File: d_lpkbls.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (2257 lines) | stat: -rw-r--r-- 68,781 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
*DASUM
      DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
C***BEGIN PROLOGUE  DASUM
C***DATE WRITTEN   791001   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D1A3A
C***KEYWORDS  ADD,BLAS,DOUBLE PRECISION,LINEAR ALGEBRA,MAGNITUDE,SUM,
C             VECTOR
C***AUTHOR  LAWSON, C. L., (JPL)
C           HANSON, R. J., (SNLA)
C           KINCAID, D. R., (U. OF TEXAS)
C           KROGH, F. T., (JPL)
C***PURPOSE  SUM OF MAGNITUDES OF D.P. VECTOR COMPONENTS
C***DESCRIPTION
C                B L A S  SUBPROGRAM
C    DESCRIPTION OF PARAMETERS
C     --INPUT--
C        N  NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C       DX  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCX  STORAGE SPACING BETWEEN ELEMENTS OF DX
C     --OUTPUT--
C    DASUM  DOUBLE PRECISION RESULT (ZERO IF N .LE. 0)
C     RETURNS SUM OF MAGNITUDES OF DOUBLE PRECISION DX.
C     DASUM = SUM FROM 0 TO N-1 OF DABS(DX(1+I*INCX))
C***REFERENCES  LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C                 *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C                 ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C                 SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DASUM

C...SCALAR ARGUMENTS
      INTEGER
     +   INCX,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   DX(*)

C...LOCAL SCALARS
      INTEGER
     +   I,M,MP1,NS

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   DABS,MOD


C***FIRST EXECUTABLE STATEMENT  DASUM


      DASUM = 0.D0
      IF(N.LE.0)RETURN
      IF(INCX.EQ.1)GOTO 20

C        CODE FOR INCREMENTS NOT EQUAL TO 1.

      NS = N*INCX
          DO 10 I=1,NS,INCX
          DASUM = DASUM + DABS(DX(I))
   10     CONTINUE
      RETURN

C        CODE FOR INCREMENTS EQUAL TO 1.

C        CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 6.

   20 M = MOD(N,6)
      IF( M .EQ. 0 ) GO TO 40
      DO 30 I = 1,M
         DASUM = DASUM + DABS(DX(I))
   30 CONTINUE
      IF( N .LT. 6 ) RETURN
   40 MP1 = M + 1
      DO 50 I = MP1,N,6
         DASUM = DASUM + DABS(DX(I)) + DABS(DX(I+1)) + DABS(DX(I+2))
     1   + DABS(DX(I+3)) + DABS(DX(I+4)) + DABS(DX(I+5))
   50 CONTINUE
      RETURN
      END
*DAXPY
      SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
C***BEGIN PROLOGUE  DAXPY
C***DATE WRITTEN   791001   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D1A7
C***KEYWORDS  BLAS,DOUBLE PRECISION,LINEAR ALGEBRA,TRIAD,VECTOR
C***AUTHOR  LAWSON, C. L., (JPL)
C           HANSON, R. J., (SNLA)
C           KINCAID, D. R., (U. OF TEXAS)
C           KROGH, F. T., (JPL)
C***PURPOSE  D.P COMPUTATION Y = A*X + Y
C***DESCRIPTION
C                B L A S  SUBPROGRAM
C    DESCRIPTION OF PARAMETERS
C     --INPUT--
C        N  NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C       DA  DOUBLE PRECISION SCALAR MULTIPLIER
C       DX  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCX  STORAGE SPACING BETWEEN ELEMENTS OF DX
C       DY  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCY  STORAGE SPACING BETWEEN ELEMENTS OF DY
C     --OUTPUT--
C       DY  DOUBLE PRECISION RESULT (UNCHANGED IF N .LE. 0)
C     OVERWRITE DOUBLE PRECISION DY WITH DOUBLE PRECISION DA*DX + DY.
C     FOR I = 0 TO N-1, REPLACE  DY(LY+I*INCY) WITH DA*DX(LX+I*INCX) +
C       DY(LY+I*INCY), WHERE LX = 1 IF INCX .GE. 0, ELSE LX = (-INCX)*N
C       AND LY IS DEFINED IN A SIMILAR WAY USING INCY.
C***REFERENCES  LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C                 *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C                 ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C                 SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DAXPY

C...SCALAR ARGUMENTS
      DOUBLE PRECISION
     +   DA
      INTEGER
     +   INCX,INCY,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   DX(*),DY(*)

C...LOCAL SCALARS
      INTEGER
     +   I,IX,IY,M,MP1,NS

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   MOD


C***FIRST EXECUTABLE STATEMENT  DAXPY


      IF(N.LE.0.OR.DA.EQ.0.D0) RETURN
      IF (INCX.EQ.INCY) IF(INCX.lt.1) GOTO 5
      IF (INCX.EQ.INCY) IF(INCX.eq.1) GOTO 20
      GOTO 60
    5 CONTINUE

C        CODE FOR NONEQUAL OR NONPOSITIVE INCREMENTS.

