1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
|
"""
Simple N-D interpolation
.. versionadded:: 0.9
"""
#
# Copyright (C) Pauli Virtanen, 2010.
#
# Distributed under the same BSD license as Scipy.
#
#
# Note: this file should be run through the Mako template engine before
# feeding it to Cython.
#
# Run ``generate_qhull.py`` to regenerate the ``qhull.c`` file
#
cimport cython
from libc.float cimport DBL_EPSILON
from libc.math cimport fabs, sqrt
import numpy as np
import scipy.spatial.qhull as qhull
cimport scipy.spatial.qhull as qhull
import warnings
#------------------------------------------------------------------------------
# Numpy etc.
#------------------------------------------------------------------------------
cdef extern from "numpy/ndarrayobject.h":
cdef enum:
NPY_MAXDIMS
ctypedef fused double_or_complex:
double
double complex
#------------------------------------------------------------------------------
# Interpolator base class
#------------------------------------------------------------------------------
class NDInterpolatorBase(object):
"""
Common routines for interpolators.
.. versionadded:: 0.9
"""
def __init__(self, points, values, fill_value=np.nan, ndim=None,
rescale=False, need_contiguous=True, need_values=True):
"""
Check shape of points and values arrays, and reshape values to
(npoints, nvalues). Ensure the `points` and values arrays are
C-contiguous, and of correct type.
"""
if isinstance(points, qhull.Delaunay):
# Precomputed triangulation was passed in
if rescale:
raise ValueError("Rescaling is not supported when passing "
"a Delaunay triangulation as ``points``.")
self.tri = points
points = points.points
else:
self.tri = None
points = _ndim_coords_from_arrays(points)
values = np.asarray(values)
_check_init_shape(points, values, ndim=ndim)
if need_contiguous:
points = np.ascontiguousarray(points, dtype=np.double)
if need_values:
self.values_shape = values.shape[1:]
if values.ndim == 1:
self.values = values[:,None]
elif values.ndim == 2:
self.values = values
else:
self.values = values.reshape(values.shape[0],
np.prod(values.shape[1:]))
# Complex or real?
self.is_complex = np.issubdtype(self.values.dtype, np.complexfloating)
if self.is_complex:
if need_contiguous:
self.values = np.ascontiguousarray(self.values, dtype=np.complex)
self.fill_value = complex(fill_value)
else:
if need_contiguous:
self.values = np.ascontiguousarray(self.values, dtype=np.double)
self.fill_value = float(fill_value)
if not rescale:
self.scale = None
self.points = points
else:
# scale to unit cube centered at 0
self.offset = np.mean(points, axis=0)
self.points = points - self.offset
self.scale = self.points.ptp(axis=0)
self.scale[~(self.scale > 0)] = 1.0 # avoid division by 0
self.points /= self.scale
def _check_call_shape(self, xi):
xi = np.asanyarray(xi)
if xi.shape[-1] != self.points.shape[1]:
raise ValueError("number of dimensions in xi does not match x")
return xi
def _scale_x(self, xi):
if self.scale is None:
return xi
else:
return (xi - self.offset) / self.scale
def __call__(self, *args):
"""
interpolator(xi)
Evaluate interpolator at given points.
Parameters
----------
xi : ndarray of float, shape (..., ndim)
Points where to interpolate data at.
"""
xi = _ndim_coords_from_arrays(args, ndim=self.points.shape[1])
xi = self._check_call_shape(xi)
shape = xi.shape
xi = xi.reshape(-1, shape[-1])
xi = np.ascontiguousarray(xi, dtype=np.double)
xi = self._scale_x(xi)
if self.is_complex:
r = self._evaluate_complex(xi)
else:
r = self._evaluate_double(xi)
return np.asarray(r).reshape(shape[:-1] + self.values_shape)
cpdef _ndim_coords_from_arrays(points, ndim=None):
"""
Convert a tuple of coordinate arrays to a (..., ndim)-shaped array.
