File: test_fitpack2.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (475 lines) | stat: -rw-r--r-- 19,306 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#!/usr/bin/env python
# Created by Pearu Peterson, June 2003
from __future__ import division, print_function, absolute_import

import warnings

import numpy as np
from numpy.testing import (assert_equal, assert_almost_equal, assert_array_equal,
        assert_array_almost_equal, assert_allclose, assert_raises, TestCase,
        run_module_suite)
from numpy import array, diff, linspace, meshgrid, ones, pi, shape
from scipy.interpolate.fitpack import bisplrep, bisplev
from scipy.interpolate.fitpack2 import (UnivariateSpline,
        LSQUnivariateSpline, InterpolatedUnivariateSpline,
        LSQBivariateSpline, SmoothBivariateSpline, RectBivariateSpline,
        LSQSphereBivariateSpline, SmoothSphereBivariateSpline,
        RectSphereBivariateSpline)


class TestUnivariateSpline(TestCase):
    def test_linear_constant(self):
        x = [1,2,3]
        y = [3,3,3]
        lut = UnivariateSpline(x,y,k=1)
        assert_array_almost_equal(lut.get_knots(),[1,3])
        assert_array_almost_equal(lut.get_coeffs(),[3,3])
        assert_almost_equal(lut.get_residual(),0.0)
        assert_array_almost_equal(lut([1,1.5,2]),[3,3,3])

    def test_preserve_shape(self):
        x = [1, 2, 3]
        y = [0, 2, 4]
        lut = UnivariateSpline(x, y, k=1)
        arg = 2
        assert_equal(shape(arg), shape(lut(arg)))
        assert_equal(shape(arg), shape(lut(arg, nu=1)))
        arg = [1.5, 2, 2.5]
        assert_equal(shape(arg), shape(lut(arg)))
        assert_equal(shape(arg), shape(lut(arg, nu=1)))

    def test_linear_1d(self):
        x = [1,2,3]
        y = [0,2,4]
        lut = UnivariateSpline(x,y,k=1)
        assert_array_almost_equal(lut.get_knots(),[1,3])
        assert_array_almost_equal(lut.get_coeffs(),[0,4])
        assert_almost_equal(lut.get_residual(),0.0)
        assert_array_almost_equal(lut([1,1.5,2]),[0,1,2])

    def test_subclassing(self):
        # See #731

        class ZeroSpline(UnivariateSpline):
            def __call__(self, x):
                return 0*array(x)

        sp = ZeroSpline([1,2,3,4,5], [3,2,3,2,3], k=2)
        assert_array_equal(sp([1.5, 2.5]), [0., 0.])

    def test_empty_input(self):
        # Test whether empty input returns an empty output. Ticket 1014
        x = [1,3,5,7,9]
        y = [0,4,9,12,21]
        spl = UnivariateSpline(x, y, k=3)
        assert_array_equal(spl([]), array([]))

    def test_resize_regression(self):
        """Regression test for #1375."""
        x = [-1., -0.65016502, -0.58856235, -0.26903553, -0.17370892,
             -0.10011001, 0., 0.10011001, 0.17370892, 0.26903553, 0.58856235,
             0.65016502, 1.]
        y = [1.,0.62928599, 0.5797223, 0.39965815, 0.36322694, 0.3508061,
             0.35214793, 0.3508061, 0.36322694, 0.39965815, 0.5797223,
             0.62928599, 1.]
        w = [1.00000000e+12, 6.88875973e+02, 4.89314737e+02, 4.26864807e+02,
             6.07746770e+02, 4.51341444e+02, 3.17480210e+02, 4.51341444e+02,
             6.07746770e+02, 4.26864807e+02, 4.89314737e+02, 6.88875973e+02,
             1.00000000e+12]
        spl = UnivariateSpline(x=x, y=y, w=w, s=None)
        desired = array([0.35100374, 0.51715855, 0.87789547, 0.98719344])
        assert_allclose(spl([0.1, 0.5, 0.9, 0.99]), desired, atol=5e-4)

    def test_out_of_range_regression(self):
        # Test different extrapolation modes. See ticket 3557
        x = np.arange(5, dtype=float)
        y = x**3

        xp = linspace(-8, 13, 100)
        xp_zeros = xp.copy()
        xp_zeros[np.logical_or(xp_zeros < 0., xp_zeros > 4.)] = 0
        xp_clip = xp.copy()
        xp_clip[xp_clip < x[0]] = x[0]
        xp_clip[xp_clip > x[-1]] = x[-1]

