File: mmio.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (794 lines) | stat: -rw-r--r-- 26,899 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
"""
  Matrix Market I/O in Python.
  See http://math.nist.gov/MatrixMarket/formats.html
  for information about the Matrix Market format.
"""
#
# Author: Pearu Peterson <pearu@cens.ioc.ee>
# Created: October, 2004
#
# References:
#  http://math.nist.gov/MatrixMarket/
#
from __future__ import division, print_function, absolute_import

import os
import sys

from numpy import (asarray, real, imag, conj, zeros, ndarray, concatenate,
                   ones, ascontiguousarray, vstack, savetxt, fromfile,
                   fromstring)
from numpy.compat import asbytes, asstr

from scipy._lib.six import string_types
from scipy.sparse import coo_matrix, isspmatrix

__all__ = ['mminfo', 'mmread', 'mmwrite', 'MMFile']


# -----------------------------------------------------------------------------
def mminfo(source):
    """
    Return size and storage parameters from Matrix Market file-like 'source'.

    Parameters
    ----------
    source : str or file-like
        Matrix Market filename (extension .mtx) or open file-like object

    Returns
    -------
    rows : int
        Number of matrix rows.
    cols : int
        Number of matrix columns.
    entries : int
        Number of non-zero entries of a sparse matrix
        or rows*cols for a dense matrix.
    format : str
        Either 'coordinate' or 'array'.
    field : str
        Either 'real', 'complex', 'pattern', or 'integer'.
    symmetry : str
        Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
    """
    return MMFile.info(source)

# -----------------------------------------------------------------------------


def mmread(source):
    """
    Reads the contents of a Matrix Market file-like 'source' into a matrix.

    Parameters
    ----------
    source : str or file-like
        Matrix Market filename (extensions .mtx, .mtz.gz)
        or open file-like object.

    Returns
    -------
    a : ndarray or coo_matrix
        Dense or sparse matrix depending on the matrix format in the
        Matrix Market file.
    """
    return MMFile().read(source)

# -----------------------------------------------------------------------------


def mmwrite(target, a, comment='', field=None, precision=None, symmetry=None):
    """
    Writes the sparse or dense array `a` to Matrix Market file-like `target`.

    Parameters
    ----------
    target : str or file-like
        Matrix Market filename (extension .mtx) or open file-like object.
    a : array like
        Sparse or dense 2D array.
    comment : str, optional
        Comments to be prepended to the Matrix Market file.
    field : None or str, optional
        Either 'real', 'complex', 'pattern', or 'integer'.
    precision : None or int, optional
        Number of digits to display for real or complex values.
    symmetry : None or str, optional
        Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
        If symmetry is None the symmetry type of 'a' is determined by its
        values.
    """
    MMFile().write(target, a, comment, field, precision, symmetry)


###############################################################################
class MMFile (object):
    __slots__ = ('_rows',
                 '_cols',
                 '_entries',
                 '_format',
                 '_field',
                 '_symmetry')

    @property
    def rows(self):
        return self._rows

    @property
    def cols(self):
        return self._cols

    @property
    def entries(self):
        return self._entries

    @property
    def format(self):
        return self._format

    @property
    def field(self):
        return self._field

    @property
    def symmetry(self):
        return self._symmetry

    @property
    def has_symmetry(self):
        return self._symmetry in (self.SYMMETRY_SYMMETRIC,
                                  self.SYMMETRY_SKEW_SYMMETRIC,
                                  self.SYMMETRY_HERMITIAN)

    # format values
    FORMAT_COORDINATE = 'coordinate'
    FORMAT_ARRAY = 'array'
    FORMAT_VALUES = (FORMAT_COORDINATE, FORMAT_ARRAY)

    @classmethod
    def _validate_format(self, format):
        if format not in self.FORMAT_VALUES:
            raise ValueError('unknown format type %s, must be one of %s' %
                             (format, self.FORMAT_VALUES))

