1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
#******************************************************************************
# Copyright (C) 2013 Kenneth L. Ho
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer. Redistributions in binary
# form must reproduce the above copyright notice, this list of conditions and
# the following disclaimer in the documentation and/or other materials
# provided with the distribution.
#
# None of the names of the copyright holders may be used to endorse or
# promote products derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#******************************************************************************
import scipy.linalg.interpolative as pymatrixid
import numpy as np
from scipy.linalg import hilbert, svdvals, norm
from scipy.sparse.linalg import aslinearoperator
import time
from numpy.testing import assert_, assert_allclose, assert_raises
def _debug_print(s):
if 0:
print(s)
class TestInterpolativeDecomposition(object):
def test_id(self):
for dtype in [np.float64, np.complex128]:
yield self.check_id, dtype
def check_id(self, dtype):
# Test ID routines on a Hilbert matrix.
# set parameters
n = 300
eps = 1e-12
# construct Hilbert matrix
A = hilbert(n).astype(dtype)
if np.issubdtype(dtype, np.complexfloating):
A = A * (1 + 1j)
L = aslinearoperator(A)
# find rank
S = np.linalg.svd(A, compute_uv=False)
try:
rank = np.nonzero(S < eps)[0][0]
except:
rank = n
# print input summary
_debug_print("Hilbert matrix dimension: %8i" % n)
_debug_print("Working precision: %8.2e" % eps)
_debug_print("Rank to working precision: %8i" % rank)
# set print format
fmt = "%8.2e (s) / %5s"
# test real ID routines
_debug_print("-----------------------------------------")
_debug_print("Real ID routines")
_debug_print("-----------------------------------------")
# fixed precision
_debug_print("Calling iddp_id / idzp_id ...",)
t0 = time.clock()
k, idx, proj = pymatrixid.interp_decomp(A, eps, rand=False)
t = time.clock() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddp_aid / idzp_aid ...",)
t0 = time.clock()
k, idx, proj = pymatrixid.interp_decomp(A, eps)
t = time.clock() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddp_rid / idzp_rid ...",)
t0 = time.clock()
k, idx, proj = pymatrixid.interp_decomp(L, eps)
t = time.clock() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
# fixed rank
k = rank
_debug_print("Calling iddr_id / idzr_id ...",)
t0 = time.clock()
idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
t = time.clock() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddr_aid / idzr_aid ...",)
t0 = time.clock()
idx, proj = pymatrixid.interp_decomp(A, k)
t = time.clock() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddr_rid / idzr_rid ...",)
t0 = time.clock()
idx, proj = pymatrixid.interp_decomp(L, k)
t = time.clock() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
# check skeleton and interpolation matrices
idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
P = pymatrixid.reconstruct_interp_matrix(idx, proj)
B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
assert_(np.allclose(B, A[:,idx[:k]], eps))
assert_(np.allclose(B.dot(P), A, eps))
# test SVD routines
_debug_print("-----------------------------------------")
_debug_print("SVD routines")
_debug_print("-----------------------------------------")
# fixed precision
_debug_print("Calling iddp_svd / idzp_svd ...",)
t0 = time.clock()
U, S, V = pymatrixid.svd(A, eps, rand=False)
t = time.clock() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddp_asvd / idzp_asvd...",)
t0 = time.clock()
U, S, V = pymatrixid.svd(A, eps)
t = time.clock() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddp_rsvd / idzp_rsvd...",)
t0 = time.clock()
U, S, V = pymatrixid.svd(L, eps)
t = time.clock() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
# fixed rank
k = rank
_debug_print("Calling iddr_svd / idzr_svd ...",)
t0 = time.clock()
U, S, V = pymatrixid.svd(A, k, rand=False)
t = time.clock() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddr_asvd / idzr_asvd ...",)
t0 = time.clock()
U, S, V = pymatrixid.svd(A, k)
t = time.clock() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddr_rsvd / idzr_rsvd ...",)
t0 = time.clock()
U, S, V = pymatrixid.svd(L, k)
t = time.clock() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
# ID to SVD
idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
Up, Sp, Vp = pymatrixid.id_to_svd(A[:, idx[:k]], idx, proj)
B = U.dot(np.diag(S).dot(V.T.conj()))
assert_(np.allclose(A, B, eps))
# Norm estimates
s = svdvals(A)
norm_2_est = pymatrixid.estimate_spectral_norm(A)
assert_(np.allclose(norm_2_est, s[0], 1e-6))
B = A.copy()
B[:,0] *= 1.2
s = svdvals(A - B)
norm_2_est = pymatrixid.estimate_spectral_norm_diff(A, B)
assert_(np.allclose(norm_2_est, s[0], 1e-6))
# Rank estimates
B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=dtype)
for M in [A, B]:
ML = aslinearoperator(M)
rank_tol = 1e-9
rank_np = np.linalg.matrix_rank(M, norm(M, 2)*rank_tol)
rank_est = pymatrixid.estimate_rank(M, rank_tol)
rank_est_2 = pymatrixid.estimate_rank(ML, rank_tol)
assert_(rank_est >= rank_np)
assert_(rank_est <= rank_np + 10)
assert_(rank_est_2 >= rank_np - 4)
assert_(rank_est_2 <= rank_np + 4)
def test_rand(self):
pymatrixid.seed('default')
assert_(np.allclose(pymatrixid.rand(2), [0.8932059, 0.64500803], 1e-4))
pymatrixid.seed(1234)
x1 = pymatrixid.rand(2)
assert_(np.allclose(x1, [0.7513823, 0.06861718], 1e-4))
np.random.seed(1234)
pymatrixid.seed()
x2 = pymatrixid.rand(2)
np.random.seed(1234)
pymatrixid.seed(np.random.rand(55))
x3 = pymatrixid.rand(2)
assert_allclose(x1, x2)
assert_allclose(x1, x3)
def test_badcall(self):
A = hilbert(5).astype(np.float32)
assert_raises(ValueError, pymatrixid.interp_decomp, A, 1e-6, rand=False)
def test_rank_too_large(self):
# svd(array, k) should not segfault
a = np.ones((4, 3))
with assert_raises(ValueError):
pymatrixid.svd(a, 4)
|