1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
! -*- f90 -*-
! Signatures for f2py-wrappers of FORTRAN LEVEL 3 BLAS functions.
!
! Author: Pearu Peterson
! Created: April 2002
! Modified: Fabian Pedregosa, 2011; Evgeni Burovski, 2013
!
! Implemented:
! gemm, symm, hemm, syrk, herk, syr2k, her2k, trmm
!
! Not Implemented:
! trsm
!
subroutine <prefix>gemm(m,n,k,alpha,a,b,beta,c,trans_a,trans_b,lda,ka,ldb,kb)
! Computes a scalar-matrix-matrix product and adds the result to a
! scalar-matrix product.
!
! c = gemm(alpha,a,b,beta=0,c=0,trans_a=0,trans_b=0,overwrite_c=0)
! Calculate C <- alpha * op(A) * op(B) + beta * C
callstatement (*f2py_func)((trans_a?(trans_a==2?"C":"T"):"N"), &
(trans_b?(trans_b==2?"C":"T"):"N"),&m,&n,&k,&alpha,a,&lda,b,&ldb,&beta,c,&m)
callprotoargument char*,char*,int*,int*,int*,<ctype>*,<ctype>*,int*,<ctype>*, &
int*,<ctype>*,<ctype>*,int*
integer optional,intent(in),check(trans_a>=0 && trans_a <=2) :: trans_a = 0
integer optional,intent(in),check(trans_b>=0 && trans_b <=2) :: trans_b = 0
<ftype> intent(in) :: alpha
<ftype> intent(in),optional :: beta = <0.0,\0,(0.0\,0.0),\2>
<ftype> dimension(lda,ka),intent(in) :: a
<ftype> dimension(ldb,kb),intent(in) :: b
<ftype> dimension(m,n),intent(in,out,copy),depend(m,n),optional :: c
check(shape(c,0)==m && shape(c,1)==n) :: c
integer depend(a),intent(hide) :: lda = shape(a,0)
integer depend(a),intent(hide) :: ka = shape(a,1)
integer depend(b),intent(hide) :: ldb = shape(b,0)
integer depend(b),intent(hide) :: kb = shape(b,1)
integer depend(a,trans_a,ka,lda),intent(hide):: m = (trans_a?ka:lda)
integer depend(a,trans_a,ka,lda),intent(hide):: k = (trans_a?lda:ka)
integer depend(b,trans_b,kb,ldb,k),intent(hide),check(trans_b?kb==k:ldb==k) :: &
n = (trans_b?ldb:kb)
end subroutine <prefix>gemm
! <ftype6=real,double precision,complex,double complex,\2,\3>
! <ctype6=float,double,complex_float,complex_double,\2,\3>
! <prefix6=s,d,c,z,c,z>
subroutine <prefix6><sy,\0,\0,\0,he,he>mm(m, n, alpha, a, b, beta, c, side, lower, lda, ka, ldb, kb)
! Computes a scalar-matrix-matrix product and adds the result to a
! scalar-matrix product, where one of the matrices is symmetric.
!
! c = symm(alpha,a,b,beta=0,c=0,side=0,lower=0,overwrite_c=0)
! Calculate C <- alpha * A * B + beta * C, or
! C <- alpha * B * A + beta * C
callstatement (*f2py_func)((side?"R":"L"), &
(lower?"L":"U"),&m,&n,&alpha,a,&lda,b,&ldb,&beta,c,&m)
callprotoargument char*,char*,int*,int*,<ctype6>*,<ctype6>*,int*,<ctype6>*, &
int*,<ctype6>*,<ctype6>*,int*
integer optional, intent(in),check(side==0||side==1) :: side = 0
integer optional, intent(in),check(lower==0||lower==1) :: lower = 0
<ftype6> intent(in) :: alpha
<ftype6> intent(in),optional :: beta = <0.0,\0,(0.0\,0.0),\2,\2,\2>
<ftype6> dimension(lda,ka),intent(in) :: a
<ftype6> dimension(ldb,kb),intent(in) :: b
<ftype6> dimension(m,n),intent(in,out,copy),depend(m,n), optional :: c
check(shape(c,0)==m && shape(c,1)==n) :: c
integer depend(a), intent(hide) :: lda=shape(a,0)
integer depend(a), intent(hide) :: ka = shape(a,1)
integer depend(b), intent(hide) :: ldb = shape(b,0)
integer depend(b), intent(hide) :: kb = shape(b, 1)
integer depend(side, a, lda, b, ldb), intent(hide) :: m= (side ? ldb : lda)
integer depend(side, a, lda, ka, b, ldb, kb), intent(hide), &
check(side? kb==lda : ka==ldb) :: n = (side ? ka : kb)
end subroutine <prefix6><sy,\0,\0,\0,he,he>mm
subroutine <prefix6><sy,\0,\0,\0,he,he>rk(n,k,alpha,a,beta,c,trans,lower,lda,ka)
! performs one of the symmetric rank k operations
! C := alpha*A*A**T + beta*C, or C := alpha*A**T*A + beta*C,
!
