1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
|
"""
Matrix Market I/O in Python.
See http://math.nist.gov/MatrixMarket/formats.html
for information about the Matrix Market format.
"""
#
# Author: Pearu Peterson <pearu@cens.ioc.ee>
# Created: October, 2004
#
# References:
# http://math.nist.gov/MatrixMarket/
#
from __future__ import division, print_function, absolute_import
import os
import sys
from numpy import (asarray, real, imag, conj, zeros, ndarray, concatenate,
ones, ascontiguousarray, vstack, savetxt, fromfile,
fromstring)
from numpy.compat import asbytes, asstr
from scipy._lib.six import string_types
from scipy.sparse import coo_matrix, isspmatrix
__all__ = ['mminfo', 'mmread', 'mmwrite', 'MMFile']
# -----------------------------------------------------------------------------
def mminfo(source):
"""
Return size and storage parameters from Matrix Market file-like 'source'.
Parameters
----------
source : str or file-like
Matrix Market filename (extension .mtx) or open file-like object
Returns
-------
rows : int
Number of matrix rows.
cols : int
Number of matrix columns.
entries : int
Number of non-zero entries of a sparse matrix
or rows*cols for a dense matrix.
format : str
Either 'coordinate' or 'array'.
field : str
Either 'real', 'complex', 'pattern', or 'integer'.
symmetry : str
Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
"""
return MMFile.info(source)
# -----------------------------------------------------------------------------
def mmread(source):
"""
Reads the contents of a Matrix Market file-like 'source' into a matrix.
Parameters
----------
source : str or file-like
Matrix Market filename (extensions .mtx, .mtz.gz)
or open file-like object.
Returns
-------
a : ndarray or coo_matrix
Dense or sparse matrix depending on the matrix format in the
Matrix Market file.
"""
return MMFile().read(source)
# -----------------------------------------------------------------------------
def mmwrite(target, a, comment='', field=None, precision=None, symmetry=None):
"""
Writes the sparse or dense array `a` to Matrix Market file-like `target`.
Parameters
----------
target : str or file-like
Matrix Market filename (extension .mtx) or open file-like object.
a : array like
Sparse or dense 2D array.
comment : str, optional
Comments to be prepended to the Matrix Market file.
field : None or str, optional
Either 'real', 'complex', 'pattern', or 'integer'.
precision : None or int, optional
Number of digits to display for real or complex values.
symmetry : None or str, optional
Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
If symmetry is None the symmetry type of 'a' is determined by its
values.
"""
MMFile().write(target, a, comment, field, precision, symmetry)
###############################################################################
class MMFile (object):
__slots__ = ('_rows',
'_cols',
'_entries',
'_format',
'_field',
'_symmetry')
@property
def rows(self):
return self._rows
@property
def cols(self):
return self._cols
@property
def entries(self):
return self._entries
@property
def format(self):
return self._format
@property
def field(self):
return self._field
@property
def symmetry(self):
return self._symmetry
@property
def has_symmetry(self):
return self._symmetry in (self.SYMMETRY_SYMMETRIC,
self.SYMMETRY_SKEW_SYMMETRIC,
self.SYMMETRY_HERMITIAN)
# format values
FORMAT_COORDINATE = 'coordinate'
FORMAT_ARRAY = 'array'
FORMAT_VALUES = (FORMAT_COORDINATE, FORMAT_ARRAY)
@classmethod
def _validate_format(self, format):
if format not in self.FORMAT_VALUES:
raise ValueError('unknown format type %s, must be one of %s' %
(format, self.FORMAT_VALUES))
# field values
FIELD_INTEGER = 'integer'
FIELD_REAL = 'real'
FIELD_COMPLEX = 'complex'
FIELD_PATTERN = 'pattern'
FIELD_VALUES = (FIELD_INTEGER, FIELD_REAL, FIELD_COMPLEX, FIELD_PATTERN)
@classmethod
def _validate_field(self, field):
if field not in self.FIELD_VALUES:
raise ValueError('unknown field type %s, must be one of %s' %
(field, self.FIELD_VALUES))
# symmetry values
SYMMETRY_GENERAL = 'general'
SYMMETRY_SYMMETRIC = 'symmetric'
SYMMETRY_SKEW_SYMMETRIC = 'skew-symmetric'
SYMMETRY_HERMITIAN = 'hermitian'
SYMMETRY_VALUES = (SYMMETRY_GENERAL, SYMMETRY_SYMMETRIC,
SYMMETRY_SKEW_SYMMETRIC, SYMMETRY_HERMITIAN)
@classmethod
def _validate_symmetry(self, symmetry):
if symmetry not in self.SYMMETRY_VALUES:
raise ValueError('unknown symmetry type %s, must be one of %s' %
(symmetry, self.SYMMETRY_VALUES))
DTYPES_BY_FIELD = {FIELD_INTEGER: 'i',
FIELD_REAL: 'd',
FIELD_COMPLEX: 'D',
FIELD_PATTERN: 'd'}
# -------------------------------------------------------------------------
@staticmethod
def reader():
pass
# -------------------------------------------------------------------------
@staticmethod
def writer():
pass
# -------------------------------------------------------------------------
@classmethod
def info(self, source):
"""
Return size, storage parameters from Matrix Market file-like 'source'.