      IX = 1
      IY = 1
      IF(INCX.LT.0)IX = (-N+1)*INCX + 1
      IF(INCY.LT.0)IY = (-N+1)*INCY + 1
      DO 10 I = 1,N
        DY(IY) = DY(IY) + DA*DX(IX)
        IX = IX + INCX
        IY = IY + INCY
   10 CONTINUE
      RETURN

C        CODE FOR BOTH INCREMENTS EQUAL TO 1


C        CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 4.

   20 M = MOD(N,4)
      IF( M .EQ. 0 ) GO TO 40
      DO 30 I = 1,M
        DY(I) = DY(I) + DA*DX(I)
   30 CONTINUE
      IF( N .LT. 4 ) RETURN
   40 MP1 = M + 1
      DO 50 I = MP1,N,4
        DY(I) = DY(I) + DA*DX(I)
        DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
        DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
        DY(I + 3) = DY(I + 3) + DA*DX(I + 3)
   50 CONTINUE
      RETURN

C        CODE FOR EQUAL, POSITIVE, NONUNIT INCREMENTS.

   60 CONTINUE
      NS = N*INCX
          DO 70 I=1,NS,INCX
          DY(I) = DA*DX(I) + DY(I)
   70     CONTINUE
      RETURN
      END
*DCHEX
      SUBROUTINE DCHEX(R,LDR,P,K,L,Z,LDZ,NZ,C,S,JOB)
C***BEGIN PROLOGUE  DCHEX
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D7B
C***KEYWORDS  CHOLESKY DECOMPOSITION,DOUBLE PRECISION,EXCHANGE,
C             LINEAR ALGEBRA,LINPACK,MATRIX,POSITIVE DEFINITE
C***AUTHOR  STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE  UPDATES THE CHOLESKY FACTORIZATION  A=TRANS(R)*R  OF A
C            POSITIVE DEFINITE MATRIX A OF ORDER P UNDER DIAGONAL
C            PERMUTATIONS OF THE FORM  TRANS(E)*A*E  WHERE E IS A
C            PERMUTATION MATRIX.
C***DESCRIPTION
C     DCHEX UPDATES THE CHOLESKY FACTORIZATION
C                   A = TRANS(R)*R
C     OF A POSITIVE DEFINITE MATRIX A OF ORDER P UNDER DIAGONAL
C     PERMUTATIONS OF THE FORM
C                   TRANS(E)*A*E
C     WHERE E IS A PERMUTATION MATRIX.  SPECIFICALLY, GIVEN
C     AN UPPER TRIANGULAR MATRIX R AND A PERMUTATION MATRIX
C     E (WHICH IS SPECIFIED BY K, L, AND JOB), DCHEX DETERMINES
C     AN ORTHOGONAL MATRIX U SUCH THAT
C                           U*R*E = RR,
C     WHERE RR IS UPPER TRIANGULAR.  AT THE USERS OPTION, THE
C     TRANSFORMATION U WILL BE MULTIPLIED INTO THE ARRAY Z.
C     IF A = TRANS(X)*X, SO THAT R IS THE TRIANGULAR PART OF THE
C     QR FACTORIZATION OF X, THEN RR IS THE TRIANGULAR PART OF THE
C     QR FACTORIZATION OF X*E, I.E. X WITH ITS COLUMNS PERMUTED.
C     FOR A LESS TERSE DESCRIPTION OF WHAT DCHEX DOES AND HOW
C     IT MAY BE APPLIED, SEE THE LINPACK GUIDE.
C     THE MATRIX Q IS DETERMINED AS THE PRODUCT U(L-K)*...*U(1)
C     OF PLANE ROTATIONS OF THE FORM
C                           (    C(I)       S(I) )
C                           (                    ) ,
C                           (    -S(I)      C(I) )
C     WHERE C(I) IS DOUBLE PRECISION.  THE ROWS THESE ROTATIONS OPERATE
C     ON ARE DESCRIBED BELOW.
C     THERE ARE TWO TYPES OF PERMUTATIONS, WHICH ARE DETERMINED
C     BY THE VALUE OF JOB.
C     1. RIGHT CIRCULAR SHIFT (JOB = 1).
C         THE COLUMNS ARE REARRANGED IN THE FOLLOWING ORDER.
C                1,...,K-1,L,K,K+1,...,L-1,L+1,...,P.
C         U IS THE PRODUCT OF L-K ROTATIONS U(I), WHERE U(I)
C         ACTS IN THE (L-I,L-I+1)-PLANE.
C     2. LEFT CIRCULAR SHIFT (JOB = 2).
C         THE COLUMNS ARE REARRANGED IN THE FOLLOWING ORDER
C                1,...,K-1,K+1,K+2,...,L,K,L+1,...,P.
C         U IS THE PRODUCT OF L-K ROTATIONS U(I), WHERE U(I)
C         ACTS IN THE (K+I-1,K+I)-PLANE.
C     ON ENTRY
C         R      DOUBLE PRECISION(LDR,P), WHERE LDR .GE. P.
C                R CONTAINS THE UPPER TRIANGULAR FACTOR
C                THAT IS TO BE UPDATED.  ELEMENTS OF R
C                BELOW THE DIAGONAL ARE NOT REFERENCED.
C         LDR    INTEGER.
C                LDR IS THE LEADING DIMENSION OF THE ARRAY R.
C         P      INTEGER.
C                P IS THE ORDER OF THE MATRIX R.
C         K      INTEGER.
C                K IS THE FIRST COLUMN TO BE PERMUTED.
C         L      INTEGER.
C                L IS THE LAST COLUMN TO BE PERMUTED.
C                L MUST BE STRICTLY GREATER THAN K.
C         Z      DOUBLE PRECISION(LDZ,N)Z), WHERE LDZ .GE. P.
C                Z IS AN ARRAY OF NZ P-VECTORS INTO WHICH THE
C                TRANSFORMATION U IS MULTIPLIED.  Z IS
C                NOT REFERENCED IF NZ = 0.
C         LDZ    INTEGER.
C                LDZ IS THE LEADING DIMENSION OF THE ARRAY Z.
C         NZ     INTEGER.
C                NZ IS THE NUMBER OF COLUMNS OF THE MATRIX Z.
C         JOB    INTEGER.
C                JOB DETERMINES THE TYPE OF PERMUTATION.
C                       JOB = 1  RIGHT CIRCULAR SHIFT.
C                       JOB = 2  LEFT CIRCULAR SHIFT.
C     ON RETURN
C         R      CONTAINS THE UPDATED FACTOR.
C         Z      CONTAINS THE UPDATED MATRIX Z.
C         C      DOUBLE PRECISION(P).
C                C CONTAINS THE COSINES OF THE TRANSFORMING ROTATIONS.
C         S      DOUBLE PRECISION(P).
C                S CONTAINS THE SINES OF THE TRANSFORMING ROTATIONS.
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DROTG
C***END PROLOGUE  DCHEX