"""
cdef ssize_t j, n
if isinstance(points, tuple) and len(points) == 1:
# handle argument tuple
points = points[0]
if isinstance(points, tuple):
p = np.broadcast_arrays(*points)
n = len(p)
for j in range(1, n):
if p[j].shape != p[0].shape:
raise ValueError("coordinate arrays do not have the same shape")
points = np.empty(p[0].shape + (len(points),), dtype=float)
for j, item in enumerate(p):
points[...,j] = item
else:
points = np.asanyarray(points)
if points.ndim == 1:
if ndim is None:
points = points.reshape(-1, 1)
else:
points = points.reshape(-1, ndim)
return points
cdef _check_init_shape(points, values, ndim=None):
"""
Check shape of points and values arrays
"""
if values.shape[0] != points.shape[0]:
raise ValueError("different number of values and points")
if points.ndim != 2:
raise ValueError("invalid shape for input data points")
if points.shape[1] < 2:
raise ValueError("input data must be at least 2-D")
if ndim is not None and points.shape[1] != ndim:
raise ValueError("this mode of interpolation available only for "
"%d-D data" % ndim)
#------------------------------------------------------------------------------
# Linear interpolation in N-D
#------------------------------------------------------------------------------
class LinearNDInterpolator(NDInterpolatorBase):
"""
LinearNDInterpolator(points, values, fill_value=np.nan, rescale=False)
Piecewise linear interpolant in N dimensions.
.. versionadded:: 0.9
Methods
-------
__call__
Parameters
----------
points : ndarray of floats, shape (npoints, ndims); or Delaunay
Data point coordinates, or a precomputed Delaunay triangulation.
values : ndarray of float or complex, shape (npoints, ...)
Data values.
fill_value : float, optional
Value used to fill in for requested points outside of the
convex hull of the input points. If not provided, then
the default is ``nan``.
rescale : bool, optional
Rescale points to unit cube before performing interpolation.
This is useful if some of the input dimensions have
incommensurable units and differ by many orders of magnitude.
Notes
-----
The interpolant is constructed by triangulating the input data
with Qhull [1]_, and on each triangle performing linear
barycentric interpolation.
References
----------
.. [1] http://www.qhull.org/
"""
def __init__(self, points, values, fill_value=np.nan, rescale=False):
NDInterpolatorBase.__init__(self, points, values, fill_value=fill_value,
rescale=rescale)
if self.tri is None:
self.tri = qhull.Delaunay(self.points)
def _evaluate_double(self, xi):
return self._do_evaluate(xi, 1.0)
def _evaluate_complex(self, xi):
return self._do_evaluate(xi, 1.0j)
@cython.boundscheck(False)
@cython.wraparound(False)
def _do_evaluate(self, double[:,::1] xi, double_or_complex dummy):
cdef double_or_complex[:,::1] values = self.values
cdef double_or_complex[:,::1] out
cdef double[:,::1] points = self.points
cdef int[:,::1] simplices = self.tri.simplices
cdef double c[NPY_MAXDIMS]
cdef double_or_complex fill_value
cdef int i, j, k, m, ndim, isimplex, inside, start, nvalues
cdef qhull.DelaunayInfo_t info
cdef double eps, eps_broad
ndim = xi.shape[1]
start = 0
fill_value = self.fill_value
qhull._get_delaunay_info(&info, self.tri, 1, 0, 0)
out = np.zeros((xi.shape[0], self.values.shape[1]),
dtype=self.values.dtype)
nvalues = out.shape[1]
eps = 100 * DBL_EPSILON
eps_broad = sqrt(DBL_EPSILON)
with nogil:
for i in xrange(xi.shape[0]):
# 1) Find the simplex
isimplex = qhull._find_simplex(&info, c,
&xi[0,0] + i*ndim,
&start, eps, eps_broad)
# 2) Linear barycentric interpolation
if isimplex == -1:
# don't extrapolate
for k in xrange(nvalues):
out[i,k] = fill_value
continue
for k in xrange(nvalues):
out[i,k] = 0
for j in xrange(ndim+1):
for k in xrange(nvalues):
m = simplices[isimplex,j]
out[i,k] = out[i,k] + c[j] * values[m,k]
return out
#------------------------------------------------------------------------------
# Gradient estimation in 2D
#------------------------------------------------------------------------------
class GradientEstimationWarning(Warning):
pass
@cython.cdivision(True)
cdef int _estimate_gradients_2d_global(qhull.DelaunayInfo_t *d, double *data,
int maxiter, double tol,
double *y) nogil:
"""
Estimate gradients of a function at the vertices of a 2d triangulation.
