1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
"""
Functions which are common and require SciPy Base and Level 1 SciPy
(special, linalg)
"""
from __future__ import division, print_function, absolute_import
import numpy
import numpy as np
from numpy import (exp, log, asarray, arange, newaxis, hstack, product, array,
zeros, eye, poly1d, r_, fromstring, isfinite,
squeeze, amax, reshape, sign, broadcast_arrays)
from scipy._lib._util import _asarray_validated
__all__ = ['logsumexp', 'central_diff_weights', 'derivative', 'pade', 'lena',
'ascent', 'face']
def logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False):
"""Compute the log of the sum of exponentials of input elements.
Parameters
----------
a : array_like
Input array.
axis : None or int or tuple of ints, optional
Axis or axes over which the sum is taken. By default `axis` is None,
and all elements are summed. Tuple of ints is not accepted if NumPy
version is lower than 1.7.0.
.. versionadded:: 0.11.0
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original array.
.. versionadded:: 0.15.0
b : array-like, optional
Scaling factor for exp(`a`) must be of the same shape as `a` or
broadcastable to `a`. These values may be negative in order to
implement subtraction.
.. versionadded:: 0.12.0
return_sign : bool, optional
If this is set to True, the result will be a pair containing sign
information; if False, results that are negative will be returned
as NaN. Default is False (no sign information).
.. versionadded:: 0.16.0
Returns
-------
res : ndarray
The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically
more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))``
is returned.
sgn : ndarray
If return_sign is True, this will be an array of floating-point
numbers matching res and +1, 0, or -1 depending on the sign
of the result. If False, only one result is returned.
See Also
--------
numpy.logaddexp, numpy.logaddexp2
Notes
-----
Numpy has a logaddexp function which is very similar to `logsumexp`, but
only handles two arguments. `logaddexp.reduce` is similar to this
function, but may be less stable.
Examples
--------
>>> from scipy.misc import logsumexp
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107
With weights
>>> a = np.arange(10)
>>> b = np.arange(10, 0, -1)
>>> logsumexp(a, b=b)
9.9170178533034665
>>> np.log(np.sum(b*np.exp(a)))
9.9170178533034647
Returning a sign flag
>>> logsumexp([1,2],b=[1,-1],return_sign=True)
(1.5413248546129181, -1.0)
Notice that `logsumexp` does not directly support masked arrays. To use it
on a masked array, convert the mask into zero weights:
>>> a = np.ma.array([np.log(2), 2, np.log(3)],
... mask=[False, True, False])
>>> b = (~a.mask).astype(int)
>>> logsumexp(a.data, b=b), np.log(5)
1.6094379124341005, 1.6094379124341005
"""
a = _asarray_validated(a, check_finite=False)
if b is not None:
a, b = broadcast_arrays(a,b)
if np.any(b == 0):
a = a + 0. # promote to at least float
a[b == 0] = -np.inf
a_max = amax(a, axis=axis, keepdims=True)
if a_max.ndim > 0:
a_max[~isfinite(a_max)] = 0
elif not isfinite(a_max):
a_max = 0
if b is not None:
b = asarray(b)
tmp = b * exp(a - a_max)
else:
tmp = exp(a - a_max)
# suppress warnings about log of zero
with np.errstate(divide='ignore'):
s = np.sum(tmp, axis=axis, keepdims=keepdims)
if return_sign:
sgn = sign(s)
s *= sgn # /= makes more sense but we need zero -> zero
out = log(s)
if not keepdims:
a_max = squeeze(a_max, axis=axis)
out += a_max
if return_sign:
return out, sgn
else:
return out
def central_diff_weights(Np, ndiv=1):
"""
Return weights for an Np-point central derivative.
Assumes equally-spaced function points.
If weights are in the vector w, then
derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx)
Parameters
----------
Np : int
Number of points for the central derivative.
ndiv : int, optional
Number of divisions. Default is 1.
Notes
-----
Can be inaccurate for large number of points.
"""
if Np < ndiv + 1:
raise ValueError("Number of points must be at least the derivative order + 1.")
if Np % 2 == 0:
raise ValueError("The number of points must be odd.")
from scipy import linalg
ho = Np >> 1
x = arange(-ho,ho+1.0)
x = x[:,newaxis]
X = x**0.0
for k in range(1,Np):
X = hstack([X,x**k])
w = product(arange(1,ndiv+1),axis=0)*linalg.inv(X)[ndiv]
return w
def derivative(func, x0, dx=1.0, n=1, args=(), order=3):
"""
Find the n-th derivative of a function at a point.
Given a function, use a central difference formula with spacing `dx` to
compute the `n`-th derivative at `x0`.
Parameters
----------
func : function
Input function.
x0 : float
The point at which `n`-th derivative is found.
dx : float, optional
Spacing.
n : int, optional
Order of the derivative. Default is 1.
args : tuple, optional
Arguments
order : int, optional
Number of points to use, must be odd.
Notes
-----
Decreasing the step size too small can result in round-off error.
