File: arffread.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (670 lines) | stat: -rw-r--r-- 19,838 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
#! /usr/bin/env python
# Last Change: Mon Aug 20 08:00 PM 2007 J
from __future__ import division, print_function, absolute_import

import re
import itertools
import datetime
from functools import partial

import numpy as np

from scipy._lib.six import next

"""A module to read arff files."""

__all__ = ['MetaData', 'loadarff', 'ArffError', 'ParseArffError']

# An Arff file is basically two parts:
#   - header
#   - data
#
# A header has each of its components starting by @META where META is one of
# the keyword (attribute of relation, for now).

# TODO:
#   - both integer and reals are treated as numeric -> the integer info
#    is lost!
#   - Replace ValueError by ParseError or something

# We know can handle the following:
#   - numeric and nominal attributes
#   - missing values for numeric attributes

r_meta = re.compile('^\s*@')
# Match a comment
r_comment = re.compile(r'^%')
# Match an empty line
r_empty = re.compile(r'^\s+$')
# Match a header line, that is a line which starts by @ + a word
r_headerline = re.compile(r'^@\S*')
r_datameta = re.compile(r'^@[Dd][Aa][Tt][Aa]')
r_relation = re.compile(r'^@[Rr][Ee][Ll][Aa][Tt][Ii][Oo][Nn]\s*(\S*)')
r_attribute = re.compile(r'^@[Aa][Tt][Tt][Rr][Ii][Bb][Uu][Tt][Ee]\s*(..*$)')

# To get attributes name enclosed with ''
r_comattrval = re.compile(r"'(..+)'\s+(..+$)")
# To get normal attributes
r_wcomattrval = re.compile(r"(\S+)\s+(..+$)")

#-------------------------
# Module defined exception
#-------------------------


class ArffError(IOError):
    pass


class ParseArffError(ArffError):
    pass

#------------------
# Various utilities
#------------------

# An attribute  is defined as @attribute name value


def parse_type(attrtype):
    """Given an arff attribute value (meta data), returns its type.

    Expect the value to be a name."""
    uattribute = attrtype.lower().strip()
    if uattribute[0] == '{':
        return 'nominal'
    elif uattribute[:len('real')] == 'real':
        return 'numeric'
    elif uattribute[:len('integer')] == 'integer':
        return 'numeric'
    elif uattribute[:len('numeric')] == 'numeric':
        return 'numeric'
    elif uattribute[:len('string')] == 'string':
        return 'string'
    elif uattribute[:len('relational')] == 'relational':
        return 'relational'
    elif uattribute[:len('date')] == 'date':
        return 'date'
    else:
        raise ParseArffError("unknown attribute %s" % uattribute)


def get_nominal(attribute):
    """If attribute is nominal, returns a list of the values"""
    return attribute.split(',')


def read_data_list(ofile):
    """Read each line of the iterable and put it in a list."""
    data = [next(ofile)]
    if data[0].strip()[0] == '{':
        raise ValueError("This looks like a sparse ARFF: not supported yet")
    data.extend([i for i in ofile])
    return data


def get_ndata(ofile):
    """Read the whole file to get number of data attributes."""
    data = [next(ofile)]
    loc = 1
    if data[0].strip()[0] == '{':
        raise ValueError("This looks like a sparse ARFF: not supported yet")
    for i in ofile:
        loc += 1
    return loc


def maxnomlen(atrv):
    """Given a string containing a nominal type definition, returns the
    string len of the biggest component.

    A nominal type is defined as seomthing framed between brace ({}).

    Parameters
    ----------
    atrv : str
       Nominal type definition

    Returns
    -------
    slen : int
       length of longest component

    Examples
    --------
    maxnomlen("{floup, bouga, fl, ratata}") returns 6 (the size of
    ratata, the longest nominal value).

    >>> maxnomlen("{floup, bouga, fl, ratata}")
    6
    """
    nomtp = get_nom_val(atrv)
    return max(len(i) for i in nomtp)


def get_nom_val(atrv):
    """Given a string containing a nominal type, returns a tuple of the
    possible values.

    A nominal type is defined as something framed between braces ({}).

