1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
from __future__ import division, print_function, absolute_import
import os.path
import tempfile
import shutil
import numpy as np
import warnings
import glob
from numpy.testing import (assert_equal, dec, decorate_methods,
TestCase, run_module_suite, assert_allclose,
assert_array_equal)
from scipy import misc
try:
import PIL.Image
except ImportError:
_have_PIL = False
else:
_have_PIL = True
# Function / method decorator for skipping PIL tests on import failure
_pilskip = dec.skipif(not _have_PIL, 'Need to import PIL for this test')
datapath = os.path.dirname(__file__)
class TestPILUtil(TestCase):
def test_imresize(self):
im = np.random.random((10, 20))
for T in np.sctypes['float'] + [float]:
# 1.1 rounds to below 1.1 for float16, 1.101 works
im1 = misc.imresize(im, T(1.101))
assert_equal(im1.shape, (11, 22))
def test_imresize2(self):
im = np.random.random((20, 30))
im2 = misc.imresize(im, (30, 40), interp='bicubic')
assert_equal(im2.shape, (30, 40))
def test_imresize3(self):
im = np.random.random((15, 30))
im2 = misc.imresize(im, (30, 60), interp='nearest')
assert_equal(im2.shape, (30, 60))
def test_imresize4(self):
im = np.array([[1, 2],
[3, 4]])
# Check that resizing by target size, float and int are the same
im2 = misc.imresize(im, (4, 4), mode='F') # output size
im3 = misc.imresize(im, 2., mode='F') # fraction
im4 = misc.imresize(im, 200, mode='F') # percentage
assert_equal(im2, im3)
assert_equal(im2, im4)
def test_imresize5(self):
im = np.random.random((25, 15))
im2 = misc.imresize(im, (30, 60), interp='lanczos')
assert_equal(im2.shape, (30, 60))
def test_bytescale(self):
x = np.array([0, 1, 2], np.uint8)
y = np.array([0, 1, 2])
assert_equal(misc.bytescale(x), x)
assert_equal(misc.bytescale(y), [0, 127, 255])
def test_bytescale_keywords(self):
x = np.array([40, 60, 120, 200, 300, 500])
res_lowhigh = misc.bytescale(x, low=10, high=143)
assert_equal(res_lowhigh, [10, 16, 33, 56, 85, 143])
res_cmincmax = misc.bytescale(x, cmin=60, cmax=300)
assert_equal(res_cmincmax, [0, 0, 64, 149, 255, 255])
assert_equal(misc.bytescale(np.array([3, 3, 3]), low=4), [4, 4, 4])
def test_imsave(self):
picdir = os.path.join(datapath, "data")
for png in glob.iglob(picdir + "/*.png"):
with warnings.catch_warnings(record=True): # PIL ResourceWarning
img = misc.imread(png)
tmpdir = tempfile.mkdtemp()
try:
fn1 = os.path.join(tmpdir, 'test.png')
fn2 = os.path.join(tmpdir, 'testimg')
# PIL ResourceWarning
with warnings.catch_warnings(record=True):
misc.imsave(fn1, img)
misc.imsave(fn2, img, 'PNG')
# PIL ResourceWarning
with warnings.catch_warnings(record=True):
data1 = misc.imread(fn1)
data2 = misc.imread(fn2)
assert_allclose(data1, img)
assert_allclose(data2, img)
assert_equal(data1.shape, img.shape)
assert_equal(data2.shape, img.shape)
finally:
shutil.rmtree(tmpdir)
decorate_methods(TestPILUtil, _pilskip)
def tst_fromimage(filename, irange, shape):
fp = open(filename, "rb")
img = misc.fromimage(PIL.Image.open(fp))
fp.close()
imin, imax = irange
assert_equal(img.min(), imin)
assert_equal(img.max(), imax)
assert_equal(img.shape, shape)
@_pilskip
def test_fromimage():
# Test generator for parametric tests
# Tuples in the list are (filename, (datamin, datamax), shape).
files = [('icon.png', (0, 255), (48, 48, 4)),
('icon_mono.png', (0, 255), (48, 48, 4)),
('icon_mono_flat.png', (0, 255), (48, 48, 3))]
for fn, irange, shape in files:
yield tst_fromimage, os.path.join(datapath, 'data', fn), irange, shape
@_pilskip
def test_imread_indexed_png():
# The file `foo3x5x4indexed.png` was created with this array
# (3x5 is (height)x(width)):
data = np.array([[[127, 0, 255, 255],
[127, 0, 255, 255],
[127, 0, 255, 255],
[127, 0, 255, 255],
[127, 0, 255, 255]],
[[192, 192, 255, 0],
[192, 192, 255, 0],
[0, 0, 255, 0],
[0, 0, 255, 0],
[0, 0, 255, 0]],
[[0, 31, 255, 255],
[0, 31, 255, 255],
[0, 31, 255, 255],
[0, 31, 255, 255],
[0, 31, 255, 255]]], dtype=np.uint8)
filename = os.path.join(datapath, 'data', 'foo3x5x4indexed.png')
im = misc.imread(filename)
assert_array_equal(im, data)
@_pilskip
def test_imread_1bit():
# box1.png is a 48x48 grayscale image with bit depth 1.
# The border pixels are 1 and the rest are 0.
filename = os.path.join(datapath, 'data', 'box1.png')
with open(filename, 'rb') as f:
im = misc.imread(f)
assert_equal(im.dtype, np.uint8)
expected = np.zeros((48, 48), dtype=np.uint8)
# When scaled up from 1 bit to 8 bits, 1 becomes 255.
expected[:, 0] = 255
expected[:, -1] = 255
expected[0, :] = 255
expected[-1, :] = 255
assert_equal(im, expected)
@_pilskip
def test_imread_2bit():
# blocks2bit.png is a 12x12 grayscale image with bit depth 2.
# The pattern is 4 square subblocks of size 6x6. Upper left
# is all 0, upper right is all 1, lower left is all 2, lower
# right is all 3.
# When scaled up to 8 bits, the values become [0, 85, 170, 255].
filename = os.path.join(datapath, 'data', 'blocks2bit.png')
with open(filename, 'rb') as f:
im = misc.imread(f)
assert_equal(im.dtype, np.uint8)
expected = np.zeros((12, 12), dtype=np.uint8)
expected[:6, 6:] = 85
expected[6:, :6] = 170
expected[6:, 6:] = 255
assert_equal(im, expected)
@_pilskip
def test_imread_4bit():
# pattern4bit.png is a 12(h) x 31(w) grayscale image with bit depth 4.
# The value in row j and column i is maximum(j, i) % 16.
# When scaled up to 8 bits, the values become [0, 17, 34, ..., 255].
filename = os.path.join(datapath, 'data', 'pattern4bit.png')
with open(filename, 'rb') as f:
im = misc.imread(f)
assert_equal(im.dtype, np.uint8)
# When the oldest supported version of numpy is 1.7, the following
# line can be change to
# j, i = np.meshgrid(np.arange(12), np.arange(31), indexing='ij')
j, i = [k.T for k in np.meshgrid(np.arange(12), np.arange(31))]
expected = 17*(np.maximum(j, i) % 16).astype(np.uint8)
assert_equal(im, expected)
if __name__ == "__main__":
run_module_suite()
|