C...SCALAR ARGUMENTS
      INTEGER
     +   JOB,K,L,LDR,LDZ,NZ,P

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   C(*),R(LDR,*),S(*),Z(LDZ,*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   T,T1
      INTEGER
     +   I,II,IL,IU,J,JJ,KM1,KP1,LM1,LMK

C...EXTERNAL SUBROUTINES
      EXTERNAL
     +   DROTG

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   MAX0,MIN0


C***FIRST EXECUTABLE STATEMENT  DCHEX


      KM1 = K - 1
      KP1 = K + 1
      LMK = L - K
      LM1 = L - 1

C     PERFORM THE APPROPRIATE TASK.

      GO TO (10,130), JOB

C     RIGHT CIRCULAR SHIFT.

   10 CONTINUE

C        REORDER THE COLUMNS.

         DO 20 I = 1, L
            II = L - I + 1
            S(I) = R(II,L)
   20    CONTINUE
         DO 40 JJ = K, LM1
            J = LM1 - JJ + K
            DO 30 I = 1, J
               R(I,J+1) = R(I,J)
   30       CONTINUE
            R(J+1,J+1) = 0.0D0
   40    CONTINUE
         IF (K .EQ. 1) GO TO 60
            DO 50 I = 1, KM1
               II = L - I + 1
               R(I,K) = S(II)
   50       CONTINUE
   60    CONTINUE

C        CALCULATE THE ROTATIONS.

         T = S(1)
         DO 70 I = 1, LMK
            T1 = S(I)
            CALL DROTG(S(I+1),T,C(I),T1)
            S(I) = T1
            T = S(I+1)
   70    CONTINUE
         R(K,K) = T
         DO 90 J = KP1, P
            IL = MAX0(1,L-J+1)
            DO 80 II = IL, LMK
               I = L - II
               T = C(II)*R(I,J) + S(II)*R(I+1,J)
               R(I+1,J) = C(II)*R(I+1,J) - S(II)*R(I,J)
               R(I,J) = T
   80       CONTINUE
   90    CONTINUE

C        IF REQUIRED, APPLY THE TRANSFORMATIONS TO Z.