    # field values
    FIELD_INTEGER = 'integer'
    FIELD_REAL = 'real'
    FIELD_COMPLEX = 'complex'
    FIELD_PATTERN = 'pattern'
    FIELD_VALUES = (FIELD_INTEGER, FIELD_REAL, FIELD_COMPLEX, FIELD_PATTERN)

    @classmethod
    def _validate_field(self, field):
        if field not in self.FIELD_VALUES:
            raise ValueError('unknown field type %s, must be one of %s' %
                             (field, self.FIELD_VALUES))

    # symmetry values
    SYMMETRY_GENERAL = 'general'
    SYMMETRY_SYMMETRIC = 'symmetric'
    SYMMETRY_SKEW_SYMMETRIC = 'skew-symmetric'
    SYMMETRY_HERMITIAN = 'hermitian'
    SYMMETRY_VALUES = (SYMMETRY_GENERAL, SYMMETRY_SYMMETRIC,
                       SYMMETRY_SKEW_SYMMETRIC, SYMMETRY_HERMITIAN)

    @classmethod
    def _validate_symmetry(self, symmetry):
        if symmetry not in self.SYMMETRY_VALUES:
            raise ValueError('unknown symmetry type %s, must be one of %s' %
                             (symmetry, self.SYMMETRY_VALUES))

    DTYPES_BY_FIELD = {FIELD_INTEGER: 'i',
                       FIELD_REAL: 'd',
                       FIELD_COMPLEX: 'D',
                       FIELD_PATTERN: 'd'}

    # -------------------------------------------------------------------------
    @staticmethod
    def reader():
        pass

    # -------------------------------------------------------------------------
    @staticmethod
    def writer():
        pass

    # -------------------------------------------------------------------------
    @classmethod
    def info(self, source):
        """
        Return size, storage parameters from Matrix Market file-like 'source'.

        Parameters
        ----------
        source : str or file-like
            Matrix Market filename (extension .mtx) or open file-like object

        Returns
        -------
        rows : int
            Number of matrix rows.
        cols : int
            Number of matrix columns.
        entries : int
            Number of non-zero entries of a sparse matrix
            or rows*cols for a dense matrix.
        format : str
            Either 'coordinate' or 'array'.
        field : str
            Either 'real', 'complex', 'pattern', or 'integer'.
        symmetry : str
            Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
        """

        stream, close_it = self._open(source)

        try:

            # read and validate header line
            line = stream.readline()
            mmid, matrix, format, field, symmetry = \
                [asstr(part.strip()) for part in line.split()]
            if not mmid.startswith('%%MatrixMarket'):
                raise ValueError('source is not in Matrix Market format')
            if not matrix.lower() == 'matrix':
                raise ValueError("Problem reading file header: " + line)

            # http://math.nist.gov/MatrixMarket/formats.html
            if format.lower() == 'array':
                format = self.FORMAT_ARRAY
            elif format.lower() == 'coordinate':
                format = self.FORMAT_COORDINATE

            # skip comments
            while line.startswith(b'%'):
                line = stream.readline()

            line = line.split()
            if format == self.FORMAT_ARRAY:
                if not len(line) == 2:
                    raise ValueError("Header line not of length 2: " + line)
                rows, cols = map(int, line)
                entries = rows * cols
            else:
                if not len(line) == 3:
                    raise ValueError("Header line not of length 3: " + line)
                rows, cols, entries = map(int, line)

            return (rows, cols, entries, format, field.lower(),
                    symmetry.lower())

        finally:
            if close_it:
                stream.close()

    # -------------------------------------------------------------------------
    @staticmethod
    def _open(filespec, mode='rb'):
        """ Return an open file stream for reading based on source.

        If source is a file name, open it (after trying to find it with mtx and
        gzipped mtx extensions).  Otherwise, just return source.

        Parameters
        ----------
        filespec : str or file-like
            String giving file name or file-like object
        mode : str, optional
            Mode with which to open file, if `filespec` is a file name.