        for cls in [UnivariateSpline, InterpolatedUnivariateSpline]:
            spl = cls(x=x, y=y)
            for ext in [0, 'extrapolate']:
                assert_allclose(spl(xp, ext=ext), xp**3, atol=1e-16)
                assert_allclose(cls(x, y, ext=ext)(xp), xp**3, atol=1e-16)
            for ext in [1, 'zeros']:
                assert_allclose(spl(xp, ext=ext), xp_zeros**3, atol=1e-16)
                assert_allclose(cls(x, y, ext=ext)(xp), xp_zeros**3, atol=1e-16)
            for ext in [2, 'raise']:
                assert_raises(ValueError, spl, xp, **dict(ext=ext))
            for ext in [3, 'const']:
                assert_allclose(spl(xp, ext=ext), xp_clip**3, atol=1e-16)
                assert_allclose(cls(x, y, ext=ext)(xp), xp_clip**3, atol=1e-16)

        # also test LSQUnivariateSpline [which needs explicit knots]
        t = spl.get_knots()[3:4]  # interior knots w/ default k=3
        spl = LSQUnivariateSpline(x, y, t)
        assert_allclose(spl(xp, ext=0), xp**3, atol=1e-16)
        assert_allclose(spl(xp, ext=1), xp_zeros**3, atol=1e-16)
        assert_raises(ValueError, spl, xp, **dict(ext=2))
        assert_allclose(spl(xp, ext=3), xp_clip**3, atol=1e-16)

        # also make sure that unknown values for `ext` are caught early
        for ext in [-1, 'unknown']:
            spl = UnivariateSpline(x, y)
            assert_raises(ValueError, spl, xp, **dict(ext=ext))
            assert_raises(ValueError, UnivariateSpline,
                    **dict(x=x, y=y, ext=ext))

    def test_lsq_fpchec(self):
        xs = np.arange(100) * 1.
        ys = np.arange(100) * 1.
        knots = np.linspace(0, 99, 10)
        bbox = (-1, 101)
        assert_raises(ValueError, LSQUnivariateSpline, xs, ys, knots,
                      bbox=bbox)

    def test_derivative_and_antiderivative(self):
        # Thin wrappers to splder/splantider, so light smoke test only.
        x = np.linspace(0, 1, 70)**3
        y = np.cos(x)

        spl = UnivariateSpline(x, y, s=0)
        spl2 = spl.antiderivative(2).derivative(2)
        assert_allclose(spl(0.3), spl2(0.3))

        spl2 = spl.antiderivative(1)
        assert_allclose(spl2(0.6) - spl2(0.2),
                        spl.integral(0.2, 0.6))

    def test_nan(self):
        # bail out early if the input data contains nans
        x = np.arange(10, dtype=float)
        y = x**3
        for z in [np.nan, np.inf, -np.inf]:
            y[-1] = z
            assert_raises(ValueError, UnivariateSpline,
                    **dict(x=x, y=y, check_finite=True))


class TestLSQBivariateSpline(TestCase):
    # NOTE: The systems in this test class are rank-deficient
    def test_linear_constant(self):
        x = [1,1,1,2,2,2,3,3,3]
        y = [1,2,3,1,2,3,1,2,3]
        z = [3,3,3,3,3,3,3,3,3]
        s = 0.1
        tx = [1+s,3-s]
        ty = [1+s,3-s]
        with warnings.catch_warnings(record=True):  # coefficients of the ...
            lut = LSQBivariateSpline(x,y,z,tx,ty,kx=1,ky=1)

        assert_almost_equal(lut(2,2), 3.)

    def test_bilinearity(self):
        x = [1,1,1,2,2,2,3,3,3]
        y = [1,2,3,1,2,3,1,2,3]
        z = [0,7,8,3,4,7,1,3,4]
        s = 0.1
        tx = [1+s,3-s]
        ty = [1+s,3-s]
        with warnings.catch_warnings():
            # This seems to fail (ier=1, see ticket 1642).
            warnings.simplefilter('ignore', UserWarning)
            lut = LSQBivariateSpline(x,y,z,tx,ty,kx=1,ky=1)

        tx, ty = lut.get_knots()
        for xa, xb in zip(tx[:-1], tx[1:]):
            for ya, yb in zip(ty[:-1], ty[1:]):
                for t in [0.1, 0.5, 0.9]:
                    for s in [0.3, 0.4, 0.7]:
                        xp = xa*(1-t) + xb*t
                        yp = ya*(1-s) + yb*s
                        zp = (+ lut(xa, ya)*(1-t)*(1-s)
                              + lut(xb, ya)*t*(1-s)
                              + lut(xa, yb)*(1-t)*s
                              + lut(xb, yb)*t*s)
                        assert_almost_equal(lut(xp,yp), zp)