         IF (NZ .LT. 1) GO TO 120
         DO 110 J = 1, NZ
            DO 100 II = 1, LMK
               I = L - II
               T = C(II)*Z(I,J) + S(II)*Z(I+1,J)
               Z(I+1,J) = C(II)*Z(I+1,J) - S(II)*Z(I,J)
               Z(I,J) = T
  100       CONTINUE
  110    CONTINUE
  120    CONTINUE
      GO TO 260

C     LEFT CIRCULAR SHIFT

  130 CONTINUE

C        REORDER THE COLUMNS

         DO 140 I = 1, K
            II = LMK + I
            S(II) = R(I,K)
  140    CONTINUE
         DO 160 J = K, LM1
            DO 150 I = 1, J
               R(I,J) = R(I,J+1)
  150       CONTINUE
            JJ = J - KM1
            S(JJ) = R(J+1,J+1)
  160    CONTINUE
         DO 170 I = 1, K
            II = LMK + I
            R(I,L) = S(II)
  170    CONTINUE
         DO 180 I = KP1, L
            R(I,L) = 0.0D0
  180    CONTINUE

C        REDUCTION LOOP.

         DO 220 J = K, P
            IF (J .EQ. K) GO TO 200

C              APPLY THE ROTATIONS.

               IU = MIN0(J-1,L-1)
               DO 190 I = K, IU
                  II = I - K + 1
                  T = C(II)*R(I,J) + S(II)*R(I+1,J)
                  R(I+1,J) = C(II)*R(I+1,J) - S(II)*R(I,J)
                  R(I,J) = T
  190          CONTINUE
  200       CONTINUE
            IF (J .GE. L) GO TO 210
               JJ = J - K + 1
               T = S(JJ)
               CALL DROTG(R(J,J),T,C(JJ),S(JJ))
  210       CONTINUE
  220    CONTINUE

C        APPLY THE ROTATIONS TO Z.

         IF (NZ .LT. 1) GO TO 250
         DO 240 J = 1, NZ
            DO 230 I = K, LM1
               II = I - KM1
               T = C(II)*Z(I,J) + S(II)*Z(I+1,J)
               Z(I+1,J) = C(II)*Z(I+1,J) - S(II)*Z(I,J)
               Z(I,J) = T
  230       CONTINUE
  240    CONTINUE
  250    CONTINUE
  260 CONTINUE
      RETURN
      END
*DCOPY
      SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
C***BEGIN PROLOGUE  DCOPY
C***DATE WRITTEN   791001   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D1A5
C***KEYWORDS  BLAS,COPY,DOUBLE PRECISION,LINEAR ALGEBRA,VECTOR
C***AUTHOR  LAWSON, C. L., (JPL)
C           HANSON, R. J., (SNLA)
C           KINCAID, D. R., (U. OF TEXAS)
C           KROGH, F. T., (JPL)
C***PURPOSE  D.P. VECTOR COPY Y = X
C***DESCRIPTION
C                B L A S  SUBPROGRAM
C    DESCRIPTION OF PARAMETERS
C     --INPUT--
C        N  NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C       DX  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCX  STORAGE SPACING BETWEEN ELEMENTS OF DX
C       DY  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCY  STORAGE SPACING BETWEEN ELEMENTS OF DY
C     --OUTPUT--
C       DY  COPY OF VECTOR DX (UNCHANGED IF N .LE. 0)
C     COPY DOUBLE PRECISION DX TO DOUBLE PRECISION DY.
C     FOR I = 0 TO N-1, COPY DX(LX+I*INCX) TO DY(LY+I*INCY),
C     WHERE LX = 1 IF INCX .GE. 0, ELSE LX = (-INCX)*N, AND LY IS
C     DEFINED IN A SIMILAR WAY USING INCY.
C***REFERENCES  LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C                 *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C                 ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C                 SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DCOPY

C...SCALAR ARGUMENTS
      INTEGER
     +   INCX,INCY,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   DX(*),DY(*)

C...LOCAL SCALARS
      INTEGER
     +   I,IX,IY,M,MP1,NS

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   MOD


C***FIRST EXECUTABLE STATEMENT  DCOPY


      IF(N.LE.0)RETURN
      IF (INCX.EQ.INCY) IF(INCX.lt.1) GOTO 5
      IF (INCX.EQ.INCY) IF(INCX.eq.1) GOTO 20
      GOTO 60
    5 CONTINUE

C        CODE FOR UNEQUAL OR NONPOSITIVE INCREMENTS.

