1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
from __future__ import division, print_function, absolute_import
import warnings
import numpy as np
from numpy import asarray_chkfinite
from .misc import LinAlgError, _datacopied
from .lapack import get_lapack_funcs
from scipy._lib.six import callable
__all__ = ['qz', 'ordqz']
_double_precision = ['i', 'l', 'd']
def _select_function(sort):
if callable(sort):
# assume the user knows what they're doing
sfunction = sort
elif sort == 'lhp':
sfunction = lambda x, y: (np.real(x/y) < 0.0)
elif sort == 'rhp':
sfunction = lambda x, y: (np.real(x/y) > 0.0)
elif sort == 'iuc':
sfunction = lambda x, y: (abs(x/y) < 1.0)
elif sort == 'ouc':
sfunction = lambda x, y: (abs(x/y) > 1.0)
else:
raise ValueError("sort parameter must be None, a callable, or "
"one of ('lhp','rhp','iuc','ouc')")
return sfunction
def _qz(A, B, output='real', lwork=None, sort=None, overwrite_a=False,
overwrite_b=False, check_finite=True):
if sort is not None:
# Disabled due to segfaults on win32, see ticket 1717.
raise ValueError("The 'sort' input of qz() has to be None and will be "
"removed in a future release. Use ordqz instead.")
if output not in ['real', 'complex', 'r', 'c']:
raise ValueError("argument must be 'real', or 'complex'")
if check_finite:
a1 = asarray_chkfinite(A)
b1 = asarray_chkfinite(B)
else:
a1 = np.asarray(A)
b1 = np.asarray(B)
a_m, a_n = a1.shape
b_m, b_n = b1.shape
if not (a_m == a_n == b_m == b_n):
raise ValueError("Array dimensions must be square and agree")
typa = a1.dtype.char
if output in ['complex', 'c'] and typa not in ['F', 'D']:
if typa in _double_precision:
a1 = a1.astype('D')
typa = 'D'
else:
a1 = a1.astype('F')
typa = 'F'
typb = b1.dtype.char
if output in ['complex', 'c'] and typb not in ['F', 'D']:
if typb in _double_precision:
b1 = b1.astype('D')
typb = 'D'
else:
b1 = b1.astype('F')
typb = 'F'
overwrite_a = overwrite_a or (_datacopied(a1, A))
overwrite_b = overwrite_b or (_datacopied(b1, B))
gges, = get_lapack_funcs(('gges',), (a1, b1))
if lwork is None or lwork == -1:
# get optimal work array size
result = gges(lambda x: None, a1, b1, lwork=-1)
lwork = result[-2][0].real.astype(np.int)
sfunction = lambda x: None
result = gges(sfunction, a1, b1, lwork=lwork, overwrite_a=overwrite_a,
overwrite_b=overwrite_b, sort_t=0)
info = result[-1]
if info < 0:
raise ValueError("Illegal value in argument %d of gges" % -info)
elif info > 0 and info <= a_n:
warnings.warn("The QZ iteration failed. (a,b) are not in Schur "
"form, but ALPHAR(j), ALPHAI(j), and BETA(j) should be "
"correct for J=%d,...,N" % info-1, UserWarning)
elif info == a_n+1:
raise LinAlgError("Something other than QZ iteration failed")
elif info == a_n+2:
raise LinAlgError("After reordering, roundoff changed values of some "
"complex eigenvalues so that leading eigenvalues "
"in the Generalized Schur form no longer satisfy "
"sort=True. This could also be due to scaling.")
elif info == a_n+3:
raise LinAlgError("Reordering failed in <s,d,c,z>tgsen")
return result, gges.typecode
def qz(A, B, output='real', lwork=None, sort=None, overwrite_a=False,
overwrite_b=False, check_finite=True):
"""
QZ decomposition for generalized eigenvalues of a pair of matrices.
