1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
|
#
# Author: Pearu Peterson, March 2002
#
# additions by Travis Oliphant, March 2002
# additions by Eric Jones, June 2002
# additions by Johannes Loehnert, June 2006
# additions by Bart Vandereycken, June 2006
# additions by Andrew D Straw, May 2007
# additions by Tiziano Zito, November 2008
#
# April 2010: Functions for LU, QR, SVD, Schur and Cholesky decompositions were
# moved to their own files. Still in this file are functions for eigenstuff
# and for the Hessenberg form.
from __future__ import division, print_function, absolute_import
__all__ = ['eig', 'eigh', 'eig_banded', 'eigvals', 'eigvalsh',
'eigvals_banded', 'hessenberg']
import numpy
from numpy import (array, isfinite, inexact, nonzero, iscomplexobj, cast,
flatnonzero, conj)
# Local imports
from scipy._lib.six import xrange
from scipy._lib._util import _asarray_validated
from .misc import LinAlgError, _datacopied, norm
from .lapack import get_lapack_funcs, _compute_lwork
_I = cast['F'](1j)
def _make_complex_eigvecs(w, vin, dtype):
"""
Produce complex-valued eigenvectors from LAPACK DGGEV real-valued output
"""
# - see LAPACK man page DGGEV at ALPHAI
v = numpy.array(vin, dtype=dtype)
m = (w.imag > 0)
m[:-1] |= (w.imag[1:] < 0) # workaround for LAPACK bug, cf. ticket #709
for i in flatnonzero(m):
v.imag[:, i] = vin[:, i+1]
conj(v[:, i], v[:, i+1])
return v
def _geneig(a1, b1, left, right, overwrite_a, overwrite_b):
ggev, = get_lapack_funcs(('ggev',), (a1, b1))
cvl, cvr = left, right
res = ggev(a1, b1, lwork=-1)
lwork = res[-2][0].real.astype(numpy.int)
if ggev.typecode in 'cz':
alpha, beta, vl, vr, work, info = ggev(a1, b1, cvl, cvr, lwork,
overwrite_a, overwrite_b)
w = alpha / beta
else:
alphar, alphai, beta, vl, vr, work, info = ggev(a1, b1, cvl, cvr,
lwork, overwrite_a,
overwrite_b)
w = (alphar + _I * alphai) / beta
if info < 0:
raise ValueError('illegal value in %d-th argument of internal ggev' %
-info)
if info > 0:
raise LinAlgError("generalized eig algorithm did not converge "
"(info=%d)" % info)
only_real = numpy.logical_and.reduce(numpy.equal(w.imag, 0.0))
if not (ggev.typecode in 'cz' or only_real):
t = w.dtype.char
if left:
vl = _make_complex_eigvecs(w, vl, t)
if right:
vr = _make_complex_eigvecs(w, vr, t)
# the eigenvectors returned by the lapack function are NOT normalized
for i in xrange(vr.shape[0]):
if right:
vr[:, i] /= norm(vr[:, i])
if left:
vl[:, i] /= norm(vl[:, i])
if not (left or right):
return w
if left:
if right:
return w, vl, vr
return w, vl
return w, vr
def eig(a, b=None, left=False, right=True, overwrite_a=False,
overwrite_b=False, check_finite=True):
"""
Solve an ordinary or generalized eigenvalue problem of a square matrix.
Find eigenvalues w and right or left eigenvectors of a general matrix::
a vr[:,i] = w[i] b vr[:,i]
a.H vl[:,i] = w[i].conj() b.H vl[:,i]
where ``.H`` is the Hermitian conjugation.
Parameters
----------
a : (M, M) array_like
A complex or real matrix whose eigenvalues and eigenvectors
will be computed.
b : (M, M) array_like, optional
Right-hand side matrix in a generalized eigenvalue problem.
Default is None, identity matrix is assumed.
left : bool, optional
Whether to calculate and return left eigenvectors. Default is False.
right : bool, optional
Whether to calculate and return right eigenvectors. Default is True.
overwrite_a : bool, optional
Whether to overwrite `a`; may improve performance. Default is False.
overwrite_b : bool, optional
Whether to overwrite `b`; may improve performance. Default is False.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
w : (M,) double or complex ndarray
The eigenvalues, each repeated according to its multiplicity.
vl : (M, M) double or complex ndarray
The normalized left eigenvector corresponding to the eigenvalue
``w[i]`` is the column vl[:,i]. Only returned if ``left=True``.
vr : (M, M) double or complex ndarray
The normalized right eigenvector corresponding to the eigenvalue
``w[i]`` is the column ``vr[:,i]``. Only returned if ``right=True``.