      IX = 1
      IY = 1
      IF(INCX.LT.0)IX = (-N+1)*INCX + 1
      IF(INCY.LT.0)IY = (-N+1)*INCY + 1
      DO 10 I = 1,N
        DY(IY) = DX(IX)
        IX = IX + INCX
        IY = IY + INCY
   10 CONTINUE
      RETURN

C        CODE FOR BOTH INCREMENTS EQUAL TO 1


C        CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 7.

   20 M = MOD(N,7)
      IF( M .EQ. 0 ) GO TO 40
      DO 30 I = 1,M
        DY(I) = DX(I)
   30 CONTINUE
      IF( N .LT. 7 ) RETURN
   40 MP1 = M + 1
      DO 50 I = MP1,N,7
        DY(I) = DX(I)
        DY(I + 1) = DX(I + 1)
        DY(I + 2) = DX(I + 2)
        DY(I + 3) = DX(I + 3)
        DY(I + 4) = DX(I + 4)
        DY(I + 5) = DX(I + 5)
        DY(I + 6) = DX(I + 6)
   50 CONTINUE
      RETURN

C        CODE FOR EQUAL, POSITIVE, NONUNIT INCREMENTS.

   60 CONTINUE
      NS=N*INCX
          DO 70 I=1,NS,INCX
          DY(I) = DX(I)
   70     CONTINUE
      RETURN
      END
*DDOT
      DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
C***BEGIN PROLOGUE  DDOT
C***DATE WRITTEN   791001   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D1A4
C***KEYWORDS  BLAS,DOUBLE PRECISION,INNER PRODUCT,LINEAR ALGEBRA,VECTOR
C***AUTHOR  LAWSON, C. L., (JPL)
C           HANSON, R. J., (SNLA)
C           KINCAID, D. R., (U. OF TEXAS)
C           KROGH, F. T., (JPL)
C***PURPOSE  D.P. INNER PRODUCT OF D.P. VECTORS
C***DESCRIPTION
C                B L A S  SUBPROGRAM
C    DESCRIPTION OF PARAMETERS
C     --INPUT--
C        N  NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C       DX  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCX  STORAGE SPACING BETWEEN ELEMENTS OF DX
C       DY  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCY  STORAGE SPACING BETWEEN ELEMENTS OF DY
C     --OUTPUT--
C     DDOT  DOUBLE PRECISION DOT PRODUCT (ZERO IF N .LE. 0)
C     RETURNS THE DOT PRODUCT OF DOUBLE PRECISION DX AND DY.
C     DDOT = SUM FOR I = 0 TO N-1 OF  DX(LX+I*INCX) * DY(LY+I*INCY)
C     WHERE LX = 1 IF INCX .GE. 0, ELSE LX = (-INCX)*N, AND LY IS
C     DEFINED IN A SIMILAR WAY USING INCY.
C***REFERENCES  LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C                 *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C                 ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C                 SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DDOT

C...SCALAR ARGUMENTS
      INTEGER
     +   INCX,INCY,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   DX(*),DY(*)

C...LOCAL SCALARS
      INTEGER
     +   I,IX,IY,M,MP1,NS

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   MOD


C***FIRST EXECUTABLE STATEMENT  DDOT


      DDOT = 0.D0
      IF(N.LE.0)RETURN
      IF (INCX.EQ.INCY) IF(INCX.lt.1) GOTO 5
      IF (INCX.EQ.INCY) IF(INCX.eq.1) GOTO 20
      GOTO 60
    5 CONTINUE

C         CODE FOR UNEQUAL OR NONPOSITIVE INCREMENTS.

      IX = 1
      IY = 1
      IF(INCX.LT.0)IX = (-N+1)*INCX + 1
      IF(INCY.LT.0)IY = (-N+1)*INCY + 1
      DO 10 I = 1,N
         DDOT = DDOT + DX(IX)*DY(IY)
        IX = IX + INCX
        IY = IY + INCY
   10 CONTINUE
      RETURN

C        CODE FOR BOTH INCREMENTS EQUAL TO 1.


C        CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 5.

   20 M = MOD(N,5)
      IF( M .EQ. 0 ) GO TO 40
      DO 30 I = 1,M
         DDOT = DDOT + DX(I)*DY(I)
   30 CONTINUE
      IF( N .LT. 5 ) RETURN
   40 MP1 = M + 1
      DO 50 I = MP1,N,5
         DDOT = DDOT + DX(I)*DY(I) + DX(I+1)*DY(I+1) +
     1   DX(I + 2)*DY(I + 2) + DX(I + 3)*DY(I + 3) + DX(I + 4)*DY(I + 4)
   50 CONTINUE
      RETURN

C         CODE FOR POSITIVE EQUAL INCREMENTS .NE.1.