Parameters
----------
source : str or file-like
Matrix Market filename (extension .mtx) or open file-like object
Returns
-------
rows : int
Number of matrix rows.
cols : int
Number of matrix columns.
entries : int
Number of non-zero entries of a sparse matrix
or rows*cols for a dense matrix.
format : str
Either 'coordinate' or 'array'.
field : str
Either 'real', 'complex', 'pattern', or 'integer'.
symmetry : str
Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
"""
stream, close_it = self._open(source)
try:
# read and validate header line
line = stream.readline()
mmid, matrix, format, field, symmetry = \
[asstr(part.strip()) for part in line.split()]
if not mmid.startswith('%%MatrixMarket'):
raise ValueError('source is not in Matrix Market format')
if not matrix.lower() == 'matrix':
raise ValueError("Problem reading file header: " + line)
# http://math.nist.gov/MatrixMarket/formats.html
if format.lower() == 'array':
format = self.FORMAT_ARRAY
elif format.lower() == 'coordinate':
format = self.FORMAT_COORDINATE
# skip comments
while line.startswith(b'%'):
line = stream.readline()
line = line.split()
if format == self.FORMAT_ARRAY:
if not len(line) == 2:
raise ValueError("Header line not of length 2: " + line)
rows, cols = map(int, line)
entries = rows * cols
else:
if not len(line) == 3:
raise ValueError("Header line not of length 3: " + line)
rows, cols, entries = map(int, line)
return (rows, cols, entries, format, field.lower(),
symmetry.lower())
finally:
if close_it:
stream.close()
# -------------------------------------------------------------------------
@staticmethod
def _open(filespec, mode='rb'):
""" Return an open file stream for reading based on source.
If source is a file name, open it (after trying to find it with mtx and
gzipped mtx extensions). Otherwise, just return source.
Parameters
----------
filespec : str or file-like
String giving file name or file-like object
mode : str, optional
Mode with which to open file, if `filespec` is a file name.
Returns
-------
fobj : file-like
Open file-like object.
close_it : bool
True if the calling function should close this file when done,
false otherwise.
