1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import (assert_array_equal, assert_almost_equal,
assert_array_almost_equal, assert_equal, assert_)
from scipy.misc import pade, logsumexp, face, ascent
def test_pade_trivial():
nump, denomp = pade([1.0], 0)
assert_array_equal(nump.c, [1.0])
assert_array_equal(denomp.c, [1.0])
def test_pade_4term_exp():
# First four Taylor coefficients of exp(x).
# Unlike poly1d, the first array element is the zero-order term.
an = [1.0, 1.0, 0.5, 1.0/6]
nump, denomp = pade(an, 0)
assert_array_almost_equal(nump.c, [1.0/6, 0.5, 1.0, 1.0])
assert_array_almost_equal(denomp.c, [1.0])
nump, denomp = pade(an, 1)
assert_array_almost_equal(nump.c, [1.0/6, 2.0/3, 1.0])
assert_array_almost_equal(denomp.c, [-1.0/3, 1.0])
nump, denomp = pade(an, 2)
assert_array_almost_equal(nump.c, [1.0/3, 1.0])
assert_array_almost_equal(denomp.c, [1.0/6, -2.0/3, 1.0])
nump, denomp = pade(an, 3)
assert_array_almost_equal(nump.c, [1.0])
assert_array_almost_equal(denomp.c, [-1.0/6, 0.5, -1.0, 1.0])
def test_logsumexp():
# Test whether logsumexp() function correctly handles large inputs.
a = np.arange(200)
desired = np.log(np.sum(np.exp(a)))
assert_almost_equal(logsumexp(a), desired)
# Now test with large numbers
b = [1000, 1000]
desired = 1000.0 + np.log(2.0)
assert_almost_equal(logsumexp(b), desired)
n = 1000
b = np.ones(n) * 10000
desired = 10000.0 + np.log(n)
assert_almost_equal(logsumexp(b), desired)
x = np.array([1e-40] * 1000000)
logx = np.log(x)
X = np.vstack([x, x])
logX = np.vstack([logx, logx])
assert_array_almost_equal(np.exp(logsumexp(logX)), X.sum())
assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0))
assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1))
# Handling special values properly
assert_equal(logsumexp(np.inf), np.inf)
assert_equal(logsumexp(-np.inf), -np.inf)
assert_equal(logsumexp(np.nan), np.nan)
assert_equal(logsumexp([-np.inf, -np.inf]), -np.inf)
# Handling an array with different magnitudes on the axes
assert_array_almost_equal(logsumexp([[1e10, 1e-10],
[-1e10, -np.inf]], axis=-1),
[1e10, -1e10])
# Test keeping dimensions
assert_array_almost_equal(logsumexp([[1e10, 1e-10],
[-1e10, -np.inf]],
axis=-1,
keepdims=True),
[[1e10], [-1e10]])
# Test multiple axes
assert_array_almost_equal(logsumexp([[1e10, 1e-10],
[-1e10, -np.inf]],
axis=(-1,-2)),
1e10)
def test_logsumexp_b():
a = np.arange(200)
b = np.arange(200, 0, -1)
desired = np.log(np.sum(b*np.exp(a)))
assert_almost_equal(logsumexp(a, b=b), desired)
a = [1000, 1000]
b = [1.2, 1.2]
desired = 1000 + np.log(2 * 1.2)
assert_almost_equal(logsumexp(a, b=b), desired)
x = np.array([1e-40] * 100000)
b = np.linspace(1, 1000, 100000)
logx = np.log(x)
X = np.vstack((x, x))
logX = np.vstack((logx, logx))
B = np.vstack((b, b))
assert_array_almost_equal(np.exp(logsumexp(logX, b=B)), (B * X).sum())
assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=0)),
(B * X).sum(axis=0))
assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=1)),
(B * X).sum(axis=1))
def test_logsumexp_sign():
a = [1,1,1]
b = [1,-1,-1]
r, s = logsumexp(a, b=b, return_sign=True)
assert_almost_equal(r,1)
assert_equal(s,-1)
def test_logsumexp_sign_zero():
a = [1,1]
b = [1,-1]
r, s = logsumexp(a, b=b, return_sign=True)
assert_(not np.isfinite(r))
assert_(not np.isnan(r))
assert_(r < 0)
assert_equal(s,0)
def test_logsumexp_sign_shape():
a = np.ones((1,2,3,4))
b = np.ones_like(a)
r, s = logsumexp(a, axis=2, b=b, return_sign=True)
assert_equal(r.shape, s.shape)
assert_equal(r.shape, (1,2,4))
r, s = logsumexp(a, axis=(1,3), b=b, return_sign=True)
assert_equal(r.shape, s.shape)
assert_equal(r.shape, (1,3))
def test_logsumexp_shape():
a = np.ones((1, 2, 3, 4))
b = np.ones_like(a)
r = logsumexp(a, axis=2, b=b)
assert_equal(r.shape, (1, 2, 4))
r = logsumexp(a, axis=(1, 3), b=b)
assert_equal(r.shape, (1, 3))
def test_logsumexp_b_zero():
a = [1,10000]
b = [1,0]
assert_almost_equal(logsumexp(a, b=b), 1)
def test_logsumexp_b_shape():
a = np.zeros((4,1,2,1))
b = np.ones((3,1,5))
logsumexp(a, b=b)
def test_face():
assert_equal(face().shape, (768, 1024, 3))
def test_ascent():
assert_equal(ascent().shape, (512, 512))
|