   60 CONTINUE
      NS = N*INCX
          DO 70 I=1,NS,INCX
          DDOT = DDOT + DX(I)*DY(I)
   70     CONTINUE
      RETURN
      END
*DNRM2
      DOUBLE PRECISION FUNCTION DNRM2(N,DX,INCX)
C***BEGIN PROLOGUE  DNRM2
C***DATE WRITTEN   791001   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D1A3B
C***KEYWORDS  BLAS,DOUBLE PRECISION,EUCLIDEAN,L2,LENGTH,LINEAR ALGEBRA,
C             NORM,VECTOR
C***AUTHOR  LAWSON, C. L., (JPL)
C           HANSON, R. J., (SNLA)
C           KINCAID, D. R., (U. OF TEXAS)
C           KROGH, F. T., (JPL)
C***PURPOSE  EUCLIDEAN LENGTH (L2 NORM) OF D.P. VECTOR
C***DESCRIPTION
C                B L A S  SUBPROGRAM
C    DESCRIPTION OF PARAMETERS
C     --INPUT--
C        N  NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C       DX  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCX  STORAGE SPACING BETWEEN ELEMENTS OF DX
C     --OUTPUT--
C    DNRM2  DOUBLE PRECISION RESULT (ZERO IF N .LE. 0)
C     EUCLIDEAN NORM OF THE N-VECTOR STORED IN DX() WITH STORAGE
C     INCREMENT INCX .
C     IF    N .LE. 0 RETURN WITH RESULT = 0.
C     IF N .GE. 1 THEN INCX MUST BE .GE. 1
C           C.L. LAWSON, 1978 JAN 08
C     FOUR PHASE METHOD     USING TWO BUILT-IN CONSTANTS THAT ARE
C     HOPEFULLY APPLICABLE TO ALL MACHINES.
C         CUTLO = MAXIMUM OF  DSQRT(U/EPS)  OVER ALL KNOWN MACHINES.
C         CUTHI = MINIMUM OF  DSQRT(V)      OVER ALL KNOWN MACHINES.
C     WHERE
C         EPS = SMALLEST NO. SUCH THAT EPS + 1. .GT. 1.
C         U   = SMALLEST POSITIVE NO.   (UNDERFLOW LIMIT)
C         V   = LARGEST  NO.            (OVERFLOW  LIMIT)
C     BRIEF OUTLINE OF ALGORITHM..
C     PHASE 1    SCANS ZERO COMPONENTS.
C     MOVE TO PHASE 2 WHEN A COMPONENT IS NONZERO AND .LE. CUTLO
C     MOVE TO PHASE 3 WHEN A COMPONENT IS .GT. CUTLO
C     MOVE TO PHASE 4 WHEN A COMPONENT IS .GE. CUTHI/M
C     WHERE M = N FOR X() REAL AND M = 2*N FOR COMPLEX.

C     VALUES FOR CUTLO AND CUTHI..
C     FROM THE ENVIRONMENTAL PARAMETERS LISTED IN THE IMSL CONVERTER
C     DOCUMENT THE LIMITING VALUES ARE AS FOLLOWS..
C     CUTLO, S.P.   U/EPS = 2**(-102) FOR  HONEYWELL.  CLOSE SECONDS ARE
C                   UNIVAC AND DEC AT 2**(-103)
C                   THUS CUTLO = 2**(-51) = 4.44089E-16
C     CUTHI, S.P.   V = 2**127 FOR UNIVAC, HONEYWELL, AND DEC.
C                   THUS CUTHI = 2**(63.5) = 1.30438E19
C     CUTLO, D.P.   U/EPS = 2**(-67) FOR HONEYWELL AND DEC.
C                   THUS CUTLO = 2**(-33.5) = 8.23181D-11
C     CUTHI, D.P.   SAME AS S.P.  CUTHI = 1.30438D19
C     DATA CUTLO, CUTHI / 8.232D-11,  1.304D19 /
C     DATA CUTLO, CUTHI / 4.441E-16,  1.304E19 /
C***REFERENCES  LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C                 *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C                 ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C                 SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DNRM2

C...SCALAR ARGUMENTS
      INTEGER
     +   INCX,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   DX(*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   CUTHI,CUTLO,HITEST,ONE,SUM,XMAX,ZERO
      INTEGER
     +   I,J,NEXT,NN