Parameters
----------
info : input
Triangulation in 2D
data : input
Function values at the vertices
maxiter : input
Maximum number of Gauss-Seidel iterations
tol : input
Absolute / relative stop tolerance
y : output, shape (npoints, 2)
Derivatives [F_x, F_y] at the vertices
Returns
-------
num_iterations
Number of iterations if converged, 0 if maxiter reached
without convergence
Notes
-----
This routine uses a re-implementation of the global approximate
curvature minimization algorithm described in [Nielson83] and [Renka84].
References
----------
.. [Nielson83] G. Nielson,
''A method for interpolating scattered data based upon a minimum norm
network''.
Math. Comp., 40, 253 (1983).
.. [Renka84] R. J. Renka and A. K. Cline.
''A Triangle-based C1 interpolation method.'',
Rocky Mountain J. Math., 14, 223 (1984).
"""
cdef double Q[2*2]
cdef double s[2]
cdef double r[2]
cdef int ipoint, iiter, k, ipoint2, jpoint2
cdef double f1, f2, df2, ex, ey, L, L3, det, err, change
# initialize
for ipoint in xrange(2*d.npoints):
y[ipoint] = 0
#
# Main point:
#
# Z = sum_T sum_{E in T} int_E |W''|^2 = min!
#
# where W'' is the second derivative of the Clough-Tocher
# interpolant to the direction of the edge E in triangle T.
#
# The minimization is done iteratively: for each vertex V,
# the sum
#
# Z_V = sum_{E connected to V} int_E |W''|^2
#
# is minimized separately, using existing values at other V.
#
# Since the interpolant can be written as
#
# W(x) = f(x) + w(x)^T y
#
# where y = [ F_x(V); F_y(V) ], it is clear that the solution to
# the local problem is is given as a solution of the 2x2 matrix
# equation.
#
# Here, we use the Clough-Tocher interpolant, which restricted to
# a single edge is
#
# w(x) = (1 - x)**3 * f1
# + x*(1 - x)**2 * (df1 + 3*f1)
# + x**2*(1 - x) * (df2 + 3*f2)
# + x**3 * f2
#
# where f1, f2 are values at the vertices, and df1 and df2 are
# derivatives along the edge (away from the vertices).
#
# As a consequence, one finds
#
# L^3 int_{E} |W''|^2 = y^T A y + 2 B y + C
#
# with
#
# A = [4, -2; -2, 4]
# B = [6*(f1 - f2), 6*(f2 - f1)]
# y = [df1, df2]
# L = length of edge E
#
# and C is not needed for minimization. Since df1 = dF1.E, df2 = -dF2.E,
# with dF1 = [F_x(V_1), F_y(V_1)], and the edge vector E = V2 - V1,
# we have
#
# Z_V = dF1^T Q dF1 + 2 s.dF1 + const.
#
# which is minimized by
#
# dF1 = -Q^{-1} s
#
# where
#
# Q = sum_E [A_11 E E^T]/L_E^3 = 4 sum_E [E E^T]/L_E^3
# s = sum_E [ B_1 + A_21 df2] E /L_E^3
# = sum_E [ 6*(f1 - f2) + 2*(E.dF2)] E / L_E^3
#
# Gauss-Seidel
for iiter in xrange(maxiter):
err = 0
for ipoint in xrange(d.npoints):
for k in xrange(2*2):
Q[k] = 0
for k in xrange(2):
s[k] = 0
# walk over neighbours of given point
for jpoint2 in xrange(d.vertex_neighbors_indices[ipoint],
d.vertex_neighbors_indices[ipoint+1]):
ipoint2 = d.vertex_neighbors_indptr[jpoint2]
# edge
ex = d.points[2*ipoint2 + 0] - d.points[2*ipoint + 0]