Raises
------
LinAlgError
If eigenvalue computation does not converge.
See Also
--------
eigh : Eigenvalues and right eigenvectors for symmetric/Hermitian arrays.
"""
a1 = _asarray_validated(a, check_finite=check_finite)
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
raise ValueError('expected square matrix')
overwrite_a = overwrite_a or (_datacopied(a1, a))
if b is not None:
b1 = _asarray_validated(b, check_finite=check_finite)
overwrite_b = overwrite_b or _datacopied(b1, b)
if len(b1.shape) != 2 or b1.shape[0] != b1.shape[1]:
raise ValueError('expected square matrix')
if b1.shape != a1.shape:
raise ValueError('a and b must have the same shape')
return _geneig(a1, b1, left, right, overwrite_a, overwrite_b)
geev, geev_lwork = get_lapack_funcs(('geev', 'geev_lwork'), (a1,))
compute_vl, compute_vr = left, right
lwork = _compute_lwork(geev_lwork, a1.shape[0],
compute_vl=compute_vl,
compute_vr=compute_vr)
if geev.typecode in 'cz':
w, vl, vr, info = geev(a1, lwork=lwork,
compute_vl=compute_vl,
compute_vr=compute_vr,
overwrite_a=overwrite_a)
else:
wr, wi, vl, vr, info = geev(a1, lwork=lwork,
compute_vl=compute_vl,
compute_vr=compute_vr,
overwrite_a=overwrite_a)
t = {'f': 'F', 'd': 'D'}[wr.dtype.char]
w = wr + _I * wi
if info < 0:
raise ValueError('illegal value in %d-th argument of internal geev' %
-info)
if info > 0:
raise LinAlgError("eig algorithm did not converge (only eigenvalues "
"with order >= %d have converged)" % info)
only_real = numpy.logical_and.reduce(numpy.equal(w.imag, 0.0))
if not (geev.typecode in 'cz' or only_real):
t = w.dtype.char
if left:
vl = _make_complex_eigvecs(w, vl, t)
if right:
vr = _make_complex_eigvecs(w, vr, t)
if not (left or right):
return w
if left:
if right:
return w, vl, vr
return w, vl
return w, vr
def eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False,
overwrite_b=False, turbo=True, eigvals=None, type=1,
check_finite=True):
"""
Solve an ordinary or generalized eigenvalue problem for a complex
Hermitian or real symmetric matrix.
Find eigenvalues w and optionally eigenvectors v of matrix `a`, where
`b` is positive definite::
a v[:,i] = w[i] b v[:,i]
v[i,:].conj() a v[:,i] = w[i]
v[i,:].conj() b v[:,i] = 1
Parameters
----------
a : (M, M) array_like
A complex Hermitian or real symmetric matrix whose eigenvalues and
eigenvectors will be computed.
b : (M, M) array_like, optional
A complex Hermitian or real symmetric definite positive matrix in.
If omitted, identity matrix is assumed.
lower : bool, optional
Whether the pertinent array data is taken from the lower or upper
triangle of `a`. (Default: lower)
eigvals_only : bool, optional
Whether to calculate only eigenvalues and no eigenvectors.
(Default: both are calculated)
turbo : bool, optional
Use divide and conquer algorithm (faster but expensive in memory,
only for generalized eigenvalue problem and if eigvals=None)
eigvals : tuple (lo, hi), optional
Indexes of the smallest and largest (in ascending order) eigenvalues
and corresponding eigenvectors to be returned: 0 <= lo <= hi <= M-1.
If omitted, all eigenvalues and eigenvectors are returned.
type : int, optional
Specifies the problem type to be solved:
type = 1: a v[:,i] = w[i] b v[:,i]
type = 2: a b v[:,i] = w[i] v[:,i]
type = 3: b a v[:,i] = w[i] v[:,i]
overwrite_a : bool, optional
Whether to overwrite data in `a` (may improve performance)
overwrite_b : bool, optional
Whether to overwrite data in `b` (may improve performance)
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
w : (N,) float ndarray
The N (1<=N<=M) selected eigenvalues, in ascending order, each
repeated according to its multiplicity.
v : (M, N) complex ndarray
(if eigvals_only == False)
The normalized selected eigenvector corresponding to the
eigenvalue w[i] is the column v[:,i].