    def test_integral(self):
        x = [1,1,1,2,2,2,8,8,8]
        y = [1,2,3,1,2,3,1,2,3]
        z = array([0,7,8,3,4,7,1,3,4])

        s = 0.1
        tx = [1+s,3-s]
        ty = [1+s,3-s]
        with warnings.catch_warnings(record=True):  # coefficients of the ...
            lut = LSQBivariateSpline(x,y,z,tx,ty,kx=1,ky=1)
        tx, ty = lut.get_knots()
        tz = lut(tx, ty)
        trpz = .25*(diff(tx)[:,None]*diff(ty)[None,:]
                    * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()

        assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]),
                            trpz)

    def test_empty_input(self):
        # Test whether empty inputs returns an empty output. Ticket 1014
        x = [1,1,1,2,2,2,3,3,3]
        y = [1,2,3,1,2,3,1,2,3]
        z = [3,3,3,3,3,3,3,3,3]
        s = 0.1
        tx = [1+s,3-s]
        ty = [1+s,3-s]
        with warnings.catch_warnings(record=True):  # coefficients of the ...
            lut = LSQBivariateSpline(x,y,z,tx,ty,kx=1,ky=1)

        assert_array_equal(lut([], []), np.zeros((0,0)))
        assert_array_equal(lut([], [], grid=False), np.zeros((0,)))


class TestSmoothBivariateSpline(TestCase):
    def test_linear_constant(self):
        x = [1,1,1,2,2,2,3,3,3]
        y = [1,2,3,1,2,3,1,2,3]
        z = [3,3,3,3,3,3,3,3,3]
        lut = SmoothBivariateSpline(x,y,z,kx=1,ky=1)
        assert_array_almost_equal(lut.get_knots(),([1,1,3,3],[1,1,3,3]))
        assert_array_almost_equal(lut.get_coeffs(),[3,3,3,3])
        assert_almost_equal(lut.get_residual(),0.0)
        assert_array_almost_equal(lut([1,1.5,2],[1,1.5]),[[3,3],[3,3],[3,3]])

    def test_linear_1d(self):
        x = [1,1,1,2,2,2,3,3,3]
        y = [1,2,3,1,2,3,1,2,3]
        z = [0,0,0,2,2,2,4,4,4]
        lut = SmoothBivariateSpline(x,y,z,kx=1,ky=1)
        assert_array_almost_equal(lut.get_knots(),([1,1,3,3],[1,1,3,3]))
        assert_array_almost_equal(lut.get_coeffs(),[0,0,4,4])
        assert_almost_equal(lut.get_residual(),0.0)
        assert_array_almost_equal(lut([1,1.5,2],[1,1.5]),[[0,0],[1,1],[2,2]])

    def test_integral(self):
        x = [1,1,1,2,2,2,4,4,4]
        y = [1,2,3,1,2,3,1,2,3]
        z = array([0,7,8,3,4,7,1,3,4])

        with warnings.catch_warnings():
            # This seems to fail (ier=1, see ticket 1642).
            warnings.simplefilter('ignore', UserWarning)
            lut = SmoothBivariateSpline(x, y, z, kx=1, ky=1, s=0)

        tx = [1,2,4]
        ty = [1,2,3]

        tz = lut(tx, ty)
        trpz = .25*(diff(tx)[:,None]*diff(ty)[None,:]
                    * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
        assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz)

        lut2 = SmoothBivariateSpline(x, y, z, kx=2, ky=2, s=0)
        assert_almost_equal(lut2.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz,
                            decimal=0)  # the quadratures give 23.75 and 23.85

        tz = lut(tx[:-1], ty[:-1])
        trpz = .25*(diff(tx[:-1])[:,None]*diff(ty[:-1])[None,:]
                    * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
        assert_almost_equal(lut.integral(tx[0], tx[-2], ty[0], ty[-2]), trpz)

    def test_rerun_lwrk2_too_small(self):
        # in this setting, lwrk2 is too small in the default run. Here we
        # check for equality with the bisplrep/bisplev output because there,
        # an automatic re-run of the spline representation is done if ier>10.
        x = np.linspace(-2, 2, 80)
        y = np.linspace(-2, 2, 80)
        z = x + y
        xi = np.linspace(-1, 1, 100)
        yi = np.linspace(-2, 2, 100)
        tck = bisplrep(x, y, z)
        res1 = bisplev(xi, yi, tck)
        interp_ = SmoothBivariateSpline(x, y, z)
        res2 = interp_(xi, yi)
        assert_almost_equal(res1, res2)