ey = d.points[2*ipoint2 + 1] - d.points[2*ipoint + 1]
L = sqrt(ex**2 + ey**2)
L3 = L*L*L
# data at vertices
f1 = data[ipoint]
f2 = data[ipoint2]
# scaled gradient projections on the edge
df2 = -ex*y[2*ipoint2 + 0] - ey*y[2*ipoint2 + 1]
# edge sum
Q[0] += 4*ex*ex / L3
Q[1] += 4*ex*ey / L3
Q[3] += 4*ey*ey / L3
s[0] += (6*(f1 - f2) - 2*df2) * ex / L3
s[1] += (6*(f1 - f2) - 2*df2) * ey / L3
Q[2] = Q[1]
# solve
det = Q[0]*Q[3] - Q[1]*Q[2]
r[0] = ( Q[3]*s[0] - Q[1]*s[1])/det
r[1] = (-Q[2]*s[0] + Q[0]*s[1])/det
change = max(fabs(y[2*ipoint + 0] + r[0]),
fabs(y[2*ipoint + 1] + r[1]))
y[2*ipoint + 0] = -r[0]
y[2*ipoint + 1] = -r[1]
# relative/absolute error
change /= max(1.0, max(fabs(r[0]), fabs(r[1])))
err = max(err, change)
if err < tol:
return iiter + 1
# Didn't converge before maxiter
return 0
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef estimate_gradients_2d_global(tri, y, int maxiter=400, double tol=1e-6):
cdef double[:,::1] data
cdef double[:,:,::1] grad
cdef qhull.DelaunayInfo_t info
cdef int k, ret, nvalues
y = np.asanyarray(y)
if y.shape[0] != tri.npoints:
raise ValueError("'y' has a wrong number of items")
if np.issubdtype(y.dtype, np.complexfloating):
rg = estimate_gradients_2d_global(tri, y.real, maxiter=maxiter, tol=tol)
ig = estimate_gradients_2d_global(tri, y.imag, maxiter=maxiter, tol=tol)
r = np.zeros(rg.shape, dtype=complex)
r.real = rg
r.imag = ig
return r
y_shape = y.shape
if y.ndim == 1:
y = y[:,None]
y = y.reshape(tri.npoints, -1).T
y = np.ascontiguousarray(y, dtype=np.double)
yi = np.empty((y.shape[0], y.shape[1], 2))
data = y
grad = yi
qhull._get_delaunay_info(&info, tri, 0, 0, 1)
nvalues = data.shape[0]
for k in xrange(nvalues):
with nogil:
ret = _estimate_gradients_2d_global(
&info,
&data[k,0],
maxiter,
tol,
&grad[k,0,0])
if ret == 0:
warnings.warn("Gradient estimation did not converge, "
"the results may be inaccurate",
GradientEstimationWarning)
return yi.transpose(1, 0, 2).reshape(y_shape + (2,))
#------------------------------------------------------------------------------
# Cubic interpolation in 2D
#------------------------------------------------------------------------------
@cython.cdivision(True)
cdef double_or_complex _clough_tocher_2d_single(qhull.DelaunayInfo_t *d,
int isimplex,
double *b,
double_or_complex *f,
double_or_complex *df) nogil:
"""
Evaluate Clough-Tocher interpolant on a 2D triangle.
Parameters
----------
d :
Delaunay info
isimplex : int
Triangle to evaluate on
b : shape (3,)
Barycentric coordinates of the point on the triangle
f : shape (3,)
Function values at vertices
df : shape (3, 2)
Gradient values at vertices
Returns
-------
w :
Value of the interpolant at the given point
References
----------
.. [CT] See, for example,
P. Alfeld,
''A trivariate Clough-Tocher scheme for tetrahedral data''.
Computer Aided Geometric Design, 1, 169 (1984);
G. Farin,
''Triangular Bernstein-Bezier patches''.
Computer Aided Geometric Design, 3, 83 (1986).