Normalization:
type 1 and 3: v.conj() a v = w
type 2: inv(v).conj() a inv(v) = w
type = 1 or 2: v.conj() b v = I
type = 3: v.conj() inv(b) v = I
Raises
------
LinAlgError
If eigenvalue computation does not converge,
an error occurred, or b matrix is not definite positive. Note that
if input matrices are not symmetric or hermitian, no error is reported
but results will be wrong.
See Also
--------
eig : eigenvalues and right eigenvectors for non-symmetric arrays
"""
a1 = _asarray_validated(a, check_finite=check_finite)
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
raise ValueError('expected square matrix')
overwrite_a = overwrite_a or (_datacopied(a1, a))
if iscomplexobj(a1):
cplx = True
else:
cplx = False
if b is not None:
b1 = _asarray_validated(b, check_finite=check_finite)
overwrite_b = overwrite_b or _datacopied(b1, b)
if len(b1.shape) != 2 or b1.shape[0] != b1.shape[1]:
raise ValueError('expected square matrix')
if b1.shape != a1.shape:
raise ValueError("wrong b dimensions %s, should "
"be %s" % (str(b1.shape), str(a1.shape)))
if iscomplexobj(b1):
cplx = True
else:
cplx = cplx or False
else:
b1 = None
# Set job for fortran routines
_job = (eigvals_only and 'N') or 'V'
# port eigenvalue range from python to fortran convention
if eigvals is not None:
lo, hi = eigvals
if lo < 0 or hi >= a1.shape[0]:
raise ValueError('The eigenvalue range specified is not valid.\n'
'Valid range is [%s,%s]' % (0, a1.shape[0]-1))
lo += 1
hi += 1
eigvals = (lo, hi)
# set lower
if lower:
uplo = 'L'
else:
uplo = 'U'
# fix prefix for lapack routines
if cplx:
pfx = 'he'
else:
pfx = 'sy'
# Standard Eigenvalue Problem
# Use '*evr' routines
# FIXME: implement calculation of optimal lwork
# for all lapack routines
if b1 is None:
(evr,) = get_lapack_funcs((pfx+'evr',), (a1,))
if eigvals is None:
w, v, info = evr(a1, uplo=uplo, jobz=_job, range="A", il=1,
iu=a1.shape[0], overwrite_a=overwrite_a)
else:
(lo, hi) = eigvals
w_tot, v, info = evr(a1, uplo=uplo, jobz=_job, range="I",
il=lo, iu=hi, overwrite_a=overwrite_a)
w = w_tot[0:hi-lo+1]
# Generalized Eigenvalue Problem
else:
# Use '*gvx' routines if range is specified
if eigvals is not None:
(gvx,) = get_lapack_funcs((pfx+'gvx',), (a1, b1))
(lo, hi) = eigvals
w_tot, v, ifail, info = gvx(a1, b1, uplo=uplo, iu=hi,
itype=type, jobz=_job, il=lo,
overwrite_a=overwrite_a,
overwrite_b=overwrite_b)
w = w_tot[0:hi-lo+1]
# Use '*gvd' routine if turbo is on and no eigvals are specified
elif turbo:
(gvd,) = get_lapack_funcs((pfx+'gvd',), (a1, b1))
v, w, info = gvd(a1, b1, uplo=uplo, itype=type, jobz=_job,
overwrite_a=overwrite_a,
overwrite_b=overwrite_b)
# Use '*gv' routine if turbo is off and no eigvals are specified
else:
(gv,) = get_lapack_funcs((pfx+'gv',), (a1, b1))
v, w, info = gv(a1, b1, uplo=uplo, itype=type, jobz=_job,
overwrite_a=overwrite_a,
overwrite_b=overwrite_b)
# Check if we had a successful exit
if info == 0:
if eigvals_only:
return w
else:
return w, v
elif info < 0:
raise LinAlgError("illegal value in %i-th argument of internal"
" fortran routine." % (-info))
elif info > 0 and b1 is None:
raise LinAlgError("unrecoverable internal error.")
