File: d_lpk.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (1211 lines) | stat: -rw-r--r-- 39,771 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
*DCHEX
      SUBROUTINE DCHEX(R,LDR,P,K,L,Z,LDZ,NZ,C,S,JOB)
C***BEGIN PROLOGUE  DCHEX
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D7B
C***KEYWORDS  CHOLESKY DECOMPOSITION,DOUBLE PRECISION,EXCHANGE,
C             LINEAR ALGEBRA,LINPACK,MATRIX,POSITIVE DEFINITE
C***AUTHOR  STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE  UPDATES THE CHOLESKY FACTORIZATION  A=TRANS(R)*R  OF A
C            POSITIVE DEFINITE MATRIX A OF ORDER P UNDER DIAGONAL
C            PERMUTATIONS OF THE FORM  TRANS(E)*A*E  WHERE E IS A
C            PERMUTATION MATRIX.
C***DESCRIPTION
C     DCHEX UPDATES THE CHOLESKY FACTORIZATION
C                   A = TRANS(R)*R
C     OF A POSITIVE DEFINITE MATRIX A OF ORDER P UNDER DIAGONAL
C     PERMUTATIONS OF THE FORM
C                   TRANS(E)*A*E
C     WHERE E IS A PERMUTATION MATRIX.  SPECIFICALLY, GIVEN
C     AN UPPER TRIANGULAR MATRIX R AND A PERMUTATION MATRIX
C     E (WHICH IS SPECIFIED BY K, L, AND JOB), DCHEX DETERMINES
C     AN ORTHOGONAL MATRIX U SUCH THAT
C                           U*R*E = RR,
C     WHERE RR IS UPPER TRIANGULAR.  AT THE USERS OPTION, THE
C     TRANSFORMATION U WILL BE MULTIPLIED INTO THE ARRAY Z.
C     IF A = TRANS(X)*X, SO THAT R IS THE TRIANGULAR PART OF THE
C     QR FACTORIZATION OF X, THEN RR IS THE TRIANGULAR PART OF THE
C     QR FACTORIZATION OF X*E, I.E. X WITH ITS COLUMNS PERMUTED.
C     FOR A LESS TERSE DESCRIPTION OF WHAT DCHEX DOES AND HOW
C     IT MAY BE APPLIED, SEE THE LINPACK GUIDE.
C     THE MATRIX Q IS DETERMINED AS THE PRODUCT U(L-K)*...*U(1)
C     OF PLANE ROTATIONS OF THE FORM
C                           (    C(I)       S(I) )
C                           (                    ) ,
C                           (    -S(I)      C(I) )
C     WHERE C(I) IS DOUBLE PRECISION.  THE ROWS THESE ROTATIONS OPERATE
C     ON ARE DESCRIBED BELOW.
C     THERE ARE TWO TYPES OF PERMUTATIONS, WHICH ARE DETERMINED
C     BY THE VALUE OF JOB.
C     1. RIGHT CIRCULAR SHIFT (JOB = 1).
C         THE COLUMNS ARE REARRANGED IN THE FOLLOWING ORDER.
C                1,...,K-1,L,K,K+1,...,L-1,L+1,...,P.
C         U IS THE PRODUCT OF L-K ROTATIONS U(I), WHERE U(I)
C         ACTS IN THE (L-I,L-I+1)-PLANE.
C     2. LEFT CIRCULAR SHIFT (JOB = 2).
C         THE COLUMNS ARE REARRANGED IN THE FOLLOWING ORDER
C                1,...,K-1,K+1,K+2,...,L,K,L+1,...,P.
C         U IS THE PRODUCT OF L-K ROTATIONS U(I), WHERE U(I)
C         ACTS IN THE (K+I-1,K+I)-PLANE.
C     ON ENTRY
C         R      DOUBLE PRECISION(LDR,P), WHERE LDR .GE. P.
C                R CONTAINS THE UPPER TRIANGULAR FACTOR
C                THAT IS TO BE UPDATED.  ELEMENTS OF R
C                BELOW THE DIAGONAL ARE NOT REFERENCED.
C         LDR    INTEGER.
C                LDR IS THE LEADING DIMENSION OF THE ARRAY R.
C         P      INTEGER.
C                P IS THE ORDER OF THE MATRIX R.
C         K      INTEGER.
C                K IS THE FIRST COLUMN TO BE PERMUTED.
C         L      INTEGER.
C                L IS THE LAST COLUMN TO BE PERMUTED.
C                L MUST BE STRICTLY GREATER THAN K.
C         Z      DOUBLE PRECISION(LDZ,N)Z), WHERE LDZ .GE. P.
C                Z IS AN ARRAY OF NZ P-VECTORS INTO WHICH THE
C                TRANSFORMATION U IS MULTIPLIED.  Z IS
C                NOT REFERENCED IF NZ = 0.
C         LDZ    INTEGER.
C                LDZ IS THE LEADING DIMENSION OF THE ARRAY Z.
C         NZ     INTEGER.
C                NZ IS THE NUMBER OF COLUMNS OF THE MATRIX Z.
C         JOB    INTEGER.
C                JOB DETERMINES THE TYPE OF PERMUTATION.
C                       JOB = 1  RIGHT CIRCULAR SHIFT.
C                       JOB = 2  LEFT CIRCULAR SHIFT.
C     ON RETURN
C         R      CONTAINS THE UPDATED FACTOR.
C         Z      CONTAINS THE UPDATED MATRIX Z.
C         C      DOUBLE PRECISION(P).
C                C CONTAINS THE COSINES OF THE TRANSFORMING ROTATIONS.
C         S      DOUBLE PRECISION(P).
C                S CONTAINS THE SINES OF THE TRANSFORMING ROTATIONS.
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DROTG
C***END PROLOGUE  DCHEX

C...SCALAR ARGUMENTS
      INTEGER
     +   JOB,K,L,LDR,LDZ,NZ,P

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   C(*),R(LDR,*),S(*),Z(LDZ,*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   T,T1
      INTEGER
     +   I,II,IL,IU,J,JJ,KM1,KP1,LM1,LMK

C...EXTERNAL SUBROUTINES
      EXTERNAL
     +   DROTG

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   MAX0,MIN0


C***FIRST EXECUTABLE STATEMENT  DCHEX


      KM1 = K - 1
      KP1 = K + 1
      LMK = L - K
      LM1 = L - 1

C     PERFORM THE APPROPRIATE TASK.

      GO TO (10,130), JOB

C     RIGHT CIRCULAR SHIFT.

   10 CONTINUE

C        REORDER THE COLUMNS.

