1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
''' Some tests for filters '''
from __future__ import division, print_function, absolute_import
import sys
import numpy as np
from numpy.testing import (assert_equal, assert_raises, assert_allclose,
assert_array_equal, TestCase, run_module_suite)
import scipy.ndimage as sndi
def test_ticket_701():
# Test generic filter sizes
arr = np.arange(4).reshape((2,2))
func = lambda x: np.min(x)
res = sndi.generic_filter(arr, func, size=(1,1))
# The following raises an error unless ticket 701 is fixed
res2 = sndi.generic_filter(arr, func, size=1)
assert_equal(res, res2)
def test_gh_5430():
# At least one of these raises an error unless gh-5430 is
# fixed. In py2k an int is implemented using a C long, so
# which one fails depends on your system. In py3k there is only
# one arbitrary precision integer type, so both should fail.
sigma = np.int32(1)
out = sndi._ni_support._normalize_sequence(sigma, 1)
assert_equal(out, [sigma])
sigma = np.int64(1)
out = sndi._ni_support._normalize_sequence(sigma, 1)
assert_equal(out, [sigma])
# This worked before; make sure it still works
sigma = 1
out = sndi._ni_support._normalize_sequence(sigma, 1)
assert_equal(out, [sigma])
# This worked before; make sure it still works
sigma = [1, 1]
out = sndi._ni_support._normalize_sequence(sigma, 2)
assert_equal(out, sigma)
# Also include the OPs original example to make sure we fixed the issue
x = np.random.normal(size=(256, 256))
perlin = np.zeros_like(x)
for i in 2**np.arange(6):
perlin += sndi.filters.gaussian_filter(x, i, mode="wrap") * i**2
# This also fixes gh-4106, show that the OPs example now runs.
x = np.int64(21)
sndi._ni_support._normalize_sequence(x, 0)
def test_orders_gauss():
# Check order inputs to Gaussians
arr = np.zeros((1,))
yield assert_equal, 0, sndi.gaussian_filter(arr, 1, order=0)
yield assert_equal, 0, sndi.gaussian_filter(arr, 1, order=3)
yield assert_raises, ValueError, sndi.gaussian_filter, arr, 1, -1
yield assert_raises, ValueError, sndi.gaussian_filter, arr, 1, 4
yield assert_equal, 0, sndi.gaussian_filter1d(arr, 1, axis=-1, order=0)
yield assert_equal, 0, sndi.gaussian_filter1d(arr, 1, axis=-1, order=3)
yield assert_raises, ValueError, sndi.gaussian_filter1d, arr, 1, -1, -1
yield assert_raises, ValueError, sndi.gaussian_filter1d, arr, 1, -1, 4
def test_valid_origins():
"""Regression test for #1311."""
func = lambda x: np.mean(x)
data = np.array([1,2,3,4,5], dtype=np.float64)
assert_raises(ValueError, sndi.generic_filter, data, func, size=3,
origin=2)
func2 = lambda x, y: np.mean(x + y)
assert_raises(ValueError, sndi.generic_filter1d, data, func,
filter_size=3, origin=2)
assert_raises(ValueError, sndi.percentile_filter, data, 0.2, size=3,
origin=2)
for filter in [sndi.uniform_filter, sndi.minimum_filter,
sndi.maximum_filter, sndi.maximum_filter1d,
sndi.median_filter, sndi.minimum_filter1d]:
# This should work, since for size == 3, the valid range for origin is
# -1 to 1.
list(filter(data, 3, origin=-1))
list(filter(data, 3, origin=1))
# Just check this raises an error instead of silently accepting or
# segfaulting.
assert_raises(ValueError, filter, data, 3, origin=2)
def test_gaussian_truncate():
# Test that Gaussian filters can be truncated at different widths.
# These tests only check that the result has the expected number
# of nonzero elements.
arr = np.zeros((100, 100), float)
arr[50, 50] = 1
num_nonzeros_2 = (sndi.gaussian_filter(arr, 5, truncate=2) > 0).sum()
assert_equal(num_nonzeros_2, 21**2)
num_nonzeros_5 = (sndi.gaussian_filter(arr, 5, truncate=5) > 0).sum()
assert_equal(num_nonzeros_5, 51**2)
# Test truncate when sigma is a sequence.
f = sndi.gaussian_filter(arr, [0.5, 2.5], truncate=3.5)
fpos = f > 0
n0 = fpos.any(axis=0).sum()
# n0 should be 2*int(2.5*3.5 + 0.5) + 1
assert_equal(n0, 19)
n1 = fpos.any(axis=1).sum()
# n1 should be 2*int(0.5*3.5 + 0.5) + 1
assert_equal(n1, 5)
