File: test_common.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (172 lines) | stat: -rw-r--r-- 5,076 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from __future__ import division, print_function, absolute_import

import numpy as np
from numpy.testing import (assert_array_equal, assert_almost_equal,
                           assert_array_almost_equal, assert_equal, assert_)

from scipy.misc import pade, logsumexp, face, ascent


def test_pade_trivial():
    nump, denomp = pade([1.0], 0)
    assert_array_equal(nump.c, [1.0])
    assert_array_equal(denomp.c, [1.0])


def test_pade_4term_exp():
    # First four Taylor coefficients of exp(x).
    # Unlike poly1d, the first array element is the zero-order term.
    an = [1.0, 1.0, 0.5, 1.0/6]

    nump, denomp = pade(an, 0)
    assert_array_almost_equal(nump.c, [1.0/6, 0.5, 1.0, 1.0])
    assert_array_almost_equal(denomp.c, [1.0])

    nump, denomp = pade(an, 1)
    assert_array_almost_equal(nump.c, [1.0/6, 2.0/3, 1.0])
    assert_array_almost_equal(denomp.c, [-1.0/3, 1.0])

    nump, denomp = pade(an, 2)
    assert_array_almost_equal(nump.c, [1.0/3, 1.0])
    assert_array_almost_equal(denomp.c, [1.0/6, -2.0/3, 1.0])

    nump, denomp = pade(an, 3)
    assert_array_almost_equal(nump.c, [1.0])
    assert_array_almost_equal(denomp.c, [-1.0/6, 0.5, -1.0, 1.0])


def test_logsumexp():
    # Test whether logsumexp() function correctly handles large inputs.
    a = np.arange(200)
    desired = np.log(np.sum(np.exp(a)))
    assert_almost_equal(logsumexp(a), desired)

    # Now test with large numbers
    b = [1000, 1000]
    desired = 1000.0 + np.log(2.0)
    assert_almost_equal(logsumexp(b), desired)

    n = 1000
    b = np.ones(n) * 10000
    desired = 10000.0 + np.log(n)
    assert_almost_equal(logsumexp(b), desired)

    x = np.array([1e-40] * 1000000)
    logx = np.log(x)

    X = np.vstack([x, x])
    logX = np.vstack([logx, logx])
    assert_array_almost_equal(np.exp(logsumexp(logX)), X.sum())
    assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0))
    assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1))

    # Handling special values properly
    assert_equal(logsumexp(np.inf), np.inf)
    assert_equal(logsumexp(-np.inf), -np.inf)
    assert_equal(logsumexp(np.nan), np.nan)
    assert_equal(logsumexp([-np.inf, -np.inf]), -np.inf)

    # Handling an array with different magnitudes on the axes
    assert_array_almost_equal(logsumexp([[1e10, 1e-10],
                                         [-1e10, -np.inf]], axis=-1),
                              [1e10, -1e10])

    # Test keeping dimensions
    assert_array_almost_equal(logsumexp([[1e10, 1e-10],
                                         [-1e10, -np.inf]],
                                        axis=-1,
                                        keepdims=True),
                              [[1e10], [-1e10]])

    # Test multiple axes
    assert_array_almost_equal(logsumexp([[1e10, 1e-10],
                                         [-1e10, -np.inf]],
                                        axis=(-1,-2)),
                              1e10)


def test_logsumexp_b():
    a = np.arange(200)
    b = np.arange(200, 0, -1)
    desired = np.log(np.sum(b*np.exp(a)))
    assert_almost_equal(logsumexp(a, b=b), desired)

    a = [1000, 1000]
    b = [1.2, 1.2]
    desired = 1000 + np.log(2 * 1.2)
    assert_almost_equal(logsumexp(a, b=b), desired)

    x = np.array([1e-40] * 100000)
    b = np.linspace(1, 1000, 100000)
    logx = np.log(x)

    X = np.vstack((x, x))
    logX = np.vstack((logx, logx))
    B = np.vstack((b, b))
    assert_array_almost_equal(np.exp(logsumexp(logX, b=B)), (B * X).sum())
    assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=0)),
                                (B * X).sum(axis=0))
    assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=1)),
                                (B * X).sum(axis=1))

def test_logsumexp_sign():
    a = [1,1,1]
    b = [1,-1,-1]

    r, s = logsumexp(a, b=b, return_sign=True)
    assert_almost_equal(r,1)
    assert_equal(s,-1)

def test_logsumexp_sign_zero():
    a = [1,1]
    b = [1,-1]

    r, s = logsumexp(a, b=b, return_sign=True)
    assert_(not np.isfinite(r))
    assert_(not np.isnan(r))
    assert_(r < 0)
    assert_equal(s,0)

def test_logsumexp_sign_shape():
    a = np.ones((1,2,3,4))
    b = np.ones_like(a)

    r, s = logsumexp(a, axis=2, b=b, return_sign=True)

    assert_equal(r.shape, s.shape)
    assert_equal(r.shape, (1,2,4))

    r, s = logsumexp(a, axis=(1,3), b=b, return_sign=True)

    assert_equal(r.shape, s.shape)
    assert_equal(r.shape, (1,3))

def test_logsumexp_shape():
    a = np.ones((1, 2, 3, 4))
    b = np.ones_like(a)

    r = logsumexp(a, axis=2, b=b)
    assert_equal(r.shape, (1, 2, 4))

    r = logsumexp(a, axis=(1, 3), b=b)
    assert_equal(r.shape, (1, 3))

def test_logsumexp_b_zero():
    a = [1,10000]
    b = [1,0]

    assert_almost_equal(logsumexp(a, b=b), 1)

def test_logsumexp_b_shape():
    a = np.zeros((4,1,2,1))
    b = np.ones((3,1,5))

    logsumexp(a, b=b)


def test_face():
    assert_equal(face().shape, (768, 1024, 3))


def test_ascent():
    assert_equal(ascent().shape, (512, 512))