         DO 20 I = 1, L
            II = L - I + 1
            S(I) = R(II,L)
   20    CONTINUE
         DO 40 JJ = K, LM1
            J = LM1 - JJ + K
            DO 30 I = 1, J
               R(I,J+1) = R(I,J)
   30       CONTINUE
            R(J+1,J+1) = 0.0D0
   40    CONTINUE
         IF (K .EQ. 1) GO TO 60
            DO 50 I = 1, KM1
               II = L - I + 1
               R(I,K) = S(II)
   50       CONTINUE
   60    CONTINUE

C        CALCULATE THE ROTATIONS.

         T = S(1)
         DO 70 I = 1, LMK
            T1 = S(I)
            CALL DROTG(S(I+1),T,C(I),T1)
            S(I) = T1
            T = S(I+1)
   70    CONTINUE
         R(K,K) = T
         DO 90 J = KP1, P
            IL = MAX0(1,L-J+1)
            DO 80 II = IL, LMK
               I = L - II
               T = C(II)*R(I,J) + S(II)*R(I+1,J)
               R(I+1,J) = C(II)*R(I+1,J) - S(II)*R(I,J)
               R(I,J) = T
   80       CONTINUE
   90    CONTINUE

C        IF REQUIRED, APPLY THE TRANSFORMATIONS TO Z.

         IF (NZ .LT. 1) GO TO 120
         DO 110 J = 1, NZ
            DO 100 II = 1, LMK
               I = L - II
               T = C(II)*Z(I,J) + S(II)*Z(I+1,J)
               Z(I+1,J) = C(II)*Z(I+1,J) - S(II)*Z(I,J)
               Z(I,J) = T
  100       CONTINUE
  110    CONTINUE
  120    CONTINUE
      GO TO 260

C     LEFT CIRCULAR SHIFT

  130 CONTINUE

C        REORDER THE COLUMNS

         DO 140 I = 1, K
            II = LMK + I
            S(II) = R(I,K)
  140    CONTINUE
         DO 160 J = K, LM1
            DO 150 I = 1, J
               R(I,J) = R(I,J+1)
  150       CONTINUE
            JJ = J - KM1
            S(JJ) = R(J+1,J+1)
  160    CONTINUE
         DO 170 I = 1, K
            II = LMK + I
            R(I,L) = S(II)
  170    CONTINUE
         DO 180 I = KP1, L
            R(I,L) = 0.0D0
  180    CONTINUE

C        REDUCTION LOOP.

         DO 220 J = K, P
            IF (J .EQ. K) GO TO 200

C              APPLY THE ROTATIONS.

               IU = MIN0(J-1,L-1)
               DO 190 I = K, IU
                  II = I - K + 1
                  T = C(II)*R(I,J) + S(II)*R(I+1,J)
                  R(I+1,J) = C(II)*R(I+1,J) - S(II)*R(I,J)
                  R(I,J) = T
  190          CONTINUE
  200       CONTINUE
            IF (J .GE. L) GO TO 210
               JJ = J - K + 1
               T = S(JJ)
               CALL DROTG(R(J,J),T,C(JJ),S(JJ))
  210       CONTINUE
  220    CONTINUE

C        APPLY THE ROTATIONS TO Z.

         IF (NZ .LT. 1) GO TO 250
         DO 240 J = 1, NZ
            DO 230 I = K, LM1
               II = I - KM1
               T = C(II)*Z(I,J) + S(II)*Z(I+1,J)
               Z(I+1,J) = C(II)*Z(I+1,J) - S(II)*Z(I,J)
               Z(I,J) = T
  230       CONTINUE
  240    CONTINUE
  250    CONTINUE
  260 CONTINUE
      RETURN
      END
*DPODI
      SUBROUTINE DPODI(A,LDA,N,DET,JOB)
C***BEGIN PROLOGUE  DPODI
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D2B1B,D3B1B
C***KEYWORDS  DETERMINANT,DOUBLE PRECISION,FACTOR,INVERSE,
C             LINEAR ALGEBRA,LINPACK,MATRIX,POSITIVE DEFINITE
C***AUTHOR  MOLER, C. B., (U. OF NEW MEXICO)
C***PURPOSE  COMPUTES THE DETERMINANT AND INVERSE OF A CERTAIN DOUBLE
C            PRECISION SYMMETRIC POSITIVE DEFINITE MATRIX (SEE ABSTRACT)
C            USING THE FACTORS COMPUTED BY DPOCO, DPOFA OR DQRDC.
C***DESCRIPTION
C     DPODI COMPUTES THE DETERMINANT AND INVERSE OF A CERTAIN
C     DOUBLE PRECISION SYMMETRIC POSITIVE DEFINITE MATRIX (SEE BELOW)
C     USING THE FACTORS COMPUTED BY DPOCO, DPOFA OR DQRDC.
C     ON ENTRY
C        A       DOUBLE PRECISION(LDA, N)
C                THE OUTPUT  A  FROM DPOCO OR DPOFA
C                OR THE OUTPUT  X  FROM DQRDC.
C        LDA     INTEGER
C                THE LEADING DIMENSION OF THE ARRAY  A .
C        N       INTEGER
C                THE ORDER OF THE MATRIX  A .
C        JOB     INTEGER
C                = 11   BOTH DETERMINANT AND INVERSE.
C                = 01   INVERSE ONLY.
C                = 10   DETERMINANT ONLY.
C     ON RETURN
C        A       IF DPOCO OR DPOFA WAS USED TO FACTOR  A , THEN
C                DPODI PRODUCES THE UPPER HALF OF INVERSE(A) .
C                IF DQRDC WAS USED TO DECOMPOSE  X , THEN
C                DPODI PRODUCES THE UPPER HALF OF INVERSE(TRANS(X)*X)
C                WHERE TRANS(X) IS THE TRANSPOSE.
C                ELEMENTS OF  A  BELOW THE DIAGONAL ARE UNCHANGED.
C                IF THE UNITS DIGIT OF JOB IS ZERO,  A  IS UNCHANGED.
C        DET     DOUBLE PRECISION(2)
C                DETERMINANT OF  A  OR OF  TRANS(X)*X  IF REQUESTED.
C                OTHERWISE NOT REFERENCED.
C                DETERMINANT = DET(1) * 10.0**DET(2)
C                WITH  1.0 .LE. DET(1) .LT. 10.0
C                OR  DET(1) .EQ. 0.0 .
C     ERROR CONDITION
C        A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS
C        A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.
C        IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY
C        AND IF DPOCO OR DPOFA HAS SET INFO .EQ. 0 .
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DAXPY,DSCAL
C***END PROLOGUE  DPODI