# The algorithm failed to converge.
elif 0 < info <= b1.shape[0]:
if eigvals is not None:
raise LinAlgError("the eigenvectors %s failed to"
" converge." % nonzero(ifail)-1)
else:
raise LinAlgError("internal fortran routine failed to converge: "
"%i off-diagonal elements of an "
"intermediate tridiagonal form did not converge"
" to zero." % info)
# This occurs when b is not positive definite
else:
raise LinAlgError("the leading minor of order %i"
" of 'b' is not positive definite. The"
" factorization of 'b' could not be completed"
" and no eigenvalues or eigenvectors were"
" computed." % (info-b1.shape[0]))
def eig_banded(a_band, lower=False, eigvals_only=False, overwrite_a_band=False,
select='a', select_range=None, max_ev=0, check_finite=True):
"""
Solve real symmetric or complex hermitian band matrix eigenvalue problem.
Find eigenvalues w and optionally right eigenvectors v of a::
a v[:,i] = w[i] v[:,i]
v.H v = identity
The matrix a is stored in a_band either in lower diagonal or upper
diagonal ordered form:
a_band[u + i - j, j] == a[i,j] (if upper form; i <= j)
a_band[ i - j, j] == a[i,j] (if lower form; i >= j)
where u is the number of bands above the diagonal.
Example of a_band (shape of a is (6,6), u=2)::
upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
Cells marked with * are not used.
Parameters
----------
a_band : (u+1, M) array_like
The bands of the M by M matrix a.
lower : bool, optional
Is the matrix in the lower form. (Default is upper form)
eigvals_only : bool, optional
Compute only the eigenvalues and no eigenvectors.
(Default: calculate also eigenvectors)
overwrite_a_band : bool, optional
Discard data in a_band (may enhance performance)
select : {'a', 'v', 'i'}, optional
Which eigenvalues to calculate
====== ========================================
select calculated
====== ========================================
'a' All eigenvalues
'v' Eigenvalues in the interval (min, max]
'i' Eigenvalues with indices min <= i <= max
====== ========================================
select_range : (min, max), optional
Range of selected eigenvalues
max_ev : int, optional
For select=='v', maximum number of eigenvalues expected.
For other values of select, has no meaning.
In doubt, leave this parameter untouched.
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
w : (M,) ndarray
The eigenvalues, in ascending order, each repeated according to its
multiplicity.
v : (M, M) float or complex ndarray
The normalized eigenvector corresponding to the eigenvalue w[i] is
the column v[:,i].
Raises LinAlgError if eigenvalue computation does not converge
"""
if eigvals_only or overwrite_a_band:
a1 = _asarray_validated(a_band, check_finite=check_finite)
overwrite_a_band = overwrite_a_band or (_datacopied(a1, a_band))
else:
a1 = array(a_band)
if issubclass(a1.dtype.type, inexact) and not isfinite(a1).all():
raise ValueError("array must not contain infs or NaNs")
overwrite_a_band = 1
if len(a1.shape) != 2:
raise ValueError('expected two-dimensional array')
if select.lower() not in [0, 1, 2, 'a', 'v', 'i', 'all', 'value', 'index']:
raise ValueError('invalid argument for select')
if select.lower() in [0, 'a', 'all']:
if a1.dtype.char in 'GFD':
bevd, = get_lapack_funcs(('hbevd',), (a1,))