        Returns
        -------
        fobj : file-like
            Open file-like object.
        close_it : bool
            True if the calling function should close this file when done,
            false otherwise.
        """
        close_it = False
        if isinstance(filespec, string_types):
            close_it = True

            # open for reading
            if mode[0] == 'r':

                # determine filename plus extension
                if not os.path.isfile(filespec):
                    if os.path.isfile(filespec+'.mtx'):
                        filespec = filespec + '.mtx'
                    elif os.path.isfile(filespec+'.mtx.gz'):
                        filespec = filespec + '.mtx.gz'
                    elif os.path.isfile(filespec+'.mtx.bz2'):
                        filespec = filespec + '.mtx.bz2'
                # open filename
                if filespec.endswith('.gz'):
                    import gzip
                    stream = gzip.open(filespec, mode)
                elif filespec.endswith('.bz2'):
                    import bz2
                    stream = bz2.BZ2File(filespec, 'rb')
                else:
                    stream = open(filespec, mode)

            # open for writing
            else:
                if filespec[-4:] != '.mtx':
                    filespec = filespec + '.mtx'
                stream = open(filespec, mode)
        else:
            stream = filespec

        return stream, close_it

    # -------------------------------------------------------------------------
    @staticmethod
    def _get_symmetry(a):
        m, n = a.shape
        if m != n:
            return MMFile.SYMMETRY_GENERAL
        issymm = True
        isskew = True
        isherm = a.dtype.char in 'FD'

        # sparse input
        if isspmatrix(a):
            # check if number of nonzero entries of lower and upper triangle
            # matrix are equal
            a = a.tocoo()
            (row, col) = a.nonzero()
            if (row < col).sum() != (row > col).sum():
                return MMFile.SYMMETRY_GENERAL

            # define iterator over symmetric pair entries
            a = a.todok()

            def symm_iterator():
                for ((i, j), aij) in a.items():
                    if i > j:
                        aji = a[j, i]
                        yield (aij, aji)

        # non-sparse input
        else:
            # define iterator over symmetric pair entries
            def symm_iterator():
                for j in range(n):
                    for i in range(j+1, n):
                        aij, aji = a[i][j], a[j][i]
                        yield (aij, aji)

        # check for symmetry
        for (aij, aji) in symm_iterator():
            if issymm and aij != aji:
                issymm = False
            if isskew and aij != -aji:
                isskew = False
            if isherm and aij != conj(aji):
                isherm = False
            if not (issymm or isskew or isherm):
                break

        # return symmetry value
        if issymm:
            return MMFile.SYMMETRY_SYMMETRIC
        if isskew:
            return MMFile.SYMMETRY_SKEW_SYMMETRIC
        if isherm:
            return MMFile.SYMMETRY_HERMITIAN
        return MMFile.SYMMETRY_GENERAL

    # -------------------------------------------------------------------------
    @staticmethod
    def _field_template(field, precision):
        return {MMFile.FIELD_REAL: '%%.%ie\n' % precision,
                MMFile.FIELD_INTEGER: '%i\n',
                MMFile.FIELD_COMPLEX: '%%.%ie %%.%ie\n' %
                    (precision, precision)
                }.get(field, None)

    # -------------------------------------------------------------------------
    def __init__(self, **kwargs):
        self._init_attrs(**kwargs)

    # -------------------------------------------------------------------------
    def read(self, source):
        """
        Reads the contents of a Matrix Market file-like 'source' into a matrix.

        Parameters
        ----------
        source : str or file-like
            Matrix Market filename (extensions .mtx, .mtz.gz)
            or open file object.