class TestLSQSphereBivariateSpline(TestCase):
    def setUp(self):
        # define the input data and coordinates
        ntheta, nphi = 70, 90
        theta = linspace(0.5/(ntheta - 1), 1 - 0.5/(ntheta - 1), ntheta) * pi
        phi = linspace(0.5/(nphi - 1), 1 - 0.5/(nphi - 1), nphi) * 2. * pi
        data = ones((theta.shape[0], phi.shape[0]))
        # define knots and extract data values at the knots
        knotst = theta[::5]
        knotsp = phi[::5]
        knotdata = data[::5, ::5]
        # calculate spline coefficients
        lats, lons = meshgrid(theta, phi)
        lut_lsq = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
                                           data.T.ravel(), knotst, knotsp)
        self.lut_lsq = lut_lsq
        self.data = knotdata
        self.new_lons, self.new_lats = knotsp, knotst

    def test_linear_constant(self):
        assert_almost_equal(self.lut_lsq.get_residual(), 0.0)
        assert_array_almost_equal(self.lut_lsq(self.new_lats, self.new_lons),
                                  self.data)

    def test_empty_input(self):
        assert_array_almost_equal(self.lut_lsq([], []), np.zeros((0,0)))
        assert_array_almost_equal(self.lut_lsq([], [], grid=False), np.zeros((0,)))


class TestSmoothSphereBivariateSpline(TestCase):
    def setUp(self):
        theta = array([.25*pi, .25*pi, .25*pi, .5*pi, .5*pi, .5*pi, .75*pi,
                       .75*pi, .75*pi])
        phi = array([.5 * pi, pi, 1.5 * pi, .5 * pi, pi, 1.5 * pi, .5 * pi, pi,
                     1.5 * pi])
        r = array([3, 3, 3, 3, 3, 3, 3, 3, 3])
        self.lut = SmoothSphereBivariateSpline(theta, phi, r, s=1E10)

    def test_linear_constant(self):
        assert_almost_equal(self.lut.get_residual(), 0.)
        assert_array_almost_equal(self.lut([1, 1.5, 2],[1, 1.5]),
                                  [[3, 3], [3, 3], [3, 3]])

    def test_empty_input(self):
        assert_array_almost_equal(self.lut([], []), np.zeros((0,0)))
        assert_array_almost_equal(self.lut([], [], grid=False), np.zeros((0,)))


class TestRectBivariateSpline(TestCase):
    def test_defaults(self):
        x = array([1,2,3,4,5])
        y = array([1,2,3,4,5])
        z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
        lut = RectBivariateSpline(x,y,z)
        assert_array_almost_equal(lut(x,y),z)

    def test_evaluate(self):
        x = array([1,2,3,4,5])
        y = array([1,2,3,4,5])
        z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
        lut = RectBivariateSpline(x,y,z)

        xi = [1, 2.3, 5.3, 0.5, 3.3, 1.2, 3]
        yi = [1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]
        zi = lut.ev(xi, yi)
        zi2 = array([lut(xp, yp)[0,0] for xp, yp in zip(xi, yi)])

        assert_almost_equal(zi, zi2)

    def test_derivatives_grid(self):
        x = array([1,2,3,4,5])
        y = array([1,2,3,4,5])
        z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
        dx = array([[0,0,-20,0,0],[0,0,13,0,0],[0,0,4,0,0],
            [0,0,-11,0,0],[0,0,4,0,0]])/6.
        dy = array([[4,-1,0,1,-4],[4,-1,0,1,-4],[0,1.5,0,-1.5,0],
            [2,.25,0,-.25,-2],[4,-1,0,1,-4]])
        dxdy = array([[40,-25,0,25,-40],[-26,16.25,0,-16.25,26],
            [-8,5,0,-5,8],[22,-13.75,0,13.75,-22],[-8,5,0,-5,8]])/6.
        lut = RectBivariateSpline(x,y,z)
        assert_array_almost_equal(lut(x,y,dx=1),dx)
        assert_array_almost_equal(lut(x,y,dy=1),dy)
        assert_array_almost_equal(lut(x,y,dx=1,dy=1),dxdy)

    def test_derivatives(self):
        x = array([1,2,3,4,5])
        y = array([1,2,3,4,5])
        z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
        dx = array([0,0,2./3,0,0])
        dy = array([4,-1,0,-.25,-4])
        dxdy = array([160,65,0,55,32])/24.
        lut = RectBivariateSpline(x,y,z)
        assert_array_almost_equal(lut(x,y,dx=1,grid=False),dx)
        assert_array_almost_equal(lut(x,y,dy=1,grid=False),dy)
        assert_array_almost_equal(lut(x,y,dx=1,dy=1,grid=False),dxdy)