C...SCALAR ARGUMENTS
      INTEGER JOB,LDA,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION A(LDA,*),DET(*)

C...LOCAL SCALARS
      DOUBLE PRECISION S,T
      INTEGER I,J,JM1,K,KP1

C...EXTERNAL SUBROUTINES
      EXTERNAL DAXPY,DSCAL

C...INTRINSIC FUNCTIONS
      INTRINSIC MOD


C***FIRST EXECUTABLE STATEMENT  DPODI


      IF (JOB/10 .EQ. 0) GO TO 70
         DET(1) = 1.0D0
         DET(2) = 0.0D0
         S = 10.0D0
         DO 50 I = 1, N
            DET(1) = A(I,I)**2*DET(1)
C        ...EXIT
            IF (DET(1) .EQ. 0.0D0) GO TO 60
   10       IF (DET(1) .GE. 1.0D0) GO TO 20
               DET(1) = S*DET(1)
               DET(2) = DET(2) - 1.0D0
            GO TO 10
   20       CONTINUE
   30       IF (DET(1) .LT. S) GO TO 40
               DET(1) = DET(1)/S
               DET(2) = DET(2) + 1.0D0
            GO TO 30
   40       CONTINUE
   50    CONTINUE
   60    CONTINUE
   70 CONTINUE

C     COMPUTE INVERSE(R)

      IF (MOD(JOB,10) .EQ. 0) GO TO 140
         DO 100 K = 1, N
            A(K,K) = 1.0D0/A(K,K)
            T = -A(K,K)
            CALL DSCAL(K-1,T,A(1,K),1)
            KP1 = K + 1
            IF (N .LT. KP1) GO TO 90
            DO 80 J = KP1, N
               T = A(K,J)
               A(K,J) = 0.0D0
               CALL DAXPY(K,T,A(1,K),1,A(1,J),1)
   80       CONTINUE
   90       CONTINUE
  100    CONTINUE

C        FORM  INVERSE(R) * TRANS(INVERSE(R))

         DO 130 J = 1, N
            JM1 = J - 1
            IF (JM1 .LT. 1) GO TO 120
            DO 110 K = 1, JM1
               T = A(K,J)
               CALL DAXPY(K,T,A(1,J),1,A(1,K),1)
  110       CONTINUE
  120       CONTINUE
            T = A(J,J)
            CALL DSCAL(J,T,A(1,J),1)
  130    CONTINUE
  140 CONTINUE
      RETURN
      END
*DQRDC
      SUBROUTINE DQRDC(X,LDX,N,P,QRAUX,JPVT,WORK,JOB)
C***BEGIN PROLOGUE  DQRDC
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D5
C***KEYWORDS  DECOMPOSITION,DOUBLE PRECISION,LINEAR ALGEBRA,LINPACK,
C             MATRIX,ORTHOGONAL TRIANGULAR
C***AUTHOR  STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE  USES HOUSEHOLDER TRANSFORMATIONS TO COMPUTE THE QR FACTORI-
C            ZATION OF N BY P MATRIX X.  COLUMN PIVOTING IS OPTIONAL.
C***DESCRIPTION
C     DQRDC USES HOUSEHOLDER TRANSFORMATIONS TO COMPUTE THE QR
C     FACTORIZATION OF AN N BY P MATRIX X.  COLUMN PIVOTING
C     BASED ON THE 2-NORMS OF THE REDUCED COLUMNS MAY BE
C     PERFORMED AT THE USER'S OPTION.
C     ON ENTRY
C        X       DOUBLE PRECISION(LDX,P), WHERE LDX .GE. N.
C                X CONTAINS THE MATRIX WHOSE DECOMPOSITION IS TO BE
C                COMPUTED.
C        LDX     INTEGER.
C                LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C        N       INTEGER.
C                N IS THE NUMBER OF ROWS OF THE MATRIX X.
C        P       INTEGER.
C                P IS THE NUMBER OF COLUMNS OF THE MATRIX X.
C        JPVT    INTEGER(P).
C                JPVT CONTAINS INTEGERS THAT CONTROL THE SELECTION
C                OF THE PIVOT COLUMNS.  THE K-TH COLUMN X(K) OF X
C                IS PLACED IN ONE OF THREE CLASSES ACCORDING TO THE
C                VALUE OF JPVT(K).
C                   IF JPVT(K) .GT. 0, THEN X(K) IS AN INITIAL
C                                      COLUMN.
C                   IF JPVT(K) .EQ. 0, THEN X(K) IS A FREE COLUMN.
C                   IF JPVT(K) .LT. 0, THEN X(K) IS A FINAL COLUMN.
C                BEFORE THE DECOMPOSITION IS COMPUTED, INITIAL COLUMNS
C                ARE MOVED TO THE BEGINNING OF THE ARRAY X AND FINAL
C                COLUMNS TO THE END.  BOTH INITIAL AND FINAL COLUMNS
C                ARE FROZEN IN PLACE DURING THE COMPUTATION AND ONLY
C                FREE COLUMNS ARE MOVED.  AT THE K-TH STAGE OF THE
C                REDUCTION, IF X(K) IS OCCUPIED BY A FREE COLUMN
C                IT IS INTERCHANGED WITH THE FREE COLUMN OF LARGEST
C                REDUCED NORM.  JPVT IS NOT REFERENCED IF
C                JOB .EQ. 0.
C        WORK    DOUBLE PRECISION(P).
C                WORK IS A WORK ARRAY.  WORK IS NOT REFERENCED IF
C                JOB .EQ. 0.
C        JOB     INTEGER.
C                JOB IS AN INTEGER THAT INITIATES COLUMN PIVOTING.
C                IF JOB .EQ. 0, NO PIVOTING IS DONE.
C                IF JOB .NE. 0, PIVOTING IS DONE.
C     ON RETURN
C        X       X CONTAINS IN ITS UPPER TRIANGLE THE UPPER
C                TRIANGULAR MATRIX R OF THE QR FACTORIZATION.
C                BELOW ITS DIAGONAL X CONTAINS INFORMATION FROM
C                WHICH THE ORTHOGONAL PART OF THE DECOMPOSITION
C                CAN BE RECOVERED.  NOTE THAT IF PIVOTING HAS
C                BEEN REQUESTED, THE DECOMPOSITION IS NOT THAT
C                OF THE ORIGINAL MATRIX X BUT THAT OF X
C                WITH ITS COLUMNS PERMUTED AS DESCRIBED BY JPVT.
C        QRAUX   DOUBLE PRECISION(P).
C                QRAUX CONTAINS FURTHER INFORMATION REQUIRED TO RECOVER
C                THE ORTHOGONAL PART OF THE DECOMPOSITION.
C        JPVT    JPVT(K) CONTAINS THE INDEX OF THE COLUMN OF THE
C                ORIGINAL MATRIX THAT HAS BEEN INTERCHANGED INTO
C                THE K-TH COLUMN, IF PIVOTING WAS REQUESTED.
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DAXPY,DDOT,DNRM2,DSCAL,DSWAP
C***END PROLOGUE  DQRDC