        Returns
        -------
        a : ndarray or coo_matrix
            Dense or sparse matrix depending on the matrix format in the
            Matrix Market file.
        """
        stream, close_it = self._open(source)

        try:
            self._parse_header(stream)
            return self._parse_body(stream)

        finally:
            if close_it:
                stream.close()

    # -------------------------------------------------------------------------
    def write(self, target, a, comment='', field=None, precision=None,
              symmetry=None):
        """
        Writes sparse or dense array `a` to Matrix Market file-like `target`.

        Parameters
        ----------
        target : str or file-like
            Matrix Market filename (extension .mtx) or open file-like object.
        a : array like
            Sparse or dense 2D array.
        comment : str, optional
            Comments to be prepended to the Matrix Market file.
        field : None or str, optional
            Either 'real', 'complex', 'pattern', or 'integer'.
        precision : None or int, optional
            Number of digits to display for real or complex values.
        symmetry : None or str, optional
            Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
            If symmetry is None the symmetry type of 'a' is determined by its
            values.
        """

        stream, close_it = self._open(target, 'wb')

        try:
            self._write(stream, a, comment, field, precision, symmetry)

        finally:
            if close_it:
                stream.close()
            else:
                stream.flush()

    # -------------------------------------------------------------------------
    def _init_attrs(self, **kwargs):
        """
        Initialize each attributes with the corresponding keyword arg value
        or a default of None
        """

        attrs = self.__class__.__slots__
        public_attrs = [attr[1:] for attr in attrs]
        invalid_keys = set(kwargs.keys()) - set(public_attrs)

        if invalid_keys:
            raise ValueError('''found %s invalid keyword arguments, please only
                                use %s''' % (tuple(invalid_keys),
                                             public_attrs))

        for attr in attrs:
            setattr(self, attr, kwargs.get(attr[1:], None))

    # -------------------------------------------------------------------------
    def _parse_header(self, stream):
        rows, cols, entries, format, field, symmetry = \
            self.__class__.info(stream)
        self._init_attrs(rows=rows, cols=cols, entries=entries, format=format,
                         field=field, symmetry=symmetry)

    # -------------------------------------------------------------------------
    def _parse_body(self, stream):
        rows, cols, entries, format, field, symm = (self.rows, self.cols,
                                                    self.entries, self.format,
                                                    self.field, self.symmetry)

        try:
            from scipy.sparse import coo_matrix
        except ImportError:
            coo_matrix = None

        dtype = self.DTYPES_BY_FIELD.get(field, None)

        has_symmetry = self.has_symmetry
        is_complex = field == self.FIELD_COMPLEX
        is_skew = symm == self.SYMMETRY_SKEW_SYMMETRIC
        is_herm = symm == self.SYMMETRY_HERMITIAN
        is_pattern = field == self.FIELD_PATTERN

        if format == self.FORMAT_ARRAY:
            a = zeros((rows, cols), dtype=dtype)
            line = 1
            i, j = 0, 0
            while line:
                line = stream.readline()
                if not line or line.startswith(b'%'):
                    continue
                if is_complex:
                    aij = complex(*map(float, line.split()))
                else:
                    aij = float(line)
                a[i, j] = aij
                if has_symmetry and i != j:
                    if is_skew:
                        a[j, i] = -aij
                    elif is_herm:
                        a[j, i] = conj(aij)
                    else:
                        a[j, i] = aij
                if i < rows-1:
                    i = i + 1
                else:
                    j = j + 1
                    if not has_symmetry:
                        i = 0
                    else:
                        i = j
            if not (i in [0, j] and j == cols):
                raise ValueError("Parse error, did not read all lines.")