"""
cdef double_or_complex \
c3000, c0300, c0030, c0003, \
c2100, c2010, c2001, c0210, c0201, c0021, \
c1200, c1020, c1002, c0120, c0102, c0012, \
c1101, c1011, c0111
cdef double_or_complex \
f1, f2, f3, df12, df13, df21, df23, df31, df32
cdef double \
g1, g2, g3
cdef double \
e12x, e12y, e23x, e23y, e31x, e31y, \
e14x, e14y, e24x, e24y, e34x, e34y
cdef double_or_complex w
cdef double minval
cdef double b1, b2, b3, b4
cdef int k, itri
cdef double c[3]
cdef double y[2]
# XXX: optimize + refactor this!
e12x = (+ d.points[0 + 2*d.simplices[3*isimplex + 1]]
- d.points[0 + 2*d.simplices[3*isimplex + 0]])
e12y = (+ d.points[1 + 2*d.simplices[3*isimplex + 1]]
- d.points[1 + 2*d.simplices[3*isimplex + 0]])
e23x = (+ d.points[0 + 2*d.simplices[3*isimplex + 2]]
- d.points[0 + 2*d.simplices[3*isimplex + 1]])
e23y = (+ d.points[1 + 2*d.simplices[3*isimplex + 2]]
- d.points[1 + 2*d.simplices[3*isimplex + 1]])
e31x = (+ d.points[0 + 2*d.simplices[3*isimplex + 0]]
- d.points[0 + 2*d.simplices[3*isimplex + 2]])
e31y = (+ d.points[1 + 2*d.simplices[3*isimplex + 0]]
- d.points[1 + 2*d.simplices[3*isimplex + 2]])
e14x = (e12x - e31x)/3
e14y = (e12y - e31y)/3
e24x = (-e12x + e23x)/3
e24y = (-e12y + e23y)/3
e34x = (e31x - e23x)/3
e34y = (e31y - e23y)/3
f1 = f[0]
f2 = f[1]
f3 = f[2]
df12 = +(df[2*0+0]*e12x + df[2*0+1]*e12y)
df21 = -(df[2*1+0]*e12x + df[2*1+1]*e12y)
df23 = +(df[2*1+0]*e23x + df[2*1+1]*e23y)
df32 = -(df[2*2+0]*e23x + df[2*2+1]*e23y)
df31 = +(df[2*2+0]*e31x + df[2*2+1]*e31y)
df13 = -(df[2*0+0]*e31x + df[2*0+1]*e31y)