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   DABS,DSQRT,FLOAT

C...DATA STATEMENTS
      DATA
     +   ZERO,ONE/0.0D0,1.0D0/
      DATA
     +   CUTLO,CUTHI/8.232D-11,1.304D19/


C***FIRST EXECUTABLE STATEMENT  DNRM2


      XMAX = ZERO
      IF(N .GT. 0) GO TO 10
         DNRM2  = ZERO
         GO TO 300

   10 ASSIGN 30 TO NEXT
      SUM = ZERO
      NN = N * INCX
C                                                 BEGIN MAIN LOOP
      I = 1
C  20 GO TO NEXT,(30, 50, 70, 110)
   20 GO TO NEXT
   30 IF( DABS(DX(I)) .GT. CUTLO) GO TO 85
      ASSIGN 50 TO NEXT
      XMAX = ZERO

C                        PHASE 1.  SUM IS ZERO

   50 IF( DX(I) .EQ. ZERO) GO TO 200
      IF( DABS(DX(I)) .GT. CUTLO) GO TO 85

C                                PREPARE FOR PHASE 2.
      ASSIGN 70 TO NEXT
      GO TO 105

C                                PREPARE FOR PHASE 4.

  100 I = J
      ASSIGN 110 TO NEXT
      SUM = (SUM / DX(I)) / DX(I)
  105 XMAX = DABS(DX(I))
      GO TO 115

C                   PHASE 2.  SUM IS SMALL.
C                             SCALE TO AVOID DESTRUCTIVE UNDERFLOW.

   70 IF( DABS(DX(I)) .GT. CUTLO ) GO TO 75

C                     COMMON CODE FOR PHASES 2 AND 4.
C                     IN PHASE 4 SUM IS LARGE.  SCALE TO AVOID OVERFLOW.

  110 IF( DABS(DX(I)) .LE. XMAX ) GO TO 115
         SUM = ONE + SUM * (XMAX / DX(I))**2
         XMAX = DABS(DX(I))
         GO TO 200

  115 SUM = SUM + (DX(I)/XMAX)**2
      GO TO 200


C                  PREPARE FOR PHASE 3.

   75 SUM = (SUM * XMAX) * XMAX


C     FOR REAL OR D.P. SET HITEST = CUTHI/N
C     FOR COMPLEX      SET HITEST = CUTHI/(2*N)

   85 HITEST = CUTHI/FLOAT( N )

C                   PHASE 3.  SUM IS MID-RANGE.  NO SCALING.

      DO 95 J =I,NN,INCX
      IF(DABS(DX(J)) .GE. HITEST) GO TO 100
   95    SUM = SUM + DX(J)**2
      DNRM2 = DSQRT( SUM )
      GO TO 300

  200 CONTINUE
      I = I + INCX
      IF ( I .LE. NN ) GO TO 20

C              END OF MAIN LOOP.

C              COMPUTE SQUARE ROOT AND ADJUST FOR SCALING.

      DNRM2 = XMAX * DSQRT(SUM)
  300 CONTINUE
      RETURN
      END
*DPODI
      SUBROUTINE DPODI(A,LDA,N,DET,JOB)
C***BEGIN PROLOGUE  DPODI
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D2B1B,D3B1B
C***KEYWORDS  DETERMINANT,DOUBLE PRECISION,FACTOR,INVERSE,
C             LINEAR ALGEBRA,LINPACK,MATRIX,POSITIVE DEFINITE
C***AUTHOR  MOLER, C. B., (U. OF NEW MEXICO)
C***PURPOSE  COMPUTES THE DETERMINANT AND INVERSE OF A CERTAIN DOUBLE
C            PRECISION SYMMETRIC POSITIVE DEFINITE MATRIX (SEE ABSTRACT)
C            USING THE FACTORS COMPUTED BY DPOCO, DPOFA OR DQRDC.
C***DESCRIPTION
C     DPODI COMPUTES THE DETERMINANT AND INVERSE OF A CERTAIN
C     DOUBLE PRECISION SYMMETRIC POSITIVE DEFINITE MATRIX (SEE BELOW)
C     USING THE FACTORS COMPUTED BY DPOCO, DPOFA OR DQRDC.
C     ON ENTRY
C        A       DOUBLE PRECISION(LDA, N)
C                THE OUTPUT  A  FROM DPOCO OR DPOFA
C                OR THE OUTPUT  X  FROM DQRDC.
C        LDA     INTEGER
C                THE LEADING DIMENSION OF THE ARRAY  A .
C        N       INTEGER
C                THE ORDER OF THE MATRIX  A .
C        JOB     INTEGER
C                = 11   BOTH DETERMINANT AND INVERSE.
C                = 01   INVERSE ONLY.
C                = 10   DETERMINANT ONLY.
C     ON RETURN
C        A       IF DPOCO OR DPOFA WAS USED TO FACTOR  A , THEN
C                DPODI PRODUCES THE UPPER HALF OF INVERSE(A) .
C                IF DQRDC WAS USED TO DECOMPOSE  X , THEN
C                DPODI PRODUCES THE UPPER HALF OF INVERSE(TRANS(X)*X)
C                WHERE TRANS(X) IS THE TRANSPOSE.
C                ELEMENTS OF  A  BELOW THE DIAGONAL ARE UNCHANGED.
C                IF THE UNITS DIGIT OF JOB IS ZERO,  A  IS UNCHANGED.
C        DET     DOUBLE PRECISION(2)
C                DETERMINANT OF  A  OR OF  TRANS(X)*X  IF REQUESTED.
C                OTHERWISE NOT REFERENCED.
C                DETERMINANT = DET(1) * 10.0**DET(2)
C                WITH  1.0 .LE. DET(1) .LT. 10.0
C                OR  DET(1) .EQ. 0.0 .
C     ERROR CONDITION
C        A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS
C        A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.
C        IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY
C        AND IF DPOCO OR DPOFA HAS SET INFO .EQ. 0 .
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DAXPY,DSCAL
C***END PROLOGUE  DPODI