        elif format == self.FORMAT_COORDINATE and coo_matrix is None:
            # Read sparse matrix to dense when coo_matrix is not available.
            a = zeros((rows, cols), dtype=dtype)
            line = 1
            k = 0
            while line:
                line = stream.readline()
                if not line or line.startswith(b'%'):
                    continue
                l = line.split()
                i, j = map(int, l[:2])
                i, j = i-1, j-1
                if is_complex:
                    aij = complex(*map(float, l[2:]))
                else:
                    aij = float(l[2])
                a[i, j] = aij
                if has_symmetry and i != j:
                    if is_skew:
                        a[j, i] = -aij
                    elif is_herm:
                        a[j, i] = conj(aij)
                    else:
                        a[j, i] = aij
                k = k + 1
            if not k == entries:
                ValueError("Did not read all entries")

        elif format == self.FORMAT_COORDINATE:
            # Read sparse COOrdinate format

            if entries == 0:
                # empty matrix
                return coo_matrix((rows, cols), dtype=dtype)

            try:
                if not _is_fromfile_compatible(stream):
                    flat_data = fromstring(stream.read(), sep=' ')
                else:
                    # fromfile works for normal files
                    flat_data = fromfile(stream, sep=' ')
            except Exception:
                # fallback - fromfile fails for some file-like objects
                flat_data = fromstring(stream.read(), sep=' ')

                # TODO use iterator (e.g. xreadlines) to avoid reading
                # the whole file into memory

            if is_pattern:
                flat_data = flat_data.reshape(-1, 2)
                I = ascontiguousarray(flat_data[:, 0], dtype='intc')
                J = ascontiguousarray(flat_data[:, 1], dtype='intc')
                V = ones(len(I), dtype='int8')  # filler
            elif is_complex:
                flat_data = flat_data.reshape(-1, 4)
                I = ascontiguousarray(flat_data[:, 0], dtype='intc')
                J = ascontiguousarray(flat_data[:, 1], dtype='intc')
                V = ascontiguousarray(flat_data[:, 2], dtype='complex')
                V.imag = flat_data[:, 3]
            else:
                flat_data = flat_data.reshape(-1, 3)
                I = ascontiguousarray(flat_data[:, 0], dtype='intc')
                J = ascontiguousarray(flat_data[:, 1], dtype='intc')
                V = ascontiguousarray(flat_data[:, 2], dtype='float')

            I -= 1  # adjust indices (base 1 -> base 0)
            J -= 1

            if has_symmetry:
                mask = (I != J)       # off diagonal mask
                od_I = I[mask]
                od_J = J[mask]
                od_V = V[mask]

                I = concatenate((I, od_J))
                J = concatenate((J, od_I))

                if is_skew:
                    od_V *= -1
                elif is_herm:
                    od_V = od_V.conjugate()

                V = concatenate((V, od_V))

            a = coo_matrix((V, (I, J)), shape=(rows, cols), dtype=dtype)
        else:
            raise NotImplementedError(format)

        return a

    #  ------------------------------------------------------------------------
    def _write(self, stream, a, comment='', field=None, precision=None,
               symmetry=None):

        if isinstance(a, list) or isinstance(a, ndarray) or \
           isinstance(a, tuple) or hasattr(a, '__array__'):
            rep = self.FORMAT_ARRAY
            a = asarray(a)
            if len(a.shape) != 2:
                raise ValueError('Expected 2 dimensional array')
            rows, cols = a.shape

            if field is not None:

                if field == self.FIELD_INTEGER:
                    a = a.astype('i')
                elif field == self.FIELD_REAL:
                    if a.dtype.char not in 'fd':
                        a = a.astype('d')
                elif field == self.FIELD_COMPLEX:
                    if a.dtype.char not in 'FD':
                        a = a.astype('D')

        else:
            if not isspmatrix(a):
                raise ValueError('unknown matrix type: %s' % type(a))
            rep = 'coordinate'
            rows, cols = a.shape

        typecode = a.dtype.char

        if precision is None:
            if typecode in 'fF':
                precision = 8
            else:
                precision = 16

        if field is None:
            kind = a.dtype.kind
            if kind == 'i':
                field = 'integer'
            elif kind == 'f':
                field = 'real'
            elif kind == 'c':
                field = 'complex'
            else:
                raise TypeError('unexpected dtype kind ' + kind)

        if symmetry is None:
            symmetry = self._get_symmetry(a)