c3000 = f1
c2100 = (df12 + 3*c3000)/3
c2010 = (df13 + 3*c3000)/3
c0300 = f2
c1200 = (df21 + 3*c0300)/3
c0210 = (df23 + 3*c0300)/3
c0030 = f3
c1020 = (df31 + 3*c0030)/3
c0120 = (df32 + 3*c0030)/3
c2001 = (c2100 + c2010 + c3000)/3
c0201 = (c1200 + c0300 + c0210)/3
c0021 = (c1020 + c0120 + c0030)/3
#
# Now, we need to impose the condition that the gradient of the spline
# to some direction `w` is a linear function along the edge.
#
# As long as two neighbouring triangles agree on the choice of the
# direction `w`, this ensures global C1 differentiability.
# Otherwise, the choice of the direction is arbitrary (except that
# it should not point along the edge, of course).
#
# In [CT]_, it is suggested to pick `w` as the normal of the edge.
# This choice is given by the formulas
#
# w_12 = E_24 + g1 * E_23
# w_23 = E_34 + g2 * E_31
# w_31 = E_14 + g3 * E_12
#
# g1 = -(e24x*e23x + e24y*e23y) / (e23x**2 + e23y**2)
# g2 = -(e34x*e31x + e34y*e31y) / (e31x**2 + e31y**2)
# g3 = -(e14x*e12x + e14y*e12y) / (e12x**2 + e12y**2)
#
# However, this choice gives an interpolant that is *not*
# invariant under affine transforms. This has some bad
# consequences: for a very narrow triangle, the spline can
# develops huge oscillations. For instance, with the input data
#
# [(0, 0), (0, 1), (eps, eps)], eps = 0.01
# F = [0, 0, 1]
# dF = [(0,0), (0,0), (0,0)]
#
# one observes that as eps -> 0, the absolute maximum value of the
# interpolant approaches infinity.
#
# So below, we aim to pick affine invariant `g1`, `g2`, `g3`.
# We choose
#
# w = V_4' - V_4
#
# where V_4 is the centroid of the current triangle, and V_4' the
# centroid of the neighbour. Since this quantity transforms similarly
# as the gradient under affine transforms, the resulting interpolant
# is affine-invariant. Moreover, two neighbouring triangles clearly
# always agree on the choice of `w` (sign is unimportant), and so
# this choice also makes the interpolant C1.
#
# The drawback here is a performance penalty, since we need to
# peek into neighbouring triangles.
#
for k in xrange(3):
itri = d.neighbors[3*isimplex + k]
if itri == -1:
# No neighbour.
# Compute derivative to the centroid direction (e_12 + e_13)/2.
if k == 0:
g1 = -2./3
elif k == 1:
g2 = -2./3
elif k == 2:
g3 = -2./3
continue
# Centroid of the neighbour, in our local barycentric coordinates
y[0] = (+ d.points[0 + 2*d.simplices[3*itri + 0]]
+ d.points[0 + 2*d.simplices[3*itri + 1]]
+ d.points[0 + 2*d.simplices[3*itri + 2]]) / 3
y[1] = (+ d.points[1 + 2*d.simplices[3*itri + 0]]
+ d.points[1 + 2*d.simplices[3*itri + 1]]
+ d.points[1 + 2*d.simplices[3*itri + 2]]) / 3
qhull._barycentric_coordinates(2, d.transform + isimplex*2*3, y, c)
# Rewrite V_4'-V_4 = const*[(V_4-V_2) + g_i*(V_3 - V_2)]
# Now, observe that the results can be written *in terms of
# barycentric coordinates*. Barycentric coordinates stay
# invariant under affine transformations, so we can directly
# conclude that the choice below is affine-invariant.
if k == 0:
g1 = (2*c[2] + c[1] - 1) / (2 - 3*c[2] - 3*c[1])
elif k == 1:
g2 = (2*c[0] + c[2] - 1) / (2 - 3*c[0] - 3*c[2])
elif k == 2:
g3 = (2*c[1] + c[0] - 1) / (2 - 3*c[1] - 3*c[0])
c0111 = (g1*(-c0300 + 3*c0210 - 3*c0120 + c0030)
+ (-c0300 + 2*c0210 - c0120 + c0021 + c0201))/2
c1011 = (g2*(-c0030 + 3*c1020 - 3*c2010 + c3000)
+ (-c0030 + 2*c1020 - c2010 + c2001 + c0021))/2
c1101 = (g3*(-c3000 + 3*c2100 - 3*c1200 + c0300)
+ (-c3000 + 2*c2100 - c1200 + c2001 + c0201))/2
c1002 = (c1101 + c1011 + c2001)/3
c0102 = (c1101 + c0111 + c0201)/3
c0012 = (c1011 + c0111 + c0021)/3
c0003 = (c1002 + c0102 + c0012)/3
# extended barycentric coordinates
minval = b[0]
for k in xrange(3):
if b[k] < minval:
minval = b[k]
b1 = b[0] - minval
b2 = b[1] - minval
b3 = b[2] - minval
b4 = 3*minval
# evaluate the polynomial -- the stupid and ugly way to do it,
# one of the 4 coordinates is in fact zero
w = (b1**3*c3000 + 3*b1**2*b2*c2100 + 3*b1**2*b3*c2010 +
3*b1**2*b4*c2001 + 3*b1*b2**2*c1200 +
6*b1*b2*b4*c1101 + 3*b1*b3**2*c1020 + 6*b1*b3*b4*c1011 +
3*b1*b4**2*c1002 + b2**3*c0300 + 3*b2**2*b3*c0210 +
3*b2**2*b4*c0201 + 3*b2*b3**2*c0120 + 6*b2*b3*b4*c0111 +
3*b2*b4**2*c0102 + b3**3*c0030 + 3*b3**2*b4*c0021 +
3*b3*b4**2*c0012 + b4**3*c0003)
return w
class CloughTocher2DInterpolator(NDInterpolatorBase):
"""
CloughTocher2DInterpolator(points, values, tol=1e-6)
Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.
.. versionadded:: 0.9
Methods
-------
__call__
Parameters
----------
points : ndarray of floats, shape (npoints, ndims); or Delaunay
Data point coordinates, or a precomputed Delaunay triangulation.
values : ndarray of float or complex, shape (npoints, ...)