C...SCALAR ARGUMENTS
      INTEGER
     +   JOB,LDX,N,P

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   QRAUX(*),WORK(*),X(LDX,*)
      INTEGER
     +   JPVT(*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   MAXNRM,NRMXL,T,TT
      INTEGER
     +   J,JJ,JP,L,LP1,LUP,MAXJ,PL,PU
      LOGICAL
     +   NEGJ,SWAPJ

C...EXTERNAL FUNCTIONS
      DOUBLE PRECISION
     +   DDOT,DNRM2
      EXTERNAL
     +   DDOT,DNRM2

C...EXTERNAL SUBROUTINES
      EXTERNAL
     +   DAXPY,DSCAL,DSWAP

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   DABS,DMAX1,DSIGN,DSQRT,MIN0


C***FIRST EXECUTABLE STATEMENT  DQRDC


      PL = 1
      PU = 0
      IF (JOB .EQ. 0) GO TO 60

C        PIVOTING HAS BEEN REQUESTED.  REARRANGE THE COLUMNS
C        ACCORDING TO JPVT.

         DO 20 J = 1, P
            SWAPJ = JPVT(J) .GT. 0
            NEGJ = JPVT(J) .LT. 0
            JPVT(J) = J
            IF (NEGJ) JPVT(J) = -J
            IF (.NOT.SWAPJ) GO TO 10
               IF (J .NE. PL) CALL DSWAP(N,X(1,PL),1,X(1,J),1)
               JPVT(J) = JPVT(PL)
               JPVT(PL) = J
               PL = PL + 1
   10       CONTINUE
   20    CONTINUE
         PU = P
         DO 50 JJ = 1, P
            J = P - JJ + 1
            IF (JPVT(J) .GE. 0) GO TO 40
               JPVT(J) = -JPVT(J)
               IF (J .EQ. PU) GO TO 30
                  CALL DSWAP(N,X(1,PU),1,X(1,J),1)
                  JP = JPVT(PU)
                  JPVT(PU) = JPVT(J)
                  JPVT(J) = JP
   30          CONTINUE
               PU = PU - 1
   40       CONTINUE
   50    CONTINUE
   60 CONTINUE

C     COMPUTE THE NORMS OF THE FREE COLUMNS.

      IF (PU .LT. PL) GO TO 80
      DO 70 J = PL, PU
         QRAUX(J) = DNRM2(N,X(1,J),1)
         WORK(J) = QRAUX(J)
   70 CONTINUE
   80 CONTINUE

C     PERFORM THE HOUSEHOLDER REDUCTION OF X.

      LUP = MIN0(N,P)
      DO 200 L = 1, LUP
         IF (L .LT. PL .OR. L .GE. PU) GO TO 120

C           LOCATE THE COLUMN OF LARGEST NORM AND BRING IT
C           INTO THE PIVOT POSITION.

            MAXNRM = 0.0D0
            MAXJ = L
            DO 100 J = L, PU
               IF (QRAUX(J) .LE. MAXNRM) GO TO 90
                  MAXNRM = QRAUX(J)
                  MAXJ = J
   90          CONTINUE
  100       CONTINUE
            IF (MAXJ .EQ. L) GO TO 110
               CALL DSWAP(N,X(1,L),1,X(1,MAXJ),1)
               QRAUX(MAXJ) = QRAUX(L)
               WORK(MAXJ) = WORK(L)
               JP = JPVT(MAXJ)
               JPVT(MAXJ) = JPVT(L)
               JPVT(L) = JP
  110       CONTINUE
  120    CONTINUE
         QRAUX(L) = 0.0D0
         IF (L .EQ. N) GO TO 190

C           COMPUTE THE HOUSEHOLDER TRANSFORMATION FOR COLUMN L.

            NRMXL = DNRM2(N-L+1,X(L,L),1)
            IF (NRMXL .EQ. 0.0D0) GO TO 180
               IF (X(L,L) .NE. 0.0D0) NRMXL = DSIGN(NRMXL,X(L,L))
               CALL DSCAL(N-L+1,1.0D0/NRMXL,X(L,L),1)
               X(L,L) = 1.0D0 + X(L,L)

C              APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS,
C              UPDATING THE NORMS.

               LP1 = L + 1
               IF (P .LT. LP1) GO TO 170
               DO 160 J = LP1, P
                  T = -DDOT(N-L+1,X(L,L),1,X(L,J),1)/X(L,L)
                  CALL DAXPY(N-L+1,T,X(L,L),1,X(L,J),1)
                  IF (J .LT. PL .OR. J .GT. PU) GO TO 150
                  IF (QRAUX(J) .EQ. 0.0D0) GO TO 150
                     TT = 1.0D0 - (DABS(X(L,J))/QRAUX(J))**2
                     TT = DMAX1(TT,0.0D0)
                     T = TT
                     TT = 1.0D0 + 0.05D0*TT*(QRAUX(J)/WORK(J))**2
                     IF (TT .EQ. 1.0D0) GO TO 130
                        QRAUX(J) = QRAUX(J)*DSQRT(T)
                     GO TO 140
  130                CONTINUE
                        QRAUX(J) = DNRM2(N-L,X(L+1,J),1)
                        WORK(J) = QRAUX(J)
  140                CONTINUE
  150             CONTINUE
  160          CONTINUE
  170          CONTINUE

C              SAVE THE TRANSFORMATION.