# FIXME: implement this somewhen, for now go with builtin values
# FIXME: calc optimal lwork by calling ?hbevd(lwork=-1)
# or by using calc_lwork.f ???
# lwork = calc_lwork.hbevd(bevd.typecode, a1.shape[0], lower)
internal_name = 'hbevd'
else: # a1.dtype.char in 'fd':
bevd, = get_lapack_funcs(('sbevd',), (a1,))
# FIXME: implement this somewhen, for now go with builtin values
# see above
# lwork = calc_lwork.sbevd(bevd.typecode, a1.shape[0], lower)
internal_name = 'sbevd'
w, v, info = bevd(a1, compute_v=not eigvals_only,
lower=lower, overwrite_ab=overwrite_a_band)
if select.lower() in [1, 2, 'i', 'v', 'index', 'value']:
# calculate certain range only
if select.lower() in [2, 'i', 'index']:
select = 2
vl, vu, il, iu = 0.0, 0.0, min(select_range), max(select_range)
if min(il, iu) < 0 or max(il, iu) >= a1.shape[1]:
raise ValueError('select_range out of bounds')
max_ev = iu - il + 1
else: # 1, 'v', 'value'
select = 1
vl, vu, il, iu = min(select_range), max(select_range), 0, 0
if max_ev == 0:
max_ev = a_band.shape[1]
if eigvals_only:
max_ev = 1
# calculate optimal abstol for dsbevx (see manpage)
if a1.dtype.char in 'fF': # single precision
lamch, = get_lapack_funcs(('lamch',), (array(0, dtype='f'),))
else:
lamch, = get_lapack_funcs(('lamch',), (array(0, dtype='d'),))
abstol = 2 * lamch('s')
if a1.dtype.char in 'GFD':
bevx, = get_lapack_funcs(('hbevx',), (a1,))
internal_name = 'hbevx'
else: # a1.dtype.char in 'gfd'
bevx, = get_lapack_funcs(('sbevx',), (a1,))
internal_name = 'sbevx'
# il+1, iu+1: translate python indexing (0 ... N-1) into Fortran
# indexing (1 ... N)
w, v, m, ifail, info = bevx(a1, vl, vu, il+1, iu+1,
compute_v=not eigvals_only,
mmax=max_ev,
range=select, lower=lower,
overwrite_ab=overwrite_a_band,
abstol=abstol)
# crop off w and v
w = w[:m]
if not eigvals_only:
v = v[:, :m]
if info < 0:
raise ValueError('illegal value in %d-th argument of internal %s' %
(-info, internal_name))
if info > 0:
raise LinAlgError("eig algorithm did not converge")
if eigvals_only:
return w
return w, v
def eigvals(a, b=None, overwrite_a=False, check_finite=True):
"""
Compute eigenvalues from an ordinary or generalized eigenvalue problem.
Find eigenvalues of a general matrix::
a vr[:,i] = w[i] b vr[:,i]
Parameters
----------
a : (M, M) array_like
A complex or real matrix whose eigenvalues and eigenvectors
will be computed.
b : (M, M) array_like, optional
Right-hand side matrix in a generalized eigenvalue problem.
If omitted, identity matrix is assumed.
overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance)
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
w : (M,) double or complex ndarray
The eigenvalues, each repeated according to its multiplicity,
but not in any specific order.
Raises
------
LinAlgError
If eigenvalue computation does not converge
See Also
--------
eigvalsh : eigenvalues of symmetric or Hermitian arrays,
eig : eigenvalues and right eigenvectors of general arrays.
eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays.
"""
return eig(a, b=b, left=0, right=0, overwrite_a=overwrite_a,
check_finite=check_finite)
def eigvalsh(a, b=None, lower=True, overwrite_a=False,
overwrite_b=False, turbo=True, eigvals=None, type=1,
check_finite=True):
"""
Solve an ordinary or generalized eigenvalue problem for a complex
Hermitian or real symmetric matrix.
Find eigenvalues w of matrix a, where b is positive definite::
a v[:,i] = w[i] b v[:,i]
v[i,:].conj() a v[:,i] = w[i]
v[i,:].conj() b v[:,i] = 1
Parameters
----------
a : (M, M) array_like
A complex Hermitian or real symmetric matrix whose eigenvalues and
eigenvectors will be computed.
b : (M, M) array_like, optional
A complex Hermitian or real symmetric definite positive matrix in.
If omitted, identity matrix is assumed.
lower : bool, optional
Whether the pertinent array data is taken from the lower or upper
triangle of `a`. (Default: lower)
turbo : bool, optional
Use divide and conquer algorithm (faster but expensive in memory,
only for generalized eigenvalue problem and if eigvals=None)
eigvals : tuple (lo, hi), optional
Indexes of the smallest and largest (in ascending order) eigenvalues
and corresponding eigenvectors to be returned: 0 <= lo < hi <= M-1.
If omitted, all eigenvalues and eigenvectors are returned.
type : int, optional
Specifies the problem type to be solved:
type = 1: a v[:,i] = w[i] b v[:,i]
type = 2: a b v[:,i] = w[i] v[:,i]
type = 3: b a v[:,i] = w[i] v[:,i]
overwrite_a : bool, optional
Whether to overwrite data in `a` (may improve performance)
overwrite_b : bool, optional
Whether to overwrite data in `b` (may improve performance)
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
w : (N,) float ndarray
The N (1<=N<=M) selected eigenvalues, in ascending order, each
repeated according to its multiplicity.
Raises
------
LinAlgError
If eigenvalue computation does not converge,
an error occurred, or b matrix is not definite positive. Note that
if input matrices are not symmetric or hermitian, no error is reported
but results will be wrong.