"""
close_it = False
if isinstance(filespec, string_types):
close_it = True
# open for reading
if mode[0] == 'r':
# determine filename plus extension
if not os.path.isfile(filespec):
if os.path.isfile(filespec+'.mtx'):
filespec = filespec + '.mtx'
elif os.path.isfile(filespec+'.mtx.gz'):
filespec = filespec + '.mtx.gz'
elif os.path.isfile(filespec+'.mtx.bz2'):
filespec = filespec + '.mtx.bz2'
# open filename
if filespec.endswith('.gz'):
import gzip
stream = gzip.open(filespec, mode)
elif filespec.endswith('.bz2'):
import bz2
stream = bz2.BZ2File(filespec, 'rb')
else:
stream = open(filespec, mode)
# open for writing
else:
if filespec[-4:] != '.mtx':
filespec = filespec + '.mtx'
stream = open(filespec, mode)
else:
stream = filespec
return stream, close_it
# -------------------------------------------------------------------------
@staticmethod
def _get_symmetry(a):
m, n = a.shape
if m != n:
return MMFile.SYMMETRY_GENERAL
issymm = True
isskew = True
isherm = a.dtype.char in 'FD'
# sparse input
if isspmatrix(a):
# check if number of nonzero entries of lower and upper triangle
# matrix are equal
a = a.tocoo()
(row, col) = a.nonzero()
if (row < col).sum() != (row > col).sum():
return MMFile.SYMMETRY_GENERAL
# define iterator over symmetric pair entries
a = a.todok()
def symm_iterator():
for ((i, j), aij) in a.items():
if i > j:
aji = a[j, i]
yield (aij, aji)
# non-sparse input
else:
# define iterator over symmetric pair entries
def symm_iterator():
for j in range(n):
for i in range(j+1, n):
aij, aji = a[i][j], a[j][i]
yield (aij, aji)
# check for symmetry
for (aij, aji) in symm_iterator():
if issymm and aij != aji:
issymm = False
if isskew and aij != -aji:
isskew = False
if isherm and aij != conj(aji):
isherm = False
if not (issymm or isskew or isherm):
break
# return symmetry value
if issymm:
return MMFile.SYMMETRY_SYMMETRIC
if isskew:
return MMFile.SYMMETRY_SKEW_SYMMETRIC
if isherm:
return MMFile.SYMMETRY_HERMITIAN
return MMFile.SYMMETRY_GENERAL
# -------------------------------------------------------------------------
@staticmethod
def _field_template(field, precision):
return {MMFile.FIELD_REAL: '%%.%ie\n' % precision,
MMFile.FIELD_INTEGER: '%i\n',
MMFile.FIELD_COMPLEX: '%%.%ie %%.%ie\n' %
(precision, precision)
}.get(field, None)
# -------------------------------------------------------------------------
def __init__(self, **kwargs):
self._init_attrs(**kwargs)
# -------------------------------------------------------------------------
def read(self, source):
"""
Reads the contents of a Matrix Market file-like 'source' into a matrix.
Parameters
----------
source : str or file-like
Matrix Market filename (extensions .mtx, .mtz.gz)
or open file object.
Returns
-------
a : ndarray or coo_matrix
Dense or sparse matrix depending on the matrix format in the
Matrix Market file.
"""
stream, close_it = self._open(source)
try:
self._parse_header(stream)
return self._parse_body(stream)
finally:
if close_it:
stream.close()
# -------------------------------------------------------------------------
def write(self, target, a, comment='', field=None, precision=None,
symmetry=None):
"""
Writes sparse or dense array `a` to Matrix Market file-like `target`.
Parameters
----------
target : str or file-like
Matrix Market filename (extension .mtx) or open file-like object.
a : array like
Sparse or dense 2D array.
comment : str, optional
Comments to be prepended to the Matrix Market file.
field : None or str, optional
Either 'real', 'complex', 'pattern', or 'integer'.
precision : None or int, optional
Number of digits to display for real or complex values.
symmetry : None or str, optional
Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
If symmetry is None the symmetry type of 'a' is determined by its
values.
"""
stream, close_it = self._open(target, 'wb')
try:
self._write(stream, a, comment, field, precision, symmetry)
finally:
if close_it:
stream.close()
else:
stream.flush()
# -------------------------------------------------------------------------
def _init_attrs(self, **kwargs):
"""
Initialize each attributes with the corresponding keyword arg value
or a default of None
"""
attrs = self.__class__.__slots__
public_attrs = [attr[1:] for attr in attrs]
invalid_keys = set(kwargs.keys()) - set(public_attrs)
if invalid_keys:
raise ValueError('''found %s invalid keyword arguments, please only
use %s''' % (tuple(invalid_keys),
public_attrs))
for attr in attrs:
setattr(self, attr, kwargs.get(attr[1:], None))
# -------------------------------------------------------------------------
def _parse_header(self, stream):
rows, cols, entries, format, field, symmetry = \
self.__class__.info(stream)
self._init_attrs(rows=rows, cols=cols, entries=entries, format=format,
field=field, symmetry=symmetry)
# -------------------------------------------------------------------------
def _parse_body(self, stream):
rows, cols, entries, format, field, symm = (self.rows, self.cols,
self.entries, self.format,
self.field, self.symmetry)
try:
from scipy.sparse import coo_matrix
except ImportError:
coo_matrix = None
dtype = self.DTYPES_BY_FIELD.get(field, None)
has_symmetry = self.has_symmetry
is_complex = field == self.FIELD_COMPLEX
is_skew = symm == self.SYMMETRY_SKEW_SYMMETRIC
is_herm = symm == self.SYMMETRY_HERMITIAN
is_pattern = field == self.FIELD_PATTERN
if format == self.FORMAT_ARRAY:
a = zeros((rows, cols), dtype=dtype)
line = 1
i, j = 0, 0
while line:
line = stream.readline()
if not line or line.startswith(b'%'):
continue
if is_complex:
aij = complex(*map(float, line.split()))
else:
aij = float(line)
a[i, j] = aij
if has_symmetry and i != j:
if is_skew:
a[j, i] = -aij
elif is_herm:
a[j, i] = conj(aij)
else:
a[j, i] = aij
if i < rows-1:
i = i + 1
else:
j = j + 1
if not has_symmetry:
i = 0
else:
i = j
if not (i in [0, j] and j == cols):
raise ValueError("Parse error, did not read all lines.")