               QRAUX(L) = X(L,L)
               X(L,L) = -NRMXL
  180       CONTINUE
  190    CONTINUE
  200 CONTINUE
      RETURN
      END
*DQRSL
      SUBROUTINE DQRSL(X,LDX,N,K,QRAUX,Y,QY,QTY,B,RSD,XB,JOB,INFO)
C***BEGIN PROLOGUE  DQRSL
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D9,D2A1
C***KEYWORDS  DOUBLE PRECISION,LINEAR ALGEBRA,LINPACK,MATRIX,
C             ORTHOGONAL TRIANGULAR,SOLVE
C***AUTHOR  STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE  APPLIES THE OUTPUT OF DQRDC TO COMPUTE COORDINATE
C            TRANSFORMATIONS, PROJECTIONS, AND LEAST SQUARES SOLUTIONS.
C***DESCRIPTION
C     DQRSL APPLIES THE OUTPUT OF DQRDC TO COMPUTE COORDINATE
C     TRANSFORMATIONS, PROJECTIONS, AND LEAST SQUARES SOLUTIONS.
C     FOR K .LE. MIN(N,P), LET XK BE THE MATRIX
C            XK = (X(JPVT(1)),X(JPVT(2)), ... ,X(JPVT(K)))
C     FORMED FROM COLUMNNS JPVT(1), ... ,JPVT(K) OF THE ORIGINAL
C     N X P MATRIX X THAT WAS INPUT TO DQRDC (IF NO PIVOTING WAS
C     DONE, XK CONSISTS OF THE FIRST K COLUMNS OF X IN THEIR
C     ORIGINAL ORDER).  DQRDC PRODUCES A FACTORED ORTHOGONAL MATRIX Q
C     AND AN UPPER TRIANGULAR MATRIX R SUCH THAT
C              XK = Q * (R)
C                       (0)
C     THIS INFORMATION IS CONTAINED IN CODED FORM IN THE ARRAYS
C     X AND QRAUX.
C     ON ENTRY
C        X      DOUBLE PRECISION(LDX,P).
C               X CONTAINS THE OUTPUT OF DQRDC.
C        LDX    INTEGER.
C               LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C        N      INTEGER.
C               N IS THE NUMBER OF ROWS OF THE MATRIX XK.  IT MUST
C               HAVE THE SAME VALUE AS N IN DQRDC.
C        K      INTEGER.
C               K IS THE NUMBER OF COLUMNS OF THE MATRIX XK.  K
C               MUST NOT BE GREATER THAN MIN(N,P), WHERE P IS THE
C               SAME AS IN THE CALLING SEQUENCE TO DQRDC.
C        QRAUX  DOUBLE PRECISION(P).
C               QRAUX CONTAINS THE AUXILIARY OUTPUT FROM DQRDC.
C        Y      DOUBLE PRECISION(N)
C               Y CONTAINS AN N-VECTOR THAT IS TO BE MANIPULATED
C               BY DQRSL.
C        JOB    INTEGER.
C               JOB SPECIFIES WHAT IS TO BE COMPUTED.  JOB HAS
C               THE DECIMAL EXPANSION ABCDE, WITH THE FOLLOWING
C               MEANING.
C                    IF A .NE. 0, COMPUTE QY.
C                    IF B,C,D, OR E .NE. 0, COMPUTE QTY.
C                    IF C .NE. 0, COMPUTE B.
C                    IF D .NE. 0, COMPUTE RSD.
C                    IF E .NE. 0, COMPUTE XB.
C               NOTE THAT A REQUEST TO COMPUTE B, RSD, OR XB
C               AUTOMATICALLY TRIGGERS THE COMPUTATION OF QTY, FOR
C               WHICH AN ARRAY MUST BE PROVIDED IN THE CALLING
C               SEQUENCE.
C     ON RETURN
C        QY     DOUBLE PRECISION(N).
C               QY CONTAINS Q*Y, IF ITS COMPUTATION HAS BEEN
C               REQUESTED.
C        QTY    DOUBLE PRECISION(N).
C               QTY CONTAINS TRANS(Q)*Y, IF ITS COMPUTATION HAS
C               BEEN REQUESTED.  HERE TRANS(Q) IS THE
C               TRANSPOSE OF THE MATRIX Q.
C        B      DOUBLE PRECISION(K)
C               B CONTAINS THE SOLUTION OF THE LEAST SQUARES PROBLEM
C                    MINIMIZE NORM2(Y - XK*B),
C               IF ITS COMPUTATION HAS BEEN REQUESTED.  (NOTE THAT
C               IF PIVOTING WAS REQUESTED IN DQRDC, THE J-TH
C               COMPONENT OF B WILL BE ASSOCIATED WITH COLUMN JPVT(J)
C               OF THE ORIGINAL MATRIX X THAT WAS INPUT INTO DQRDC.)
C        RSD    DOUBLE PRECISION(N).
C               RSD CONTAINS THE LEAST SQUARES RESIDUAL Y - XK*B,
C               IF ITS COMPUTATION HAS BEEN REQUESTED.  RSD IS
C               ALSO THE ORTHOGONAL PROJECTION OF Y ONTO THE
C               ORTHOGONAL COMPLEMENT OF THE COLUMN SPACE OF XK.
C        XB     DOUBLE PRECISION(N).
C               XB CONTAINS THE LEAST SQUARES APPROXIMATION XK*B,
C               IF ITS COMPUTATION HAS BEEN REQUESTED.  XB IS ALSO
C               THE ORTHOGONAL PROJECTION OF Y ONTO THE COLUMN SPACE
C               OF X.
C        INFO   INTEGER.
C               INFO IS ZERO UNLESS THE COMPUTATION OF B HAS
C               BEEN REQUESTED AND R IS EXACTLY SINGULAR.  IN
C               THIS CASE, INFO IS THE INDEX OF THE FIRST ZERO
C               DIAGONAL ELEMENT OF R AND B IS LEFT UNALTERED.
C     THE PARAMETERS QY, QTY, B, RSD, AND XB ARE NOT REFERENCED
C     IF THEIR COMPUTATION IS NOT REQUESTED AND IN THIS CASE
C     CAN BE REPLACED BY DUMMY VARIABLES IN THE CALLING PROGRAM.
C     TO SAVE STORAGE, THE USER MAY IN SOME CASES USE THE SAME
C     ARRAY FOR DIFFERENT PARAMETERS IN THE CALLING SEQUENCE.  A
C     FREQUENTLY OCCURING EXAMPLE IS WHEN ONE WISHES TO COMPUTE
C     ANY OF B, RSD, OR XB AND DOES NOT NEED Y OR QTY.  IN THIS
C     CASE ONE MAY IDENTIFY Y, QTY, AND ONE OF B, RSD, OR XB, WHILE
C     PROVIDING SEPARATE ARRAYS FOR ANYTHING ELSE THAT IS TO BE
C     COMPUTED.  THUS THE CALLING SEQUENCE
C          CALL DQRSL(X,LDX,N,K,QRAUX,Y,DUM,Y,B,Y,DUM,110,INFO)
C     WILL RESULT IN THE COMPUTATION OF B AND RSD, WITH RSD
C     OVERWRITING Y.  MORE GENERALLY, EACH ITEM IN THE FOLLOWING
C     LIST CONTAINS GROUPS OF PERMISSIBLE IDENTIFICATIONS FOR
C     A SINGLE CALLING SEQUENCE.
C          1. (Y,QTY,B) (RSD) (XB) (QY)
C          2. (Y,QTY,RSD) (B) (XB) (QY)
C          3. (Y,QTY,XB) (B) (RSD) (QY)
C          4. (Y,QY) (QTY,B) (RSD) (XB)
C          5. (Y,QY) (QTY,RSD) (B) (XB)
C          6. (Y,QY) (QTY,XB) (B) (RSD)
C     IN ANY GROUP THE VALUE RETURNED IN THE ARRAY ALLOCATED TO
C     THE GROUP CORRESPONDS TO THE LAST MEMBER OF THE GROUP.
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DAXPY,DCOPY,DDOT
C***END PROLOGUE  DQRSL