Data values.
fill_value : float, optional
Value used to fill in for requested points outside of the
convex hull of the input points. If not provided, then
the default is ``nan``.
tol : float, optional
Absolute/relative tolerance for gradient estimation.
maxiter : int, optional
Maximum number of iterations in gradient estimation.
rescale : bool, optional
Rescale points to unit cube before performing interpolation.
This is useful if some of the input dimensions have
incommensurable units and differ by many orders of magnitude.
Notes
-----
The interpolant is constructed by triangulating the input data
with Qhull [1]_, and constructing a piecewise cubic
interpolating Bezier polynomial on each triangle, using a
Clough-Tocher scheme [CT]_. The interpolant is guaranteed to be
continuously differentiable.
The gradients of the interpolant are chosen so that the curvature
of the interpolating surface is approximatively minimized. The
gradients necessary for this are estimated using the global
algorithm described in [Nielson83,Renka84]_.
References
----------
.. [1] http://www.qhull.org/
.. [CT] See, for example,
P. Alfeld,
''A trivariate Clough-Tocher scheme for tetrahedral data''.
Computer Aided Geometric Design, 1, 169 (1984);
G. Farin,
''Triangular Bernstein-Bezier patches''.
Computer Aided Geometric Design, 3, 83 (1986).
.. [Nielson83] G. Nielson,
''A method for interpolating scattered data based upon a minimum norm
network''.
Math. Comp., 40, 253 (1983).
.. [Renka84] R. J. Renka and A. K. Cline.
''A Triangle-based C1 interpolation method.'',
Rocky Mountain J. Math., 14, 223 (1984).
"""
def __init__(self, points, values, fill_value=np.nan,
tol=1e-6, maxiter=400, rescale=False):
NDInterpolatorBase.__init__(self, points, values, ndim=2,
fill_value=fill_value, rescale=rescale)
if self.tri is None:
self.tri = qhull.Delaunay(self.points)
self.grad = estimate_gradients_2d_global(self.tri, self.values,
tol=tol, maxiter=maxiter)
def _evaluate_double(self, xi):
return self._do_evaluate(xi, 1.0)
def _evaluate_complex(self, xi):
return self._do_evaluate(xi, 1.0j)
@cython.boundscheck(False)
@cython.wraparound(False)
def _do_evaluate(self, double[:,::1] xi, double_or_complex dummy):
cdef double_or_complex[:,::1] values = self.values
cdef double_or_complex[:,:,:] grad = self.grad
cdef double_or_complex[:,::1] out
cdef double[:,::1] points = self.points
cdef int[:,::1] simplices = self.tri.simplices
cdef double c[NPY_MAXDIMS]
cdef double_or_complex f[NPY_MAXDIMS+1]
cdef double_or_complex df[2*NPY_MAXDIMS+2]
cdef double_or_complex w
cdef double_or_complex fill_value
cdef int i, j, k, m, ndim, isimplex, inside, start, nvalues
cdef qhull.DelaunayInfo_t info
cdef double eps, eps_broad
ndim = xi.shape[1]
start = 0
fill_value = self.fill_value
qhull._get_delaunay_info(&info, self.tri, 1, 1, 0)
out = np.zeros((xi.shape[0], self.values.shape[1]),
dtype=self.values.dtype)
nvalues = out.shape[1]
eps = 100 * DBL_EPSILON
eps_broad = sqrt(eps)
with nogil:
for i in xrange(xi.shape[0]):
# 1) Find the simplex
isimplex = qhull._find_simplex(&info, c,
&xi[i,0],
&start, eps, eps_broad)
# 2) Clough-Tocher interpolation
if isimplex == -1:
# outside triangulation
for k in xrange(nvalues):
out[i,k] = fill_value
continue
for k in xrange(nvalues):
for j in xrange(ndim+1):
f[j] = values[simplices[isimplex,j],k]
df[2*j] = grad[simplices[isimplex,j],k,0]
df[2*j+1] = grad[simplices[isimplex,j],k,1]
w = _clough_tocher_2d_single(&info, isimplex, c, f, df)
out[i,k] = w
return out
|