The QZ, or generalized Schur, decomposition for a pair of N x N
nonsymmetric matrices (A,B) is::
(A,B) = (Q*AA*Z', Q*BB*Z')
where AA, BB is in generalized Schur form if BB is upper-triangular
with non-negative diagonal and AA is upper-triangular, or for real QZ
decomposition (``output='real'``) block upper triangular with 1x1
and 2x2 blocks. In this case, the 1x1 blocks correspond to real
generalized eigenvalues and 2x2 blocks are 'standardized' by making
the corresponding elements of BB have the form::
[ a 0 ]
[ 0 b ]
and the pair of corresponding 2x2 blocks in AA and BB will have a complex
conjugate pair of generalized eigenvalues. If (``output='complex'``) or
A and B are complex matrices, Z' denotes the conjugate-transpose of Z.
Q and Z are unitary matrices.
Parameters
----------
A : (N, N) array_like
2d array to decompose
B : (N, N) array_like
2d array to decompose
output : {'real', 'complex'}, optional
Construct the real or complex QZ decomposition for real matrices.
Default is 'real'.
lwork : int, optional
Work array size. If None or -1, it is automatically computed.
sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional
NOTE: THIS INPUT IS DISABLED FOR NOW. Use ordqz instead.
Specifies whether the upper eigenvalues should be sorted. A callable
may be passed that, given a eigenvalue, returns a boolean denoting
whether the eigenvalue should be sorted to the top-left (True). For
real matrix pairs, the sort function takes three real arguments
(alphar, alphai, beta). The eigenvalue
``x = (alphar + alphai*1j)/beta``. For complex matrix pairs or
output='complex', the sort function takes two complex arguments
(alpha, beta). The eigenvalue ``x = (alpha/beta)``. Alternatively,
string parameters may be used:
- 'lhp' Left-hand plane (x.real < 0.0)
- 'rhp' Right-hand plane (x.real > 0.0)
- 'iuc' Inside the unit circle (x*x.conjugate() < 1.0)
- 'ouc' Outside the unit circle (x*x.conjugate() > 1.0)
Defaults to None (no sorting).
overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance)
overwrite_b : bool, optional
Whether to overwrite data in b (may improve performance)
check_finite : bool, optional
If true checks the elements of `A` and `B` are finite numbers. If
false does no checking and passes matrix through to
underlying algorithm.
Returns
-------
AA : (N, N) ndarray
Generalized Schur form of A.
BB : (N, N) ndarray
Generalized Schur form of B.
Q : (N, N) ndarray
The left Schur vectors.
Z : (N, N) ndarray
The right Schur vectors.
Notes
-----
Q is transposed versus the equivalent function in Matlab.
.. versionadded:: 0.11.0
Examples
--------
>>> from scipy import linalg
>>> np.random.seed(1234)
>>> A = np.arange(9).reshape((3, 3))
>>> B = np.random.randn(3, 3)
>>> AA, BB, Q, Z = linalg.qz(A, B)
>>> AA
array([[-13.40928183, -4.62471562, 1.09215523],
[ 0. , 0. , 1.22805978],
[ 0. , 0. , 0.31973817]])
>>> BB
array([[ 0.33362547, -1.37393632, 0.02179805],
[ 0. , 1.68144922, 0.74683866],
[ 0. , 0. , 0.9258294 ]])
>>> Q
array([[ 0.14134727, -0.97562773, 0.16784365],
[ 0.49835904, -0.07636948, -0.86360059],
[ 0.85537081, 0.20571399, 0.47541828]])
>>> Z
array([[-0.24900855, -0.51772687, 0.81850696],
[-0.79813178, 0.58842606, 0.12938478],
[-0.54861681, -0.6210585 , -0.55973739]])
See also
--------
ordqz
"""
# output for real
# AA, BB, sdim, alphar, alphai, beta, vsl, vsr, work, info
# output for complex
# AA, BB, sdim, alpha, beta, vsl, vsr, work, info
result, _ = _qz(A, B, output=output, lwork=lwork, sort=sort,
overwrite_a=overwrite_a, overwrite_b=overwrite_b,
check_finite=check_finite)
return result[0], result[1], result[-4], result[-3]
def ordqz(A, B, sort='lhp', output='real', overwrite_a=False,
overwrite_b=False, check_finite=True):
"""
QZ decomposition for a pair of matrices with reordering.