C...SCALAR ARGUMENTS
      INTEGER
     +   INFO,JOB,K,LDX,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   B(*),QRAUX(*),QTY(*),QY(*),RSD(*),X(LDX,*),XB(*),
     +   Y(*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   T,TEMP
      INTEGER
     +   I,J,JJ,JU,KP1
      LOGICAL
     +   CB,CQTY,CQY,CR,CXB

C...EXTERNAL FUNCTIONS
      DOUBLE PRECISION
     +   DDOT
      EXTERNAL
     +   DDOT

C...EXTERNAL SUBROUTINES
      EXTERNAL
     +   DAXPY,DCOPY

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   MIN0,MOD


C***FIRST EXECUTABLE STATEMENT  DQRSL


      INFO = 0

C     DETERMINE WHAT IS TO BE COMPUTED.

      CQY = JOB/10000 .NE. 0
      CQTY = MOD(JOB,10000) .NE. 0
      CB = MOD(JOB,1000)/100 .NE. 0
      CR = MOD(JOB,100)/10 .NE. 0
      CXB = MOD(JOB,10) .NE. 0
      JU = MIN0(K,N-1)

C     SPECIAL ACTION WHEN N=1.

      IF (JU .NE. 0) GO TO 40
         IF (CQY) QY(1) = Y(1)
         IF (CQTY) QTY(1) = Y(1)
         IF (CXB) XB(1) = Y(1)
         IF (.NOT.CB) GO TO 30
            IF (X(1,1) .NE. 0.0D0) GO TO 10
               INFO = 1
            GO TO 20
   10       CONTINUE
               B(1) = Y(1)/X(1,1)
   20       CONTINUE
   30    CONTINUE
         IF (CR) RSD(1) = 0.0D0
      GO TO 250
   40 CONTINUE

C        SET UP TO COMPUTE QY OR QTY.

         IF (CQY) CALL DCOPY(N,Y,1,QY,1)
         IF (CQTY) CALL DCOPY(N,Y,1,QTY,1)
         IF (.NOT.CQY) GO TO 70

C           COMPUTE QY.

            DO 60 JJ = 1, JU
               J = JU - JJ + 1
               IF (QRAUX(J) .EQ. 0.0D0) GO TO 50
                  TEMP = X(J,J)
                  X(J,J) = QRAUX(J)
                  T = -DDOT(N-J+1,X(J,J),1,QY(J),1)/X(J,J)
                  CALL DAXPY(N-J+1,T,X(J,J),1,QY(J),1)
                  X(J,J) = TEMP
   50          CONTINUE
   60       CONTINUE
   70    CONTINUE
         IF (.NOT.CQTY) GO TO 100

C           COMPUTE TRANS(Q)*Y.

            DO 90 J = 1, JU
               IF (QRAUX(J) .EQ. 0.0D0) GO TO 80
                  TEMP = X(J,J)
                  X(J,J) = QRAUX(J)
                  T = -DDOT(N-J+1,X(J,J),1,QTY(J),1)/X(J,J)
                  CALL DAXPY(N-J+1,T,X(J,J),1,QTY(J),1)
                  X(J,J) = TEMP
   80          CONTINUE
   90       CONTINUE
  100    CONTINUE

C        SET UP TO COMPUTE B, RSD, OR XB.

         IF (CB) CALL DCOPY(K,QTY,1,B,1)
         KP1 = K + 1
         IF (CXB) CALL DCOPY(K,QTY,1,XB,1)
         IF (CR .AND. K .LT. N) CALL DCOPY(N-K,QTY(KP1),1,RSD(KP1),1)
         IF (.NOT.CXB .OR. KP1 .GT. N) GO TO 120
            DO 110 I = KP1, N
               XB(I) = 0.0D0
  110       CONTINUE
  120    CONTINUE
         IF (.NOT.CR) GO TO 140
            DO 130 I = 1, K
               RSD(I) = 0.0D0
  130       CONTINUE
  140    CONTINUE
         IF (.NOT.CB) GO TO 190

C           COMPUTE B.

            DO 170 JJ = 1, K
               J = K - JJ + 1
               IF (X(J,J) .NE. 0.0D0) GO TO 150
                  INFO = J
C           ......EXIT
                  GO TO 180
  150          CONTINUE
               B(J) = B(J)/X(J,J)
               IF (J .EQ. 1) GO TO 160
                  T = -B(J)
                  CALL DAXPY(J-1,T,X(1,J),1,B,1)
  160          CONTINUE
  170       CONTINUE
  180       CONTINUE
  190    CONTINUE
         IF (.NOT.CR .AND. .NOT.CXB) GO TO 240

C           COMPUTE RSD OR XB AS REQUIRED.

