File: clapack.pyf.src

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (119 lines) | stat: -rw-r--r-- 4,504 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
!%f90 -*- f90 -*-
!
! Signatures for f2py wrappers of ATLAS LAPACK functions via the C interface.
! These should be compatible with the flapack functions.
!
!  gesv
!  posv
!  lauum
!  trtri
!

python module _clapack
  interface
   
   function <prefix>gesv(n,nrhs,a,piv,b,info,rowmajor)

   ! lu,piv,x,info = gesv(a,b,rowmajor=1,overwrite_a=0,overwrite_b=0)
   ! Solve A * X = B.
   ! A * P = L * U
   ! U is unit upper diagonal triangular, L is lower triangular,
   ! piv pivots columns.

     fortranname  clapack_<prefix>gesv
     integer intent(c,hide) ::  <prefix>gesv
     callstatement <prefix>gesv_return_value = info = (*f2py_func)(102-rowmajor,n,nrhs,a,n,piv,b,n)
     callprotoargument const int,const int,const int,<ctype>*,const int,int*,<ctype>*,const int

     integer optional,intent(in),check(rowmajor==1||rowmajor==0) :: rowmajor = 1

     integer depend(a),intent(hide):: n = shape(a,0)
     integer depend(b),intent(hide):: nrhs = shape(b,1)
     <ftype> dimension(n,n),check(shape(a,0)==shape(a,1)) :: a
     integer dimension(n),depend(n),intent(out) :: piv
     <ftype> dimension(n,nrhs),check(shape(a,0)==shape(b,0)),depend(n) :: b
     integer intent(out)::info
     intent(in,out,copy,out=x) b
     intent(c,in,out,copy,out=lu) a

   end function <prefix>gesv

   function <prefix>posv(n,nrhs,a,b,info,lower,rowmajor)

   ! c,x,info = posv(a,b,lower=0,rowmajor=1,overwrite_a=0,overwrite_b=0)
   ! Solve A * X = B.
   ! A is symmetric positive defined
   ! A = U^T * U, C = U if lower = 0
   ! A = L * L^T, C = L if lower = 1
   ! C is triangular matrix of the corresponding Cholesky decomposition.

     fortranname  clapack_<prefix>posv
     integer intent(c,hide) ::  <prefix>posv
     callstatement <prefix>posv_return_value = info = (*f2py_func)(102-rowmajor,121+lower,n,nrhs,a,n,b,n)
     callprotoargument const int,const int,const int,const int,<ctype>*,const int,<ctype>*,const int

     integer optional,intent(in),check(rowmajor==1||rowmajor==0) :: rowmajor = 1
     integer optional,intent(in),check(lower==0||lower==1) :: lower = 0

     integer depend(a),intent(hide):: n = shape(a,0)
     integer depend(b),intent(hide):: nrhs = shape(b,1)
     <ftype> dimension(n,n),intent(c,in,out,copy,out=c) :: a
     check(shape(a,0)==shape(a,1)) :: a
     <ftype> dimension(n,nrhs),intent(in,out,copy,out=x),depend(n):: b
     check(shape(a,0)==shape(b,0)) :: b
     integer intent(out) :: info

   end function <prefix>posv


   function <prefix>lauum(n,c,info,lower,rowmajor)
   
     ! a,info = lauum(c,lower=0,rowmajor=1,overwrite_c=0)
     ! Compute product
     ! U^T * U, C = U if lower = 0
     ! L * L^T, C = L if lower = 1
     ! C is triangular matrix of the corresponding Cholesky decomposition.

     fortranname  clapack_<prefix>lauum
     integer intent(c,hide) ::  <prefix>lauum
     callstatement <prefix>lauum_return_value = info = (*f2py_func)(102-rowmajor,121+lower,n,c,n)
     callprotoargument const int,const int,const int,<ctype>*,const int

     integer optional,intent(in),check(rowmajor==1||rowmajor==0) :: rowmajor = 1
     integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
     
     integer depend(c),intent(hide):: n = shape(c,0)
     <ftype> dimension(n,n),intent(c,in,out,copy,out=a) :: c
     check(shape(c,0)==shape(c,1)) :: c
     integer intent(out) :: info
     
   end function <prefix>lauum

   function <prefix>trtri(n,c,info,lower,unitdiag,rowmajor)
   
     ! inv_c,info = trtri(c,lower=0,unitdiag=0,rowmajor=1,overwrite_c=0)
     ! Compute C inverse C^-1 where
     ! C = U if lower = 0
     ! C = L if lower = 1
     ! C is non-unit triangular matrix if unitdiag = 0
     ! C is unit triangular matrix if unitdiag = 1

     fortranname  clapack_<prefix>trtri
     integer intent(c,hide) ::  <prefix>trtri
     callstatement <prefix>trtri_return_value = info = (*f2py_func)(102-rowmajor,121+lower,131+unitdiag,n,c,n)
     callprotoargument const int,const int,const int,const int,<ctype>*,const int

     integer optional,intent(in),check(rowmajor==1||rowmajor==0) :: rowmajor = 1
     integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
     integer optional,intent(in),check(unitdiag==0||unitdiag==1) :: unitdiag = 0
     
     integer depend(c),intent(hide):: n = shape(c,0)
     <ftype> dimension(n,n),intent(c,in,out,copy,out=inv_c) :: c
     check(shape(c,0)==shape(c,1)) :: c
     integer intent(out) :: info
     
   end function <prefix>trtri


  end interface
end python module _clapack