elif format == self.FORMAT_COORDINATE and coo_matrix is None:
# Read sparse matrix to dense when coo_matrix is not available.
a = zeros((rows, cols), dtype=dtype)
line = 1
k = 0
while line:
line = stream.readline()
if not line or line.startswith(b'%'):
continue
l = line.split()
i, j = map(int, l[:2])
i, j = i-1, j-1
if is_complex:
aij = complex(*map(float, l[2:]))
else:
aij = float(l[2])
a[i, j] = aij
if has_symmetry and i != j:
if is_skew:
a[j, i] = -aij
elif is_herm:
a[j, i] = conj(aij)
else:
a[j, i] = aij
k = k + 1
if not k == entries:
ValueError("Did not read all entries")
elif format == self.FORMAT_COORDINATE:
# Read sparse COOrdinate format
if entries == 0:
# empty matrix
return coo_matrix((rows, cols), dtype=dtype)
try:
if not _is_fromfile_compatible(stream):
flat_data = fromstring(stream.read(), sep=' ')
else:
# fromfile works for normal files
flat_data = fromfile(stream, sep=' ')
except Exception:
# fallback - fromfile fails for some file-like objects
flat_data = fromstring(stream.read(), sep=' ')
# TODO use iterator (e.g. xreadlines) to avoid reading
# the whole file into memory
if is_pattern:
flat_data = flat_data.reshape(-1, 2)
I = ascontiguousarray(flat_data[:, 0], dtype='intc')
J = ascontiguousarray(flat_data[:, 1], dtype='intc')
V = ones(len(I), dtype='int8') # filler
elif is_complex:
flat_data = flat_data.reshape(-1, 4)
I = ascontiguousarray(flat_data[:, 0], dtype='intc')
J = ascontiguousarray(flat_data[:, 1], dtype='intc')
V = ascontiguousarray(flat_data[:, 2], dtype='complex')
V.imag = flat_data[:, 3]
else:
flat_data = flat_data.reshape(-1, 3)
I = ascontiguousarray(flat_data[:, 0], dtype='intc')
J = ascontiguousarray(flat_data[:, 1], dtype='intc')
V = ascontiguousarray(flat_data[:, 2], dtype='float')
I -= 1 # adjust indices (base 1 -> base 0)
J -= 1
if has_symmetry:
mask = (I != J) # off diagonal mask
od_I = I[mask]
od_J = J[mask]
od_V = V[mask]
I = concatenate((I, od_J))
J = concatenate((J, od_I))
if is_skew:
od_V *= -1
elif is_herm:
od_V = od_V.conjugate()
V = concatenate((V, od_V))
a = coo_matrix((V, (I, J)), shape=(rows, cols), dtype=dtype)
else:
raise NotImplementedError(format)
return a
# ------------------------------------------------------------------------
def _write(self, stream, a, comment='', field=None, precision=None,
symmetry=None):
if isinstance(a, list) or isinstance(a, ndarray) or \
isinstance(a, tuple) or hasattr(a, '__array__'):
rep = self.FORMAT_ARRAY
a = asarray(a)
if len(a.shape) != 2:
raise ValueError('Expected 2 dimensional array')
rows, cols = a.shape
if field is not None:
if field == self.FIELD_INTEGER:
a = a.astype('i')
elif field == self.FIELD_REAL:
if a.dtype.char not in 'fd':
a = a.astype('d')
elif field == self.FIELD_COMPLEX:
if a.dtype.char not in 'FD':
a = a.astype('D')
else:
if not isspmatrix(a):
raise ValueError('unknown matrix type: %s' % type(a))
rep = 'coordinate'
rows, cols = a.shape
typecode = a.dtype.char
if precision is None:
if typecode in 'fF':
precision = 8
else:
precision = 16
if field is None:
kind = a.dtype.kind
if kind == 'i':
field = 'integer'
elif kind == 'f':
field = 'real'
elif kind == 'c':