Examples
--------
>>> from scipy.misc import derivative
>>> def f(x):
... return x**3 + x**2
>>> derivative(f, 1.0, dx=1e-6)
4.9999999999217337
"""
if order < n + 1:
raise ValueError("'order' (the number of points used to compute the derivative), "
"must be at least the derivative order 'n' + 1.")
if order % 2 == 0:
raise ValueError("'order' (the number of points used to compute the derivative) "
"must be odd.")
# pre-computed for n=1 and 2 and low-order for speed.
if n == 1:
if order == 3:
weights = array([-1,0,1])/2.0
elif order == 5:
weights = array([1,-8,0,8,-1])/12.0
elif order == 7:
weights = array([-1,9,-45,0,45,-9,1])/60.0
elif order == 9:
weights = array([3,-32,168,-672,0,672,-168,32,-3])/840.0
else:
weights = central_diff_weights(order,1)
elif n == 2:
if order == 3:
weights = array([1,-2.0,1])
elif order == 5:
weights = array([-1,16,-30,16,-1])/12.0
elif order == 7:
weights = array([2,-27,270,-490,270,-27,2])/180.0
elif order == 9:
weights = array([-9,128,-1008,8064,-14350,8064,-1008,128,-9])/5040.0
else:
weights = central_diff_weights(order,2)
else:
weights = central_diff_weights(order, n)
val = 0.0
ho = order >> 1
for k in range(order):
val += weights[k]*func(x0+(k-ho)*dx,*args)
return val / product((dx,)*n,axis=0)
def pade(an, m):
"""
Return Pade approximation to a polynomial as the ratio of two polynomials.
Parameters
----------
an : (N,) array_like
Taylor series coefficients.
m : int
The order of the returned approximating polynomials.
Returns
-------
p, q : Polynomial class
The pade approximation of the polynomial defined by `an` is
`p(x)/q(x)`.
Examples
--------
>>> from scipy import misc
>>> e_exp = [1.0, 1.0, 1.0/2.0, 1.0/6.0, 1.0/24.0, 1.0/120.0]
>>> p, q = misc.pade(e_exp, 2)
>>> e_exp.reverse()
>>> e_poly = np.poly1d(e_exp)
Compare ``e_poly(x)`` and the pade approximation ``p(x)/q(x)``
>>> e_poly(1)
2.7166666666666668
>>> p(1)/q(1)
2.7179487179487181
"""
from scipy import linalg
an = asarray(an)
N = len(an) - 1
n = N - m
if n < 0:
raise ValueError("Order of q <m> must be smaller than len(an)-1.")
Akj = eye(N+1, n+1)
Bkj = zeros((N+1, m), 'd')
for row in range(1, m+1):
Bkj[row,:row] = -(an[:row])[::-1]
for row in range(m+1, N+1):
Bkj[row,:] = -(an[row-m:row])[::-1]
C = hstack((Akj, Bkj))
pq = linalg.solve(C, an)
p = pq[:n+1]
q = r_[1.0, pq[n+1:]]
return poly1d(p[::-1]), poly1d(q[::-1])
def lena():
"""
Function that previously returned an example image
.. note:: Removed in 0.17
Parameters
----------
None
Returns
-------
None
Raises
------
RuntimeError
This functionality has been removed due to licensing reasons.
Notes
-----
The image previously returned by this function has an incompatible license
and has been removed from SciPy. Please use `face` or `ascent` instead.
See Also
--------
face, ascent
"""
raise RuntimeError('lena() is no longer included in SciPy, please use '
'ascent() or face() instead')
def ascent():
"""
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos
The image is derived from accent-to-the-top.jpg at
http://www.public-domain-image.com/people-public-domain-images-pictures/
Parameters
----------
None
Returns
-------
ascent : ndarray
convenient image to use for testing and demonstration
Examples
--------
>>> import scipy.misc
>>> ascent = scipy.misc.ascent()
>>> ascent.shape
(512, 512)
>>> ascent.max()
255
>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(ascent)
>>> plt.show()
"""
import pickle
import os
fname = os.path.join(os.path.dirname(__file__),'ascent.dat')
with open(fname, 'rb') as f:
ascent = array(pickle.load(f))
return ascent
def face(gray=False):
"""
Get a 1024 x 768, color image of a raccoon face.
raccoon-procyon-lotor.jpg at http://www.public-domain-image.com
Parameters
----------
gray : bool, optional
If True return 8-bit grey-scale image, otherwise return a color image
Returns
-------
face : ndarray
image of a racoon face
Examples
--------
>>> import scipy.misc
>>> face = scipy.misc.face()
>>> face.shape
(768, 1024, 3)
>>> face.max()
255
>>> face.dtype
dtype('uint8')
>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(face)
>>> plt.show()
"""
import bz2
import os
with open(os.path.join(os.path.dirname(__file__), 'face.dat'), 'rb') as f:
rawdata = f.read()
data = bz2.decompress(rawdata)
face = fromstring(data, dtype='uint8')
face.shape = (768, 1024, 3)
if gray is True:
face = (0.21 * face[:,:,0] + 0.71 * face[:,:,1] + 0.07 * face[:,:,2]).astype('uint8')
return face
|