            DO 230 JJ = 1, JU
               J = JU - JJ + 1
               IF (QRAUX(J) .EQ. 0.0D0) GO TO 220
                  TEMP = X(J,J)
                  X(J,J) = QRAUX(J)
                  IF (.NOT.CR) GO TO 200
                     T = -DDOT(N-J+1,X(J,J),1,RSD(J),1)/X(J,J)
                     CALL DAXPY(N-J+1,T,X(J,J),1,RSD(J),1)
  200             CONTINUE
                  IF (.NOT.CXB) GO TO 210
                     T = -DDOT(N-J+1,X(J,J),1,XB(J),1)/X(J,J)
                     CALL DAXPY(N-J+1,T,X(J,J),1,XB(J),1)
  210             CONTINUE
                  X(J,J) = TEMP
  220          CONTINUE
  230       CONTINUE
  240    CONTINUE
  250 CONTINUE
      RETURN
      END
*DTRCO
      SUBROUTINE DTRCO(T,LDT,N,RCOND,Z,JOB)
C***BEGIN PROLOGUE  DTRCO
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D2A3
C***KEYWORDS  CONDITION,DOUBLE PRECISION,FACTOR,LINEAR ALGEBRA,LINPACK,
C             MATRIX,TRIANGULAR
C***AUTHOR  MOLER, C. B., (U. OF NEW MEXICO)
C***PURPOSE  ESTIMATES THE CONDITION OF A DOUBLE PRECISION TRIANGULAR
C            MATRIX.
C***DESCRIPTION
C     DTRCO ESTIMATES THE CONDITION OF A DOUBLE PRECISION TRIANGULAR
C     MATRIX.
C     ON ENTRY
C        T       DOUBLE PRECISION(LDT,N)
C                T CONTAINS THE TRIANGULAR MATRIX.  THE ZERO
C                ELEMENTS OF THE MATRIX ARE NOT REFERENCED, AND
C                THE CORRESPONDING ELEMENTS OF THE ARRAY CAN BE
C                USED TO STORE OTHER INFORMATION.
C        LDT     INTEGER
C                LDT IS THE LEADING DIMENSION OF THE ARRAY T.
C        N       INTEGER
C                N IS THE ORDER OF THE SYSTEM.
C        JOB     INTEGER
C                = 0         T  IS LOWER TRIANGULAR.
C                = NONZERO   T  IS UPPER TRIANGULAR.
C     ON RETURN
C        RCOND   DOUBLE PRECISION
C                AN ESTIMATE OF THE RECIPROCAL CONDITION OF  T .
C                FOR THE SYSTEM  T*X = B , RELATIVE PERTURBATIONS
C                IN  T  AND  B  OF SIZE  EPSILON  MAY CAUSE
C                RELATIVE PERTURBATIONS IN  X  OF SIZE  EPSILON/RCOND .
C                IF  RCOND  IS SO SMALL THAT THE LOGICAL EXPRESSION
C                           1.0 + RCOND .EQ. 1.0
C                IS TRUE, THEN  T  MAY BE SINGULAR TO WORKING
C                PRECISION.  IN PARTICULAR,  RCOND  IS ZERO  IF
C                EXACT SINGULARITY IS DETECTED OR THE ESTIMATE
C                UNDERFLOWS.
C        Z       DOUBLE PRECISION(N)
C                A WORK VECTOR WHOSE CONTENTS ARE USUALLY UNIMPORTANT.
C                IF  T  IS CLOSE TO A SINGULAR MATRIX, THEN  Z  IS
C                AN APPROXIMATE NULL VECTOR IN THE SENSE THAT
C                NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DASUM,DAXPY,DSCAL
C***END PROLOGUE  DTRCO

C...SCALAR ARGUMENTS
      DOUBLE PRECISION
     +   RCOND
      INTEGER
     +   JOB,LDT,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   T(LDT,*),Z(*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   EK,S,SM,TNORM,W,WK,WKM,YNORM
      INTEGER
     +   I1,J,J1,J2,K,KK,L
      LOGICAL
     +   LOWER

C...EXTERNAL FUNCTIONS
      DOUBLE PRECISION
     +   DASUM
      EXTERNAL
     +   DASUM

C...EXTERNAL SUBROUTINES
      EXTERNAL
     +   DAXPY,DSCAL

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   DABS,DMAX1,DSIGN


C***FIRST EXECUTABLE STATEMENT  DTRCO


      LOWER = JOB .EQ. 0

C     COMPUTE 1-NORM OF T

      TNORM = 0.0D0
      DO 10 J = 1, N
         L = J
         IF (LOWER) L = N + 1 - J
         I1 = 1
         IF (LOWER) I1 = J
         TNORM = DMAX1(TNORM,DASUM(L,T(I1,J),1))
   10 CONTINUE

C     RCOND = 1/(NORM(T)*(ESTIMATE OF NORM(INVERSE(T)))) .
C     ESTIMATE = NORM(Z)/NORM(Y) WHERE  T*Z = Y  AND  TRANS(T)*Y = E .
C     TRANS(T)  IS THE TRANSPOSE OF T .
C     THE COMPONENTS OF  E  ARE CHOSEN TO CAUSE MAXIMUM LOCAL
C     GROWTH IN THE ELEMENTS OF Y .
C     THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.

C     SOLVE TRANS(T)*Y = E

      EK = 1.0D0
      DO 20 J = 1, N
         Z(J) = 0.0D0
   20 CONTINUE
      DO 100 KK = 1, N
         K = KK
         IF (LOWER) K = N + 1 - KK
         IF (Z(K) .NE. 0.0D0) EK = DSIGN(EK,-Z(K))
         IF (DABS(EK-Z(K)) .LE. DABS(T(K,K))) GO TO 30
            S = DABS(T(K,K))/DABS(EK-Z(K))
            CALL DSCAL(N,S,Z,1)
            EK = S*EK
   30    CONTINUE
         WK = EK - Z(K)
         WKM = -EK - Z(K)
         S = DABS(WK)
         SM = DABS(WKM)
         IF (T(K,K) .EQ. 0.0D0) GO TO 40
            WK = WK/T(K,K)
            WKM = WKM/T(K,K)
         GO TO 50
   40    CONTINUE
            WK = 1.0D0
            WKM = 1.0D0
   50    CONTINUE
         IF (KK .EQ. N) GO TO 90
            J1 = K + 1
            IF (LOWER) J1 = 1
            J2 = N
            IF (LOWER) J2 = K - 1
            DO 60 J = J1, J2
               SM = SM + DABS(Z(J)+WKM*T(K,J))
               Z(J) = Z(J) + WK*T(K,J)
               S = S + DABS(Z(J))
   60       CONTINUE
            IF (S .GE. SM) GO TO 80
               W = WKM - WK
               WK = WKM
               DO 70 J = J1, J2
                  Z(J) = Z(J) + W*T(K,J)
   70          CONTINUE
   80       CONTINUE
   90    CONTINUE
         Z(K) = WK
  100 CONTINUE
      S = 1.0D0/DASUM(N,Z,1)
      CALL DSCAL(N,S,Z,1)