    Parameters
    ----------
    atrv : str
       Nominal type definition

    Returns
    -------
    poss_vals : tuple
       possible values

    Examples
    --------
    >>> get_nom_val("{floup, bouga, fl, ratata}")
    ('floup', 'bouga', 'fl', 'ratata')
    """
    r_nominal = re.compile('{(.+)}')
    m = r_nominal.match(atrv)
    if m:
        return tuple(i.strip() for i in m.group(1).split(','))
    else:
        raise ValueError("This does not look like a nominal string")


def get_date_format(atrv):
    r_date = re.compile(r"[Dd][Aa][Tt][Ee]\s+[\"']?(.+?)[\"']?$")
    m = r_date.match(atrv)
    if m:
        pattern = m.group(1).strip()
        # convert time pattern from Java's SimpleDateFormat to C's format
        datetime_unit = None
        if "yyyy" in pattern:
            pattern = pattern.replace("yyyy", "%Y")
            datetime_unit = "Y"
        elif "yy":
            pattern = pattern.replace("yy", "%y")
            datetime_unit = "Y"
        if "MM" in pattern:
            pattern = pattern.replace("MM", "%m")
            datetime_unit = "M"
        if "dd" in pattern:
            pattern = pattern.replace("dd", "%d")
            datetime_unit = "D"
        if "HH" in pattern:
            pattern = pattern.replace("HH", "%H")
            datetime_unit = "h"
        if "mm" in pattern:
            pattern = pattern.replace("mm", "%M")
            datetime_unit = "m"
        if "ss" in pattern:
            pattern = pattern.replace("ss", "%S")
            datetime_unit = "s"
        if "z" in pattern or "Z" in pattern:
            raise ValueError("Date type attributes with time zone not "
                             "supported, yet")

        if datetime_unit is None:
            raise ValueError("Invalid or unsupported date format")

        return pattern, datetime_unit
    else:
        raise ValueError("Invalid or no date format")


def go_data(ofile):
    """Skip header.

    the first next() call of the returned iterator will be the @data line"""
    return itertools.dropwhile(lambda x: not r_datameta.match(x), ofile)


#----------------
# Parsing header
#----------------
def tokenize_attribute(iterable, attribute):
    """Parse a raw string in header (eg starts by @attribute).

    Given a raw string attribute, try to get the name and type of the
    attribute. Constraints:

    * The first line must start with @attribute (case insensitive, and
      space like characters before @attribute are allowed)
    * Works also if the attribute is spread on multilines.
    * Works if empty lines or comments are in between

    Parameters
    ----------
    attribute : str
       the attribute string.

    Returns
    -------
    name : str
       name of the attribute
    value : str
       value of the attribute
    next : str
       next line to be parsed

    Examples
    --------
    If attribute is a string defined in python as r"floupi real", will
    return floupi as name, and real as value.

    >>> iterable = iter([0] * 10) # dummy iterator
    >>> tokenize_attribute(iterable, r"@attribute floupi real")
    ('floupi', 'real', 0)

    If attribute is r"'floupi 2' real", will return 'floupi 2' as name,
    and real as value.

    >>> tokenize_attribute(iterable, r"  @attribute 'floupi 2' real   ")
    ('floupi 2', 'real', 0)

    """
    sattr = attribute.strip()
    mattr = r_attribute.match(sattr)
    if mattr:
        # atrv is everything after @attribute
        atrv = mattr.group(1)
        if r_comattrval.match(atrv):
            name, type = tokenize_single_comma(atrv)
            next_item = next(iterable)
        elif r_wcomattrval.match(atrv):
            name, type = tokenize_single_wcomma(atrv)
            next_item = next(iterable)
        else:
            # Not sure we should support this, as it does not seem supported by
            # weka.
            raise ValueError("multi line not supported yet")
            #name, type, next_item = tokenize_multilines(iterable, atrv)
    else:
        raise ValueError("First line unparsable: %s" % sattr)

    if type == 'relational':
        raise ValueError("relational attributes not supported yet")
    return name, type, next_item


def tokenize_single_comma(val):
    # XXX we match twice the same string (here and at the caller level). It is
    # stupid, but it is easier for now...
    m = r_comattrval.match(val)
    if m:
        try:
            name = m.group(1).strip()
            type = m.group(2).strip()
        except IndexError:
            raise ValueError("Error while tokenizing attribute")
    else:
        raise ValueError("Error while tokenizing single %s" % val)
    return name, type


def tokenize_single_wcomma(val):
    # XXX we match twice the same string (here and at the caller level). It is
    # stupid, but it is easier for now...
    m = r_wcomattrval.match(val)
    if m:
        try:
            name = m.group(1).strip()
            type = m.group(2).strip()
        except IndexError:
            raise ValueError("Error while tokenizing attribute")
    else:
        raise ValueError("Error while tokenizing single %s" % val)
    return name, type


def read_header(ofile):
    """Read the header of the iterable ofile."""
    i = next(ofile)

    # Pass first comments
    while r_comment.match(i):
        i = next(ofile)

    # Header is everything up to DATA attribute ?
    relation = None
    attributes = []
    while not r_datameta.match(i):
        m = r_headerline.match(i)
        if m:
            isattr = r_attribute.match(i)
            if isattr:
                name, type, i = tokenize_attribute(ofile, i)
                attributes.append((name, type))
            else:
                isrel = r_relation.match(i)
                if isrel:
                    relation = isrel.group(1)
                else:
                    raise ValueError("Error parsing line %s" % i)
                i = next(ofile)
        else:
            i = next(ofile)

    return relation, attributes


#--------------------
# Parsing actual data
#--------------------
def safe_float(x):
    """given a string x, convert it to a float. If the stripped string is a ?,
    return a Nan (missing value).

