1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
subroutine splder(t,n,c,k,nu,x,y,m,e,wrk,ier)
implicit none
c subroutine splder evaluates in a number of points x(i),i=1,2,...,m
c the derivative of order nu of a spline s(x) of degree k,given in
c its b-spline representation.
c
c calling sequence:
c call splder(t,n,c,k,nu,x,y,m,e,wrk,ier)
c
c input parameters:
c t : array,length n, which contains the position of the knots.
c n : integer, giving the total number of knots of s(x).
c c : array,length n, which contains the b-spline coefficients.
c k : integer, giving the degree of s(x).
c nu : integer, specifying the order of the derivative. 0<=nu<=k
c x : array,length m, which contains the points where the deriv-
c ative of s(x) must be evaluated.
c m : integer, giving the number of points where the derivative
c of s(x) must be evaluated
c e : integer, if 0 the spline is extrapolated from the end
c spans for points not in the support, if 1 the spline
c evaluates to zero for those points, and if 2 ier is set to
c 1 and the subroutine returns.
c wrk : real array of dimension n. used as working space.
c
c output parameters:
c y : array,length m, giving the value of the derivative of s(x)
c at the different points.
c ier : error flag
c ier = 0 : normal return
c ier = 1 : argument out of bounds and e == 2
c ier =10 : invalid input data (see restrictions)
c
c restrictions:
c 0 <= nu <= k
c m >= 1
c t(k+1) <= x(i) <= x(i+1) <= t(n-k) , i=1,2,...,m-1.
c
c other subroutines required: fpbspl
c
c references :
c de boor c : on calculating with b-splines, j. approximation theory
c 6 (1972) 50-62.
c cox m.g. : the numerical evaluation of b-splines, j. inst. maths
c applics 10 (1972) 134-149.
c dierckx p. : curve and surface fitting with splines, monographs on
c numerical analysis, oxford university press, 1993.
c
c author :
c p.dierckx
c dept. computer science, k.u.leuven
c celestijnenlaan 200a, b-3001 heverlee, belgium.
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
c
c latest update : march 1987
c
c++ pearu: 13 aug 20003
c++ - disabled cliping x values to interval [min(t),max(t)]
c++ - removed the restriction of the orderness of x values
c++ - fixed initialization of sp to double precision value
c
c ..scalar arguments..
integer n,k,nu,m,e,ier
c ..array arguments..
real*8 t(n),c(n),x(m),y(m),wrk(n)
c ..local scalars..
integer i,j,kk,k1,k2,l,ll,l1,l2,nk1,nk2,nn
real*8 ak,arg,fac,sp,tb,te
c++..
integer k3
c..++
c ..local arrays ..
real*8 h(6)
c before starting computations a data check is made. if the input data
c are invalid control is immediately repassed to the calling program.
ier = 10
if(nu.lt.0 .or. nu.gt.k) go to 200
c-- if(m-1) 200,30,10
c++..
if(m.lt.1) go to 200
c..++
c-- 10 do 20 i=2,m
c-- if(x(i).lt.x(i-1)) go to 200
c-- 20 continue
ier = 0
c fetch tb and te, the boundaries of the approximation interval.
k1 = k+1
k3 = k1+1
nk1 = n-k1
tb = t(k1)
te = t(nk1+1)
c the derivative of order nu of a spline of degree k is a spline of
c degree k-nu,the b-spline coefficients wrk(i) of which can be found
c using the recurrence scheme of de boor.
l = 1
kk = k
nn = n
do 40 i=1,nk1
wrk(i) = c(i)
40 continue
if(nu.eq.0) go to 100
nk2 = nk1
do 60 j=1,nu
ak = kk
nk2 = nk2-1
l1 = l
do 50 i=1,nk2
l1 = l1+1
l2 = l1+kk
fac = t(l2)-t(l1)
if(fac.le.0.) go to 50
wrk(i) = ak*(wrk(i+1)-wrk(i))/fac
50 continue
l = l+1
kk = kk-1
60 continue
if(kk.ne.0) go to 100
c if nu=k the derivative is a piecewise constant function
j = 1
do 90 i=1,m
arg = x(i)
c++..
c check if arg is in the support
if (arg .lt. tb .or. arg .gt. te) then
if (e .eq. 0) then
goto 65
else if (e .eq. 1) then
y(i) = 0
goto 90
else if (e .eq. 2) then
ier = 1
goto 200
endif
endif
c search for knot interval t(l) <= arg < t(l+1)
65 if(arg.ge.t(l) .or. l+1.eq.k3) go to 70
l1 = l
l = l-1
j = j-1
go to 65
c..++
70 if(arg.lt.t(l+1) .or. l.eq.nk1) go to 80
l = l+1
j = j+1
go to 70
80 y(i) = wrk(j)
90 continue
go to 200
100 l = k1
l1 = l+1
k2 = k1-nu
c main loop for the different points.
do 180 i=1,m
c fetch a new x-value arg.
arg = x(i)
c check if arg is in the support
if (arg .lt. tb .or. arg .gt. te) then
if (e .eq. 0) then
goto 135
else if (e .eq. 1) then
y(i) = 0
goto 180
else if (e .eq. 2) then
ier = 1
goto 200
endif
endif
c search for knot interval t(l) <= arg < t(l+1)
135 if(arg.ge.t(l) .or. l1.eq.k3) go to 140
l1 = l
l = l-1
go to 135
c..++
140 if(arg.lt.t(l1) .or. l.eq.nk1) go to 150
l = l1
l1 = l+1
go to 140
c evaluate the non-zero b-splines of degree k-nu at arg.
150 call fpbspl(t,n,kk,arg,l,h)
c find the value of the derivative at x=arg.
sp = 0.0d0
ll = l-k1
do 160 j=1,k2
ll = ll+1
sp = sp+wrk(ll)*h(j)
160 continue
y(i) = sp
180 continue
200 return
end
|