See Also
--------
eigvals : eigenvalues of general arrays
eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eig : eigenvalues and right eigenvectors for non-symmetric arrays
"""
return eigh(a, b=b, lower=lower, eigvals_only=True,
overwrite_a=overwrite_a, overwrite_b=overwrite_b,
turbo=turbo, eigvals=eigvals, type=type,
check_finite=check_finite)
def eigvals_banded(a_band, lower=False, overwrite_a_band=False,
select='a', select_range=None, check_finite=True):
"""
Solve real symmetric or complex hermitian band matrix eigenvalue problem.
Find eigenvalues w of a::
a v[:,i] = w[i] v[:,i]
v.H v = identity
The matrix a is stored in a_band either in lower diagonal or upper
diagonal ordered form:
a_band[u + i - j, j] == a[i,j] (if upper form; i <= j)
a_band[ i - j, j] == a[i,j] (if lower form; i >= j)
where u is the number of bands above the diagonal.
Example of a_band (shape of a is (6,6), u=2)::
upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
Cells marked with * are not used.
Parameters
----------
a_band : (u+1, M) array_like
The bands of the M by M matrix a.
lower : bool, optional
Is the matrix in the lower form. (Default is upper form)
overwrite_a_band : bool, optional
Discard data in a_band (may enhance performance)
select : {'a', 'v', 'i'}, optional
Which eigenvalues to calculate
====== ========================================
select calculated
====== ========================================
'a' All eigenvalues
'v' Eigenvalues in the interval (min, max]
'i' Eigenvalues with indices min <= i <= max
====== ========================================
select_range : (min, max), optional
Range of selected eigenvalues
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
w : (M,) ndarray
The eigenvalues, in ascending order, each repeated according to its
multiplicity.
Raises LinAlgError if eigenvalue computation does not converge
See Also
--------
eig_banded : eigenvalues and right eigenvectors for symmetric/Hermitian
band matrices
eigvals : eigenvalues of general arrays
eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eig : eigenvalues and right eigenvectors for non-symmetric arrays
"""
return eig_banded(a_band, lower=lower, eigvals_only=1,
overwrite_a_band=overwrite_a_band, select=select,
select_range=select_range, check_finite=check_finite)
_double_precision = ['i', 'l', 'd']
def hessenberg(a, calc_q=False, overwrite_a=False, check_finite=True):
"""
Compute Hessenberg form of a matrix.
The Hessenberg decomposition is::
A = Q H Q^H
where `Q` is unitary/orthogonal and `H` has only zero elements below
the first sub-diagonal.
Parameters
----------
a : (M, M) array_like
Matrix to bring into Hessenberg form.
calc_q : bool, optional
Whether to compute the transformation matrix. Default is False.
overwrite_a : bool, optional
Whether to overwrite `a`; may improve performance.
Default is False.
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
H : (M, M) ndarray
Hessenberg form of `a`.
Q : (M, M) ndarray
Unitary/orthogonal similarity transformation matrix ``A = Q H Q^H``.
Only returned if ``calc_q=True``.
"""
a1 = _asarray_validated(a, check_finite=check_finite)
if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]):
raise ValueError('expected square matrix')
overwrite_a = overwrite_a or (_datacopied(a1, a))
# if 2x2 or smaller: already in Hessenberg
if a1.shape[0] <= 2:
if calc_q:
return a1, numpy.eye(a1.shape[0])
return a1
gehrd, gebal, gehrd_lwork = get_lapack_funcs(('gehrd', 'gebal',
'gehrd_lwork'), (a1,))
ba, lo, hi, pivscale, info = gebal(a1, permute=0, overwrite_a=overwrite_a)
if info < 0:
raise ValueError('illegal value in %d-th argument of internal gebal '
'(hessenberg)' % -info)
n = len(a1)
lwork = _compute_lwork(gehrd_lwork, ba.shape[0], lo=lo, hi=hi)
hq, tau, info = gehrd(ba, lo=lo, hi=hi, lwork=lwork, overwrite_a=1)
if info < 0:
raise ValueError('illegal value in %d-th argument of internal gehrd '
'(hessenberg)' % -info)
h = numpy.triu(hq, -1)
if not calc_q:
return h
# use orghr/unghr to compute q
orghr, orghr_lwork = get_lapack_funcs(('orghr', 'orghr_lwork'), (a1,))
lwork = _compute_lwork(orghr_lwork, n, lo=lo, hi=hi)
q, info = orghr(a=hq, tau=tau, lo=lo, hi=hi, lwork=lwork, overwrite_a=1)
if info < 0:
raise ValueError('illegal value in %d-th argument of internal orghr '
'(hessenberg)' % -info)
return h, q
|