    Parameters
    ----------
    x : str
       string to convert

    Returns
    -------
    f : float
       where float can be nan

    Examples
    --------
    >>> safe_float('1')
    1.0
    >>> safe_float('1\\n')
    1.0
    >>> safe_float('?\\n')
    nan
    """
    if '?' in x:
        return np.nan
    else:
        return float(x)


def safe_nominal(value, pvalue):
    svalue = value.strip()
    if svalue in pvalue:
        return svalue
    elif svalue == '?':
        return svalue
    else:
        raise ValueError("%s value not in %s" % (str(svalue), str(pvalue)))


def safe_date(value, date_format, datetime_unit):
    date_str = value.strip().strip("'").strip('"')
    if date_str == '?':
        return np.datetime64('NaT', datetime_unit)
    else:
        dt = datetime.datetime.strptime(date_str, date_format)
        return np.datetime64(dt).astype("datetime64[%s]" % datetime_unit)


class MetaData(object):
    """Small container to keep useful informations on a ARFF dataset.

    Knows about attributes names and types.

    Examples
    --------
    ::

        data, meta = loadarff('iris.arff')
        # This will print the attributes names of the iris.arff dataset
        for i in meta:
            print i
        # This works too
        meta.names()
        # Getting attribute type
        types = meta.types()

    Notes
    -----
    Also maintains the list of attributes in order, i.e. doing for i in
    meta, where meta is an instance of MetaData, will return the
    different attribute names in the order they were defined.
    """
    def __init__(self, rel, attr):
        self.name = rel
        # We need the dictionary to be ordered
        # XXX: may be better to implement an ordered dictionary
        self._attributes = {}
        self._attrnames = []
        for name, value in attr:
            tp = parse_type(value)
            self._attrnames.append(name)
            if tp == 'nominal':
                self._attributes[name] = (tp, get_nom_val(value))
            elif tp == 'date':
                self._attributes[name] = (tp, get_date_format(value)[0])
            else:
                self._attributes[name] = (tp, None)

    def __repr__(self):
        msg = ""
        msg += "Dataset: %s\n" % self.name
        for i in self._attrnames:
            msg += "\t%s's type is %s" % (i, self._attributes[i][0])
            if self._attributes[i][1]:
                msg += ", range is %s" % str(self._attributes[i][1])
            msg += '\n'
        return msg

    def __iter__(self):
        return iter(self._attrnames)

    def __getitem__(self, key):
        return self._attributes[key]

    def names(self):
        """Return the list of attribute names."""
        return self._attrnames

    def types(self):
        """Return the list of attribute types."""
        attr_types = [self._attributes[name][0] for name in self._attrnames]
        return attr_types


def loadarff(f):
    """
    Read an arff file.

    The data is returned as a record array, which can be accessed much like
    a dictionary of numpy arrays.  For example, if one of the attributes is
    called 'pressure', then its first 10 data points can be accessed from the
    ``data`` record array like so: ``data['pressure'][0:10]``


    Parameters
    ----------
    f : file-like or str
       File-like object to read from, or filename to open.

    Returns
    -------
    data : record array
       The data of the arff file, accessible by attribute names.
    meta : `MetaData`
       Contains information about the arff file such as name and
       type of attributes, the relation (name of the dataset), etc...

    Raises
    ------
    ParseArffError
        This is raised if the given file is not ARFF-formatted.
    NotImplementedError
        The ARFF file has an attribute which is not supported yet.

    Notes
    -----

    This function should be able to read most arff files. Not
    implemented functionality include:

    * date type attributes
    * string type attributes

    It can read files with numeric and nominal attributes.  It cannot read
    files with sparse data ({} in the file).  However, this function can
    read files with missing data (? in the file), representing the data
    points as NaNs.