# Test gaussian_filter1d.
x = np.zeros(51)
x[25] = 1
f = sndi.gaussian_filter1d(x, sigma=2, truncate=3.5)
n = (f > 0).sum()
assert_equal(n, 15)
# Test gaussian_laplace
y = sndi.gaussian_laplace(x, sigma=2, truncate=3.5)
nonzero_indices = np.where(y != 0)[0]
n = nonzero_indices.ptp() + 1
assert_equal(n, 15)
# Test gaussian_gradient_magnitude
y = sndi.gaussian_gradient_magnitude(x, sigma=2, truncate=3.5)
nonzero_indices = np.where(y != 0)[0]
n = nonzero_indices.ptp() + 1
assert_equal(n, 15)
class TestThreading(TestCase):
def check_func_thread(self, n, fun, args, out):
from threading import Thread
thrds = [Thread(target=fun, args=args, kwargs={'output': out[x]}) for x in range(n)]
[t.start() for t in thrds]
[t.join() for t in thrds]
def check_func_serial(self, n, fun, args, out):
for i in range(n):
fun(*args, output=out[i])
def test_correlate1d(self):
d = np.random.randn(5000)
os = np.empty((4, d.size))
ot = np.empty_like(os)
self.check_func_serial(4, sndi.correlate1d, (d, np.arange(5)), os)
self.check_func_thread(4, sndi.correlate1d, (d, np.arange(5)), ot)
assert_array_equal(os, ot)
def test_correlate(self):
d = np.random.randn(500, 500)
k = np.random.randn(10, 10)
os = np.empty([4] + list(d.shape))
ot = np.empty_like(os)
self.check_func_serial(4, sndi.correlate, (d, k), os)
self.check_func_thread(4, sndi.correlate, (d, k), ot)
assert_array_equal(os, ot)
def test_median_filter(self):
d = np.random.randn(500, 500)
os = np.empty([4] + list(d.shape))
ot = np.empty_like(os)
self.check_func_serial(4, sndi.median_filter, (d, 3), os)
self.check_func_thread(4, sndi.median_filter, (d, 3), ot)
assert_array_equal(os, ot)
def test_uniform_filter1d(self):
d = np.random.randn(5000)
os = np.empty((4, d.size))
ot = np.empty_like(os)
self.check_func_serial(4, sndi.uniform_filter1d, (d, 5), os)
self.check_func_thread(4, sndi.uniform_filter1d, (d, 5), ot)
assert_array_equal(os, ot)
def test_minmax_filter(self):
d = np.random.randn(500, 500)
os = np.empty([4] + list(d.shape))
ot = np.empty_like(os)
self.check_func_serial(4, sndi.maximum_filter, (d, 3), os)
self.check_func_thread(4, sndi.maximum_filter, (d, 3), ot)
assert_array_equal(os, ot)
self.check_func_serial(4, sndi.minimum_filter, (d, 3), os)
self.check_func_thread(4, sndi.minimum_filter, (d, 3), ot)
assert_array_equal(os, ot)
def test_minmaximum_filter1d():
# Regression gh-3898
in_ = np.arange(10)
out = sndi.minimum_filter1d(in_, 1)
assert_equal(in_, out)
out = sndi.maximum_filter1d(in_, 1)
assert_equal(in_, out)
# Test reflect
out = sndi.minimum_filter1d(in_, 5, mode='reflect')
assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out)
out = sndi.maximum_filter1d(in_, 5, mode='reflect')
assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out)
#Test constant
out = sndi.minimum_filter1d(in_, 5, mode='constant', cval=-1)
assert_equal([-1, -1, 0, 1, 2, 3, 4, 5, -1, -1], out)
out = sndi.maximum_filter1d(in_, 5, mode='constant', cval=10)
assert_equal([10, 10, 4, 5, 6, 7, 8, 9, 10, 10], out)
# Test nearest
out = sndi.minimum_filter1d(in_, 5, mode='nearest')
assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out)
out = sndi.maximum_filter1d(in_, 5, mode='nearest')
assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out)
# Test wrap
out = sndi.minimum_filter1d(in_, 5, mode='wrap')
assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 0, 0], out)
out = sndi.maximum_filter1d(in_, 5, mode='wrap')
assert_equal([9, 9, 4, 5, 6, 7, 8, 9, 9, 9], out)
if __name__ == "__main__":
run_module_suite(argv=sys.argv)
|