! c = syrk(alpha,a,beta=0,c=0,trans=0,lower=0,overwrite_c=0)
!
callstatement (*f2py_func)((lower?"L":"U"), &
(trans?(trans==2?"C":"T"):"N"), &n,&k,&alpha,a,&lda,&beta,c,&n)
callprotoargument char*,char*,int*,int*,<ctype6>*,<ctype6>*,int*,<ctype6>*, &
<ctype6>*,int*
integer optional, intent(in),check(lower==0||lower==1) :: lower = 0
integer optional,intent(in),check(trans>=0 && trans <=2) :: trans = 0
<ftype6> intent(in) :: alpha
<ftype6> intent(in),optional :: beta = <0.0,\0,(0.0\,0.0),\2,\2,\2>
<ftype6> dimension(lda,ka),intent(in) :: a
<ftype6> dimension(n,n),intent(in,out,copy),depend(n),optional :: c
check(shape(c,0)==n && shape(c,1)==n) :: c
integer depend(a),intent(hide) :: lda = shape(a,0)
integer depend(a),intent(hide) :: ka = shape(a,1)
integer depend(a, trans, ka, lda), intent(hide) :: n = (trans ? ka : lda)
integer depend(a, trans, ka, lda), intent(hide) :: k = (trans ? lda : ka)
end subroutine <prefix6><sy,\0,\0,\0,he,he>rk
subroutine <prefix6><sy,\0,\0,\0,he,he>r2k(n,k,alpha,a,b,beta,c,trans,lower,lda,ka, ldb, kb)
! performs one of the symmetric/hermitian rank 2k operations
! C := alpha*A*B**T + alpha*B*A**T + beta*C, or
! C:=alpha*A**T*B + alpha*B**T*A + beta*C
!
! c = syr2k(alpha,a,b,beta=0,c=0,trans=0,lower=0,overwrite_c=0)
!
callstatement (*f2py_func)((lower?"L":"U"), &
(trans?(trans==2?"C":"T"):"N"), &n,&k,&alpha,a,&lda,b,&ldb,&beta,c,&n)
callprotoargument char*,char*,int*,int*,<ctype6>*,<ctype6>*,int*,<ctype6>*,int*, &
<ctype6>*, <ctype6>*,int*
integer optional, intent(in),check(lower==0||lower==1) :: lower = 0
integer optional,intent(in),check(trans>=0 && trans <=2) :: trans = 0
<ftype6> intent(in) :: alpha
<ftype6> intent(in),optional :: beta = <0.0,\0,(0.0\,0.0),\2,\2,\2>
<ftype6> dimension(lda, ka), intent(in) :: a
<ftype6> dimension(ldb, kb), intent(in) :: b
<ftype6> dimension(n,n),intent(in,out,copy),depend(n),optional :: c
check(shape(c,0)==n && shape(c,1)==n) :: c
integer depend(a),intent(hide) :: lda = shape(a,0)
integer depend(a),intent(hide) :: ka = shape(a,1)
integer depend(b),intent(hide) :: ldb = shape(b,0)
integer depend(b),intent(hide) :: kb = shape(b,1)
integer depend(a, trans, ka, lda), intent(hide) :: n = (trans ? ka : lda)
integer depend(a, b, trans, ka, lda, kb, ldb), intent(hide), &
check(trans ? lda==ldb: ka==kb) :: k = (trans ? lda : ka)
end subroutine <prefix><sy,\0,\0,\0,he,he>r2k
subroutine <prefix>trmm(m, n, k, alpha, a, b, lda, ldb, side, lower, trans_a, diag)
! performs one of the matrix-matrix operations
!
! B := alpha*op( A )*B, or B := alpha*B*op( A )
!
! where alpha is a scalar, B is an m by n matrix, A is a unit, or
! non-unit, upper or lower triangular matrix and op( A ) is one of
!
! op( A ) = A or op( A ) = A**T or op( A ) = A**H.
!
! c = trmm(alpha, a, b, side=0, lower=0, trans_a=0, diag=0)
callstatement (*f2py_func)((side?"R":"L"), (lower?"L":"U"), &
(trans_a?(trans_a==2?"C":"T"):"N"), (diag?"U":"N"), &m, &n, &alpha, a, &lda, b, &ldb)
callprotoargument char*, char*, char*, char*, int*, int*, <ctype>*,<ctype>*,int*,<ctype>*, int*
integer optional, intent(in), check(side==0 || side==1) :: side = 0
integer optional, intent(in), check(lower==0 || lower==1) :: lower = 0
integer optional, intent(in), check(trans_a>=0 && trans_a <=2) :: trans_a = 0
integer optional, intent(in), check(diag==0 || diag==1) :: diag = 0
<ftype> intent(in) :: alpha
<ftype> dimension(lda, k), intent(in) :: a
<ftype> dimension(ldb, n), intent(in, out, copy) :: b
integer depend(a), intent(hide) :: lda = shape(a, 0)
integer depend(a), intent(hide) :: k = shape(a, 1)
integer depend(b), intent(hide) :: ldb = shape(b, 0)
integer depend(b), intent(hide) :: n = shape(b, 1)
integer depend(side, a, b, n, k), intent(hide) :: m = (side ? n : k)
end subroutine <prefix>trmm
|