    Examples
    --------
    >>> from scipy.io import arff
    >>> from cStringIO import StringIO
    >>> content = \"\"\"
    ... @relation foo
    ... @attribute width  numeric
    ... @attribute height numeric
    ... @attribute color  {red,green,blue,yellow,black}
    ... @data
    ... 5.0,3.25,blue
    ... 4.5,3.75,green
    ... 3.0,4.00,red
    ... \"\"\"
    >>> f = StringIO(content)
    >>> data, meta = arff.loadarff(f)
    >>> data
    array([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],
          dtype=[('width', '<f8'), ('height', '<f8'), ('color', '|S6')])
    >>> meta
    Dataset: foo
    \twidth's type is numeric
    \theight's type is numeric
    \tcolor's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')

    """
    if hasattr(f, 'read'):
        ofile = f
    else:
        ofile = open(f, 'rt')
    try:
        return _loadarff(ofile)
    finally:
        if ofile is not f:  # only close what we opened
            ofile.close()


def _loadarff(ofile):
    # Parse the header file
    try:
        rel, attr = read_header(ofile)
    except ValueError as e:
        msg = "Error while parsing header, error was: " + str(e)
        raise ParseArffError(msg)

    # Check whether we have a string attribute (not supported yet)
    hasstr = False
    for name, value in attr:
        type = parse_type(value)
        if type == 'string':
            hasstr = True

    meta = MetaData(rel, attr)

    # XXX The following code is not great
    # Build the type descriptor descr and the list of convertors to convert
    # each attribute to the suitable type (which should match the one in
    # descr).

    # This can be used once we want to support integer as integer values and
    # not as numeric anymore (using masked arrays ?).
    acls2dtype = {'real': float, 'integer': float, 'numeric': float}
    acls2conv = {'real': safe_float,
                 'integer': safe_float,
                 'numeric': safe_float}
    descr = []
    convertors = []
    if not hasstr:
        for name, value in attr:
            type = parse_type(value)
            if type == 'date':
                date_format, datetime_unit = get_date_format(value)
                descr.append((name, "datetime64[%s]" % datetime_unit))
                convertors.append(partial(safe_date, date_format=date_format,
                                          datetime_unit=datetime_unit))
            elif type == 'nominal':
                n = maxnomlen(value)
                descr.append((name, 'S%d' % n))
                pvalue = get_nom_val(value)
                convertors.append(partial(safe_nominal, pvalue=pvalue))
            else:
                descr.append((name, acls2dtype[type]))
                convertors.append(safe_float)
                #dc.append(acls2conv[type])
                #sdescr.append((name, acls2sdtype[type]))
    else:
        # How to support string efficiently ? Ideally, we should know the max
        # size of the string before allocating the numpy array.
        raise NotImplementedError("String attributes not supported yet, sorry")

    ni = len(convertors)

    def generator(row_iter, delim=','):
        # TODO: this is where we are spending times (~80%). I think things
        # could be made more efficiently:
        #   - We could for example "compile" the function, because some values
        #   do not change here.
        #   - The function to convert a line to dtyped values could also be
        #   generated on the fly from a string and be executed instead of
        #   looping.
        #   - The regex are overkill: for comments, checking that a line starts
        #   by % should be enough and faster, and for empty lines, same thing
        #   --> this does not seem to change anything.

        # 'compiling' the range since it does not change
        # Note, I have already tried zipping the converters and
        # row elements and got slightly worse performance.
        elems = list(range(ni))

        for raw in row_iter:
            # We do not abstract skipping comments and empty lines for
            # performance reasons.
            if r_comment.match(raw) or r_empty.match(raw):
                continue
            row = raw.split(delim)
            yield tuple([convertors[i](row[i]) for i in elems])

    a = generator(ofile)
    # No error should happen here: it is a bug otherwise
    data = np.fromiter(a, descr)
    return data, meta


#-----
# Misc
#-----
def basic_stats(data):
    nbfac = data.size * 1. / (data.size - 1)
    return np.nanmin(data), np.nanmax(data), np.mean(data), np.std(data) * nbfac


def print_attribute(name, tp, data):
    type = tp[0]
    if type == 'numeric' or type == 'real' or type == 'integer':
        min, max, mean, std = basic_stats(data)
        print("%s,%s,%f,%f,%f,%f" % (name, type, min, max, mean, std))
    else:
        msg = name + ",{"
        for i in range(len(tp[1])-1):
            msg += tp[1][i] + ","
        msg += tp[1][-1]
        msg += "}"
        print(msg)


def test_weka(filename):
    data, meta = loadarff(filename)
    print(len(data.dtype))
    print(data.size)
    for i in meta:
        print_attribute(i, meta[i], data[i])

# make sure nose does not find this as a test
test_weka.__test__ = False


if __name__ == '__main__':
    import sys
    filename = sys.argv[1]
    test_weka(filename)