        # validate rep, field, and symmetry
        self.__class__._validate_format(rep)
        self.__class__._validate_field(field)
        self.__class__._validate_symmetry(symmetry)

        # write initial header line
        stream.write(asbytes('%%MatrixMarket matrix {0} {1} {2}\n'.format(rep,
            field, symmetry)))

        # write comments
        for line in comment.split('\n'):
            stream.write(asbytes('%%%s\n' % (line)))

        template = self._field_template(field, precision)

        # write dense format
        if rep == self.FORMAT_ARRAY:

            # write shape spec
            stream.write(asbytes('%i %i\n' % (rows, cols)))

            if field in (self.FIELD_INTEGER, self.FIELD_REAL):

                if symmetry == self.SYMMETRY_GENERAL:
                    for j in range(cols):
                        for i in range(rows):
                            stream.write(asbytes(template % a[i, j]))
                else:
                    for j in range(cols):
                        for i in range(j, rows):
                            stream.write(asbytes(template % a[i, j]))

            elif field == self.FIELD_COMPLEX:

                if symmetry == self.SYMMETRY_GENERAL:
                    for j in range(cols):
                        for i in range(rows):
                            aij = a[i, j]
                            stream.write(asbytes(template % (real(aij),
                                                             imag(aij))))
                else:
                    for j in range(cols):
                        for i in range(j, rows):
                            aij = a[i, j]
                            stream.write(asbytes(template % (real(aij),
                                                             imag(aij))))

            elif field == self.FIELD_PATTERN:
                raise ValueError('pattern type inconsisted with dense format')

            else:
                raise TypeError('Unknown field type %s' % field)

        # write sparse format
        else:

            coo = a.tocoo()  # convert to COOrdinate format

            # if symmetry format used, remove values above main diagonal
            if symmetry != self.SYMMETRY_GENERAL:
                lower_triangle_mask = coo.row >= coo.col
                coo = coo_matrix((coo.data[lower_triangle_mask],
                                 (coo.row[lower_triangle_mask],
                                  coo.col[lower_triangle_mask])),
                                 shape=coo.shape)

            # write shape spec
            stream.write(asbytes('%i %i %i\n' % (rows, cols, coo.nnz)))

            # make indices and data array
            if field == self.FIELD_PATTERN:
                IJV = vstack((coo.row, coo.col)).T
            elif field in [self.FIELD_INTEGER, self.FIELD_REAL]:
                IJV = vstack((coo.row, coo.col, coo.data)).T
            elif field == self.FIELD_COMPLEX:
                IJV = vstack((coo.row, coo.col, coo.data.real,
                              coo.data.imag)).T
            else:
                raise TypeError('Unknown field type %s' % field)
            IJV[:, :2] += 1  # change base 0 -> base 1

            # formats for row indices, col indices and data columns
            fmt = ('%i', '%i') + ('%%.%dg' % precision,) * (IJV.shape[1]-2)
            # save to file
            savetxt(stream, IJV, fmt=fmt)


def _is_fromfile_compatible(stream):
    """
    Check whether `stream` is compatible with numpy.fromfile.

    Passing a gzipped file object to ``fromfile/fromstring`` doesn't work with
    Python3.
    """
    if sys.version_info[0] < 3:
        return True

    bad_cls = []
    try:
        import gzip
        bad_cls.append(gzip.GzipFile)
    except ImportError:
        pass
    try:
        import bz2
        bad_cls.append(bz2.BZ2File)
    except ImportError:
        pass

    bad_cls = tuple(bad_cls)
    return not isinstance(stream, bad_cls)


# -----------------------------------------------------------------------------
if __name__ == '__main__':
    import time
    for filename in sys.argv[1:]:
        print('Reading', filename, '...', end=' ')
        sys.stdout.flush()
        t = time.time()
        mmread(filename)
        print('took %s seconds' % (time.time() - t))