      YNORM = 1.0D0

C     SOLVE T*Z = Y

      DO 130 KK = 1, N
         K = N + 1 - KK
         IF (LOWER) K = KK
         IF (DABS(Z(K)) .LE. DABS(T(K,K))) GO TO 110
            S = DABS(T(K,K))/DABS(Z(K))
            CALL DSCAL(N,S,Z,1)
            YNORM = S*YNORM
  110    CONTINUE
         IF (T(K,K) .NE. 0.0D0) Z(K) = Z(K)/T(K,K)
         IF (T(K,K) .EQ. 0.0D0) Z(K) = 1.0D0
         I1 = 1
         IF (LOWER) I1 = K + 1
         IF (KK .GE. N) GO TO 120
            W = -Z(K)
            CALL DAXPY(N-KK,W,T(I1,K),1,Z(I1),1)
  120    CONTINUE
  130 CONTINUE
C     MAKE ZNORM = 1.0
      S = 1.0D0/DASUM(N,Z,1)
      CALL DSCAL(N,S,Z,1)
      YNORM = S*YNORM

      IF (TNORM .NE. 0.0D0) RCOND = YNORM/TNORM
      IF (TNORM .EQ. 0.0D0) RCOND = 0.0D0
      RETURN
      END
*DTRSL
      SUBROUTINE DTRSL(T,LDT,N,B,JOB,INFO)
C***BEGIN PROLOGUE  DTRSL
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D2A3
C***KEYWORDS  DOUBLE PRECISION,LINEAR ALGEBRA,LINPACK,MATRIX,SOLVE,
C             TRIANGULAR
C***AUTHOR  STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE  SOLVES SYSTEMS OF THE FORM  T*X=B OR  TRANS(T)*X=B  WHERE T
C            IS A TRIANGULAR MATRIX OF ORDER N.
C***DESCRIPTION
C     DTRSL SOLVES SYSTEMS OF THE FORM
C                   T * X = B
C     OR
C                   TRANS(T) * X = B
C     WHERE T IS A TRIANGULAR MATRIX OF ORDER N.  HERE TRANS(T)
C     DENOTES THE TRANSPOSE OF THE MATRIX T.
C     ON ENTRY
C         T         DOUBLE PRECISION(LDT,N)
C                   T CONTAINS THE MATRIX OF THE SYSTEM.  THE ZERO
C                   ELEMENTS OF THE MATRIX ARE NOT REFERENCED, AND
C                   THE CORRESPONDING ELEMENTS OF THE ARRAY CAN BE
C                   USED TO STORE OTHER INFORMATION.
C         LDT       INTEGER
C                   LDT IS THE LEADING DIMENSION OF THE ARRAY T.
C         N         INTEGER
C                   N IS THE ORDER OF THE SYSTEM.
C         B         DOUBLE PRECISION(N).
C                   B CONTAINS THE RIGHT HAND SIDE OF THE SYSTEM.
C         JOB       INTEGER
C                   JOB SPECIFIES WHAT KIND OF SYSTEM IS TO BE SOLVED.
C                   IF JOB IS
C                        00   SOLVE T*X=B, T LOWER TRIANGULAR,
C                        01   SOLVE T*X=B, T UPPER TRIANGULAR,
C                        10   SOLVE TRANS(T)*X=B, T LOWER TRIANGULAR,
C                        11   SOLVE TRANS(T)*X=B, T UPPER TRIANGULAR.
C     ON RETURN
C         B         B CONTAINS THE SOLUTION, IF INFO .EQ. 0.
C                   OTHERWISE B IS UNALTERED.
C         INFO      INTEGER
C                   INFO CONTAINS ZERO IF THE SYSTEM IS NONSINGULAR.
C                   OTHERWISE INFO CONTAINS THE INDEX OF
C                   THE FIRST ZERO DIAGONAL ELEMENT OF T.
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DAXPY,DDOT
C***END PROLOGUE  DTRSL

C...SCALAR ARGUMENTS
      INTEGER
     +   INFO,JOB,LDT,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   B(*),T(LDT,*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   TEMP
      INTEGER
     +   CASE,J,JJ

C...EXTERNAL FUNCTIONS
      DOUBLE PRECISION
     +   DDOT
      EXTERNAL
     +   DDOT

C...EXTERNAL SUBROUTINES
      EXTERNAL
     +   DAXPY

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   MOD


C***FIRST EXECUTABLE STATEMENT  DTRSL


C     BEGIN BLOCK PERMITTING ...EXITS TO 150

C        CHECK FOR ZERO DIAGONAL ELEMENTS.

         DO 10 INFO = 1, N
C     ......EXIT
            IF (T(INFO,INFO) .EQ. 0.0D0) GO TO 150
   10    CONTINUE
         INFO = 0

C        DETERMINE THE TASK AND GO TO IT.

         CASE = 1
         IF (MOD(JOB,10) .NE. 0) CASE = 2
         IF (MOD(JOB,100)/10 .NE. 0) CASE = CASE + 2
         GO TO (20,50,80,110), CASE

C        SOLVE T*X=B FOR T LOWER TRIANGULAR

   20    CONTINUE
            B(1) = B(1)/T(1,1)
            IF (N .LT. 2) GO TO 40
            DO 30 J = 2, N
               TEMP = -B(J-1)
               CALL DAXPY(N-J+1,TEMP,T(J,J-1),1,B(J),1)
               B(J) = B(J)/T(J,J)
   30       CONTINUE
   40       CONTINUE
         GO TO 140

C        SOLVE T*X=B FOR T UPPER TRIANGULAR.

   50    CONTINUE
            B(N) = B(N)/T(N,N)
            IF (N .LT. 2) GO TO 70
            DO 60 JJ = 2, N
               J = N - JJ + 1
               TEMP = -B(J+1)
               CALL DAXPY(J,TEMP,T(1,J+1),1,B(1),1)
               B(J) = B(J)/T(J,J)
   60       CONTINUE
   70       CONTINUE
         GO TO 140

C        SOLVE TRANS(T)*X=B FOR T LOWER TRIANGULAR.

   80    CONTINUE
            B(N) = B(N)/T(N,N)
            IF (N .LT. 2) GO TO 100
            DO 90 JJ = 2, N
               J = N - JJ + 1
               B(J) = B(J) - DDOT(JJ-1,T(J+1,J),1,B(J+1),1)
               B(J) = B(J)/T(J,J)
   90       CONTINUE
  100       CONTINUE
         GO TO 140

C        SOLVE TRANS(T)*X=B FOR T UPPER TRIANGULAR.

  110    CONTINUE
            B(1) = B(1)/T(1,1)
            IF (N .LT. 2) GO TO 130
            DO 120 J = 2, N
               B(J) = B(J) - DDOT(J-1,T(1,J),1,B(1),1)
               B(J) = B(J)/T(J,J)
  120       CONTINUE
  130       CONTINUE
  140    CONTINUE
  150 CONTINUE
      RETURN
      END