field = 'complex'
else:
raise TypeError('unexpected dtype kind ' + kind)
if symmetry is None:
symmetry = self._get_symmetry(a)
# validate rep, field, and symmetry
self.__class__._validate_format(rep)
self.__class__._validate_field(field)
self.__class__._validate_symmetry(symmetry)
# write initial header line
stream.write(asbytes('%%MatrixMarket matrix {0} {1} {2}\n'.format(rep,
field, symmetry)))
# write comments
for line in comment.split('\n'):
stream.write(asbytes('%%%s\n' % (line)))
template = self._field_template(field, precision)
# write dense format
if rep == self.FORMAT_ARRAY:
# write shape spec
stream.write(asbytes('%i %i\n' % (rows, cols)))
if field in (self.FIELD_INTEGER, self.FIELD_REAL):
if symmetry == self.SYMMETRY_GENERAL:
for j in range(cols):
for i in range(rows):
stream.write(asbytes(template % a[i, j]))
else:
for j in range(cols):
for i in range(j, rows):
stream.write(asbytes(template % a[i, j]))
elif field == self.FIELD_COMPLEX:
if symmetry == self.SYMMETRY_GENERAL:
for j in range(cols):
for i in range(rows):
aij = a[i, j]
stream.write(asbytes(template % (real(aij),
imag(aij))))
else:
for j in range(cols):
for i in range(j, rows):
aij = a[i, j]
stream.write(asbytes(template % (real(aij),
imag(aij))))
elif field == self.FIELD_PATTERN:
raise ValueError('pattern type inconsisted with dense format')
else:
raise TypeError('Unknown field type %s' % field)
# write sparse format
else:
coo = a.tocoo() # convert to COOrdinate format
# if symmetry format used, remove values above main diagonal
if symmetry != self.SYMMETRY_GENERAL:
lower_triangle_mask = coo.row >= coo.col
coo = coo_matrix((coo.data[lower_triangle_mask],
(coo.row[lower_triangle_mask],
coo.col[lower_triangle_mask])),
shape=coo.shape)
# write shape spec
stream.write(asbytes('%i %i %i\n' % (rows, cols, coo.nnz)))
# make indices and data array
if field == self.FIELD_PATTERN:
IJV = vstack((coo.row, coo.col)).T
elif field in [self.FIELD_INTEGER, self.FIELD_REAL]:
IJV = vstack((coo.row, coo.col, coo.data)).T
elif field == self.FIELD_COMPLEX:
IJV = vstack((coo.row, coo.col, coo.data.real,
coo.data.imag)).T
else:
raise TypeError('Unknown field type %s' % field)
IJV[:, :2] += 1 # change base 0 -> base 1
# formats for row indices, col indices and data columns
fmt = ('%i', '%i') + ('%%.%dg' % precision,) * (IJV.shape[1]-2)
# save to file
savetxt(stream, IJV, fmt=fmt)
def _is_fromfile_compatible(stream):
"""
Check whether `stream` is compatible with numpy.fromfile.
Passing a gzipped file object to ``fromfile/fromstring`` doesn't work with
Python3.
"""
if sys.version_info[0] < 3:
return True
bad_cls = []
try:
import gzip
bad_cls.append(gzip.GzipFile)
except ImportError:
pass
try:
import bz2
bad_cls.append(bz2.BZ2File)
except ImportError:
pass
bad_cls = tuple(bad_cls)
return not isinstance(stream, bad_cls)
# -----------------------------------------------------------------------------
if __name__ == '__main__':
import time
for filename in sys.argv[1:]:
print('Reading', filename, '...', end=' ')
sys.stdout.flush()
t = time.time()
mmread(filename)
print('took %s seconds' % (time.time() - t))
|