140
        l1 = l
        l = l-1
        go to 135
c..++
 140    if(arg.lt.t(l1) .or. l.eq.nk1) go to 150
        l = l1
        l1 = l+1
        go to 140
c  evaluate the non-zero b-splines of degree k-nu at arg.
 150    call fpbspl(t,n,kk,arg,l,h)
c  find the value of the derivative at x=arg.
        sp = 0.0d0
        ll = l-k1
        do 160 j=1,k2
          ll = ll+1
          sp = sp+wrk(ll)*h(j)
 160    continue
        y(i) = sp
 180  continue
 200  return
      end