1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
!%f90 -*- f90 -*-
!
! Signatures for f2py wrappers of ATLAS LAPACK functions via the C interface.
! These should be compatible with the flapack functions.
!
! gesv
! posv
! lauum
! trtri
!
python module _clapack
interface
function <prefix>gesv(n,nrhs,a,piv,b,info,rowmajor)
! lu,piv,x,info = gesv(a,b,rowmajor=1,overwrite_a=0,overwrite_b=0)
! Solve A * X = B.
! A * P = L * U
! U is unit upper diagonal triangular, L is lower triangular,
! piv pivots columns.
fortranname clapack_<prefix>gesv
integer intent(c,hide) :: <prefix>gesv
callstatement <prefix>gesv_return_value = info = (*f2py_func)(102-rowmajor,n,nrhs,a,n,piv,b,n)
callprotoargument const int,const int,const int,<ctype>*,const int,int*,<ctype>*,const int
integer optional,intent(in),check(rowmajor==1||rowmajor==0) :: rowmajor = 1
integer depend(a),intent(hide):: n = shape(a,0)
integer depend(b),intent(hide):: nrhs = shape(b,1)
<ftype> dimension(n,n),check(shape(a,0)==shape(a,1)) :: a
integer dimension(n),depend(n),intent(out) :: piv
<ftype> dimension(n,nrhs),check(shape(a,0)==shape(b,0)),depend(n) :: b
integer intent(out)::info
intent(in,out,copy,out=x) b
intent(c,in,out,copy,out=lu) a
end function <prefix>gesv
function <prefix>posv(n,nrhs,a,b,info,lower,rowmajor)
! c,x,info = posv(a,b,lower=0,rowmajor=1,overwrite_a=0,overwrite_b=0)
! Solve A * X = B.
! A is symmetric positive defined
! A = U^T * U, C = U if lower = 0
! A = L * L^T, C = L if lower = 1
! C is triangular matrix of the corresponding Cholesky decomposition.
fortranname clapack_<prefix>posv
integer intent(c,hide) :: <prefix>posv
callstatement <prefix>posv_return_value = info = (*f2py_func)(102-rowmajor,121+lower,n,nrhs,a,n,b,n)
callprotoargument const int,const int,const int,const int,<ctype>*,const int,<ctype>*,const int
integer optional,intent(in),check(rowmajor==1||rowmajor==0) :: rowmajor = 1
integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
integer depend(a),intent(hide):: n = shape(a,0)
integer depend(b),intent(hide):: nrhs = shape(b,1)
<ftype> dimension(n,n),intent(c,in,out,copy,out=c) :: a
check(shape(a,0)==shape(a,1)) :: a
<ftype> dimension(n,nrhs),intent(in,out,copy,out=x),depend(n):: b
check(shape(a,0)==shape(b,0)) :: b
integer intent(out) :: info
end function <prefix>posv
function <prefix>lauum(n,c,info,lower,rowmajor)
! a,info = lauum(c,lower=0,rowmajor=1,overwrite_c=0)
! Compute product
! U^T * U, C = U if lower = 0
! L * L^T, C = L if lower = 1
! C is triangular matrix of the corresponding Cholesky decomposition.
fortranname clapack_<prefix>lauum
integer intent(c,hide) :: <prefix>lauum
callstatement <prefix>lauum_return_value = info = (*f2py_func)(102-rowmajor,121+lower,n,c,n)
callprotoargument const int,const int,const int,<ctype>*,const int
integer optional,intent(in),check(rowmajor==1||rowmajor==0) :: rowmajor = 1
integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
integer depend(c),intent(hide):: n = shape(c,0)
<ftype> dimension(n,n),intent(c,in,out,copy,out=a) :: c
check(shape(c,0)==shape(c,1)) :: c
integer intent(out) :: info
end function <prefix>lauum
function <prefix>trtri(n,c,info,lower,unitdiag,rowmajor)
! inv_c,info = trtri(c,lower=0,unitdiag=0,rowmajor=1,overwrite_c=0)
! Compute C inverse C^-1 where
! C = U if lower = 0
! C = L if lower = 1
! C is non-unit triangular matrix if unitdiag = 0
! C is unit triangular matrix if unitdiag = 1
fortranname clapack_<prefix>trtri
integer intent(c,hide) :: <prefix>trtri
callstatement <prefix>trtri_return_value = info = (*f2py_func)(102-rowmajor,121+lower,131+unitdiag,n,c,n)
callprotoargument const int,const int,const int,const int,<ctype>*,const int
integer optional,intent(in),check(rowmajor==1||rowmajor==0) :: rowmajor = 1
integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
integer optional,intent(in),check(unitdiag==0||unitdiag==1) :: unitdiag = 0
integer depend(c),intent(hide):: n = shape(c,0)
<ftype> dimension(n,n),intent(c,in,out,copy,out=inv_c) :: c
check(shape(c,0)==shape(c,1)) :: c
integer intent(out) :: info
end function <prefix>trtri
end interface
end python module _clapack
|