1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
subroutine sproot(t,n,c,zero,mest,m,ier)
c subroutine sproot finds the zeros of a cubic spline s(x),which is
c given in its normalized b-spline representation.
c
c calling sequence:
c call sproot(t,n,c,zero,mest,m,ier)
c
c input parameters:
c t : real array,length n, containing the knots of s(x).
c n : integer, containing the number of knots. n>=8
c c : real array,length n, containing the b-spline coefficients.
c mest : integer, specifying the dimension of array zero.
c
c output parameters:
c zero : real array,lenth mest, containing the zeros of s(x).
c m : integer,giving the number of zeros.
c ier : error flag:
c ier = 0: normal return.
c ier = 1: the number of zeros exceeds mest.
c ier =10: invalid input data (see restrictions).
c
c other subroutines required: fpcuro
c
c restrictions:
c 1) n>= 8.
c 2) t(4) < t(5) < ... < t(n-4) < t(n-3).
c t(1) <= t(2) <= t(3) <= t(4)
c t(n-3) <= t(n-2) <= t(n-1) <= t(n)
c
c author :
c p.dierckx
c dept. computer science, k.u.leuven
c celestijnenlaan 200a, b-3001 heverlee, belgium.
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
c
c latest update : march 1987
c
c ..
c ..scalar arguments..
integer n,mest,m,ier
c ..array arguments..
real*8 t(n),c(n),zero(mest)
c ..local scalars..
integer i,j,j1,l,n4
real*8 ah,a0,a1,a2,a3,bh,b0,b1,c1,c2,c3,c4,c5,d4,d5,h1,h2,
* three,two,t1,t2,t3,t4,t5,zz
logical z0,z1,z2,z3,z4,nz0,nz1,nz2,nz3,nz4
c ..local array..
real*8 y(3)
c ..
c set some constants
two = 0.2d+01
three = 0.3d+01
c before starting computations a data check is made. if the input data
c are invalid, control is immediately repassed to the calling program.
n4 = n-4
ier = 10
if(n.lt.8) go to 800
j = n
do 10 i=1,3
if(t(i).gt.t(i+1)) go to 800
if(t(j).lt.t(j-1)) go to 800
j = j-1
10 continue
do 20 i=4,n4
if(t(i).ge.t(i+1)) go to 800
20 continue
c the problem considered reduces to finding the zeros of the cubic
c polynomials pl(x) which define the cubic spline in each knot
c interval t(l)<=x<=t(l+1). a zero of pl(x) is also a zero of s(x) on
c the condition that it belongs to the knot interval.
c the cubic polynomial pl(x) is determined by computing s(t(l)),
c s'(t(l)),s(t(l+1)) and s'(t(l+1)). in fact we only have to compute
c s(t(l+1)) and s'(t(l+1)); because of the continuity conditions of
c splines and their derivatives, the value of s(t(l)) and s'(t(l))
c is already known from the foregoing knot interval.
ier = 0
c evaluate some constants for the first knot interval
h1 = t(4)-t(3)
h2 = t(5)-t(4)
t1 = t(4)-t(2)
t2 = t(5)-t(3)
t3 = t(6)-t(4)
t4 = t(5)-t(2)
t5 = t(6)-t(3)
c calculate a0 = s(t(4)) and ah = s'(t(4)).
c1 = c(1)
c2 = c(2)
c3 = c(3)
c4 = (c2-c1)/t4
c5 = (c3-c2)/t5
d4 = (h2*c1+t1*c2)/t4
d5 = (t3*c2+h1*c3)/t5
a0 = (h2*d4+h1*d5)/t2
ah = three*(h2*c4+h1*c5)/t2
z1 = .true.
if(ah.lt.0.0d0) z1 = .false.
nz1 = .not.z1
m = 0
c main loop for the different knot intervals.
do 300 l=4,n4
c evaluate some constants for the knot interval t(l) <= x <= t(l+1).
h1 = h2
h2 = t(l+2)-t(l+1)
t1 = t2
t2 = t3
t3 = t(l+3)-t(l+1)
t4 = t5
t5 = t(l+3)-t(l)
c find a0 = s(t(l)), ah = s'(t(l)), b0 = s(t(l+1)) and bh = s'(t(l+1)).
c1 = c2
c2 = c3
c3 = c(l)
c4 = c5
c5 = (c3-c2)/t5
d4 = (h2*c1+t1*c2)/t4
d5 = (h1*c3+t3*c2)/t5
b0 = (h2*d4+h1*d5)/t2
bh = three*(h2*c4+h1*c5)/t2
c calculate the coefficients a0,a1,a2 and a3 of the cubic polynomial
c pl(x) = ql(y) = a0+a1*y+a2*y**2+a3*y**3 ; y = (x-t(l))/(t(l+1)-t(l)).
a1 = ah*h1
b1 = bh*h1
a2 = three*(b0-a0)-b1-two*a1
a3 = two*(a0-b0)+b1+a1
c test whether or not pl(x) could have a zero in the range
c t(l) <= x <= t(l+1).
z3 = .true.
if(b1.lt.0.0d0) z3 = .false.
nz3 = .not.z3
if(a0*b0.le.0.0d0) go to 100
z0 = .true.
if(a0.lt.0.0d0) z0 = .false.
nz0 = .not.z0
z2 = .true.
if(a2.lt.0.) z2 = .false.
nz2 = .not.z2
z4 = .true.
if(3.0d0*a3+a2.lt.0.0d0) z4 = .false.
nz4 = .not.z4
if(.not.((z0.and.(nz1.and.(z3.or.z2.and.nz4).or.nz2.and.
* z3.and.z4).or.nz0.and.(z1.and.(nz3.or.nz2.and.z4).or.z2.and.
* nz3.and.nz4))))go to 200
c find the zeros of ql(y).
100 call fpcuro(a3,a2,a1,a0,y,j)
if(j.eq.0) go to 200
c find which zeros of pl(x) are zeros of s(x).
do 150 i=1,j
if(y(i).lt.0.0d0 .or. y(i).gt.1.0d0) go to 150
c test whether the number of zeros of s(x) exceeds mest.
if(m.ge.mest) go to 700
m = m+1
zero(m) = t(l)+h1*y(i)
150 continue
200 a0 = b0
ah = bh
z1 = z3
nz1 = nz3
300 continue
c the zeros of s(x) are arranged in increasing order.
if(m.lt.2) go to 800
do 400 i=2,m
j = i
350 j1 = j-1
if(j1.eq.0) go to 400
if(zero(j).ge.zero(j1)) go to 400
zz = zero(j)
zero(j) = zero(j1)
zero(j1) = zz
j = j1
go to 350
400 continue
j = m
m = 1
do 500 i=2,j
if(zero(i).eq.zero(m)) go to 500
m = m+1
zero(m) = zero(i)
500 continue
go to 800
700 ier = 1
800 return
end
|