.. versionadded:: 0.17.0
Parameters
----------
A : (N, N) array_like
2d array to decompose
B : (N, N) array_like
2d array to decompose
sort : {callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional
Specifies whether the upper eigenvalues should be sorted. A callable
may be passed that, given a eigenvalue, returns a boolean denoting
whether the eigenvalue should be sorted to the top-left (True). For
real matrix pairs, the sort function takes three real arguments
(alphar, alphai, beta). The eigenvalue
``x = (alphar + alphai*1j)/beta``. For complex matrix pairs or
output='complex', the sort function takes two complex arguments
(alpha, beta). The eigenvalue ``x = (alpha/beta)``.
Alternatively, string parameters may be used:
- 'lhp' Left-hand plane (x.real < 0.0)
- 'rhp' Right-hand plane (x.real > 0.0)
- 'iuc' Inside the unit circle (x*x.conjugate() < 1.0)
- 'ouc' Outside the unit circle (x*x.conjugate() > 1.0)
output : str {'real','complex'}, optional
Construct the real or complex QZ decomposition for real matrices.
Default is 'real'.
overwrite_a : bool, optional
If True, the contents of A are overwritten.
overwrite_b : bool, optional
If True, the contents of B are overwritten.
check_finite : bool, optional
If true checks the elements of `A` and `B` are finite numbers. If
false does no checking and passes matrix through to
underlying algorithm.
Returns
-------
AA : (N, N) ndarray
Generalized Schur form of A.
BB : (N, N) ndarray
Generalized Schur form of B.
alpha : (N,) ndarray
alpha = alphar + alphai * 1j. See notes.
beta : (N,) ndarray
See notes.
Q : (N, N) ndarray
The left Schur vectors.
Z : (N, N) ndarray
The right Schur vectors.
Notes
-----
On exit, ``(ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N``, will be the
generalized eigenvalues. ``ALPHAR(j) + ALPHAI(j)*i`` and
``BETA(j),j=1,...,N`` are the diagonals of the complex Schur form (S,T)
that would result if the 2-by-2 diagonal blocks of the real generalized
Schur form of (A,B) were further reduced to triangular form using complex
unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue is
real; if positive, then the ``j``-th and ``(j+1)``-st eigenvalues are a complex
conjugate pair, with ``ALPHAI(j+1)`` negative.
See also
--------
qz
"""
#NOTE: should users be able to set these?
lwork = None
result, typ = _qz(A, B, output=output, lwork=lwork, sort=None,
overwrite_a=overwrite_a, overwrite_b=overwrite_b,
check_finite=check_finite)
AA, BB, Q, Z = result[0], result[1], result[-4], result[-3]
if typ not in 'cz':
alpha, beta = result[3] + result[4]*1.j, result[5]
else:
alpha, beta = result[3], result[4]
sfunction = _select_function(sort)
select = sfunction(alpha, beta)
tgsen, = get_lapack_funcs(('tgsen',), (AA, BB))
if lwork is None or lwork == -1:
result = tgsen(select, AA, BB, Q, Z, lwork=-1)
lwork = result[-3][0].real.astype(np.int)
# looks like wrong value passed to ZTGSYL if not
lwork += 1
liwork = None
if liwork is None or liwork == -1:
result = tgsen(select, AA, BB, Q, Z, liwork=-1)
liwork = result[-2][0]
result = tgsen(select, AA, BB, Q, Z, lwork=lwork, liwork=liwork)
info = result[-1]
if info < 0:
raise ValueError("Illegal value in argument %d of tgsen" % -info)
elif info == 1:
raise ValueError("Reordering of (A, B) failed because the transformed"
" matrix pair (A, B) would be too far from "
"generalized Schur form; the problem is very "
"ill-conditioned. (A, B) may have been partially "
"reorded. If requested, 0 is returned in DIF(*), "
"PL, and PR.")
# for real results has a, b, alphar, alphai, beta, q, z, m, pl, pr, dif,
# work, iwork, info
if typ in ['f', 'd']:
alpha = result[2] + result[3] * 1.j
return (result[0], result[1], alpha, result[4], result[5], result[6])
# for complex results has a, b, alpha, beta, q, z, m, pl, pr, dif, work,
# iwork, info
else:
return result[0], result[1], result[2], result[3], result[4], result[5]
|