    def test_broadcast(self):
        x = array([1,2,3,4,5])
        y = array([1,2,3,4,5])
        z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
        lut = RectBivariateSpline(x,y,z)
        assert_allclose(lut(x, y), lut(x[:,None], y[None,:], grid=False))


class TestRectSphereBivariateSpline(TestCase):
    def test_defaults(self):
        y = linspace(0.01, 2*pi-0.01, 7)
        x = linspace(0.01, pi-0.01, 7)
        z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1],
                   [1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1],
                   [1,2,1,2,1,2,1]])
        lut = RectSphereBivariateSpline(x,y,z)
        assert_array_almost_equal(lut(x,y),z)

    def test_evaluate(self):
        y = linspace(0.01, 2*pi-0.01, 7)
        x = linspace(0.01, pi-0.01, 7)
        z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1],
                   [1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1],
                   [1,2,1,2,1,2,1]])
        lut = RectSphereBivariateSpline(x,y,z)
        yi = [0.2, 1, 2.3, 2.35, 3.0, 3.99, 5.25]
        xi = [1.5, 0.4, 1.1, 0.45, 0.2345, 1., 0.0001]
        zi = lut.ev(xi, yi)
        zi2 = array([lut(xp, yp)[0,0] for xp, yp in zip(xi, yi)])
        assert_almost_equal(zi, zi2)

    def test_derivatives_grid(self):
        y = linspace(0.01, 2*pi-0.01, 7)
        x = linspace(0.01, pi-0.01, 7)
        z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1],
                   [1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1],
                   [1,2,1,2,1,2,1]])

        lut = RectSphereBivariateSpline(x,y,z)

        y = linspace(0.02, 2*pi-0.02, 7)
        x = linspace(0.02, pi-0.02, 7)

        assert_allclose(lut(x, y, dtheta=1), _numdiff_2d(lut, x, y, dx=1),
                        rtol=1e-4, atol=1e-4)
        assert_allclose(lut(x, y, dphi=1), _numdiff_2d(lut, x, y, dy=1),
                        rtol=1e-4, atol=1e-4)
        assert_allclose(lut(x, y, dtheta=1, dphi=1), _numdiff_2d(lut, x, y, dx=1, dy=1, eps=1e-6),
                        rtol=1e-3, atol=1e-3)

    def test_derivatives(self):
        y = linspace(0.01, 2*pi-0.01, 7)
        x = linspace(0.01, pi-0.01, 7)
        z = array([[1,2,1,2,1,2,1],[1,2,1,2,1,2,1],[1,2,3,2,1,2,1],
                   [1,2,2,2,1,2,1],[1,2,1,2,1,2,1],[1,2,2,2,1,2,1],
                   [1,2,1,2,1,2,1]])

        lut = RectSphereBivariateSpline(x,y,z)

        y = linspace(0.02, 2*pi-0.02, 7)
        x = linspace(0.02, pi-0.02, 7)

        assert_equal(lut(x, y, dtheta=1, grid=False).shape, x.shape)
        assert_allclose(lut(x, y, dtheta=1, grid=False),
                        _numdiff_2d(lambda x,y: lut(x,y,grid=False), x, y, dx=1),
                        rtol=1e-4, atol=1e-4)
        assert_allclose(lut(x, y, dphi=1, grid=False),
                        _numdiff_2d(lambda x,y: lut(x,y,grid=False), x, y, dy=1),
                        rtol=1e-4, atol=1e-4)
        assert_allclose(lut(x, y, dtheta=1, dphi=1, grid=False),
                        _numdiff_2d(lambda x,y: lut(x,y,grid=False), x, y, dx=1, dy=1, eps=1e-6),
                        rtol=1e-3, atol=1e-3)


def _numdiff_2d(func, x, y, dx=0, dy=0, eps=1e-8):
    if dx == 0 and dy == 0:
        return func(x, y)
    elif dx == 1 and dy == 0:
        return (func(x + eps, y) - func(x - eps, y)) / (2*eps)
    elif dx == 0 and dy == 1:
        return (func(x, y + eps) - func(x, y - eps)) / (2*eps)
    elif dx == 1 and dy == 1:
        return (func(x + eps, y + eps) - func(x - eps, y + eps)
                - func(x + eps, y - eps) + func(x - eps, y - eps)) / (2*eps)**2
    else:
        raise ValueError("invalid derivative order")

if __name__ == "__main__":
    run_module_suite()