C...SCALAR ARGUMENTS
      INTEGER JOB,LDA,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION A(LDA,*),DET(*)

C...LOCAL SCALARS
      DOUBLE PRECISION S,T
      INTEGER I,J,JM1,K,KP1

C...EXTERNAL SUBROUTINES
      EXTERNAL DAXPY,DSCAL

C...INTRINSIC FUNCTIONS
      INTRINSIC MOD


C***FIRST EXECUTABLE STATEMENT  DPODI


      IF (JOB/10 .EQ. 0) GO TO 70
         DET(1) = 1.0D0
         DET(2) = 0.0D0
         S = 10.0D0
         DO 50 I = 1, N
            DET(1) = A(I,I)**2*DET(1)
C        ...EXIT
            IF (DET(1) .EQ. 0.0D0) GO TO 60
   10       IF (DET(1) .GE. 1.0D0) GO TO 20
               DET(1) = S*DET(1)
               DET(2) = DET(2) - 1.0D0
            GO TO 10
   20       CONTINUE
   30       IF (DET(1) .LT. S) GO TO 40
               DET(1) = DET(1)/S
               DET(2) = DET(2) + 1.0D0
            GO TO 30
   40       CONTINUE
   50    CONTINUE
   60    CONTINUE
   70 CONTINUE

C     COMPUTE INVERSE(R)

      IF (MOD(JOB,10) .EQ. 0) GO TO 140
         DO 100 K = 1, N
            A(K,K) = 1.0D0/A(K,K)
            T = -A(K,K)
            CALL DSCAL(K-1,T,A(1,K),1)
            KP1 = K + 1
            IF (N .LT. KP1) GO TO 90
            DO 80 J = KP1, N
               T = A(K,J)
               A(K,J) = 0.0D0
               CALL DAXPY(K,T,A(1,K),1,A(1,J),1)
   80       CONTINUE
   90       CONTINUE
  100    CONTINUE

C        FORM  INVERSE(R) * TRANS(INVERSE(R))

         DO 130 J = 1, N
            JM1 = J - 1
            IF (JM1 .LT. 1) GO TO 120
            DO 110 K = 1, JM1
               T = A(K,J)
               CALL DAXPY(K,T,A(1,J),1,A(1,K),1)
  110       CONTINUE
  120       CONTINUE
            T = A(J,J)
            CALL DSCAL(J,T,A(1,J),1)
  130    CONTINUE
  140 CONTINUE
      RETURN
      END
*DQRDC
      SUBROUTINE DQRDC(X,LDX,N,P,QRAUX,JPVT,WORK,JOB)
C***BEGIN PROLOGUE  DQRDC
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D5
C***KEYWORDS  DECOMPOSITION,DOUBLE PRECISION,LINEAR ALGEBRA,LINPACK,
C             MATRIX,ORTHOGONAL TRIANGULAR
C***AUTHOR  STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE  USES HOUSEHOLDER TRANSFORMATIONS TO COMPUTE THE QR FACTORI-
C            ZATION OF N BY P MATRIX X.  COLUMN PIVOTING IS OPTIONAL.
C***DESCRIPTION
C     DQRDC USES HOUSEHOLDER TRANSFORMATIONS TO COMPUTE THE QR
C     FACTORIZATION OF AN N BY P MATRIX X.  COLUMN PIVOTING
C     BASED ON THE 2-NORMS OF THE REDUCED COLUMNS MAY BE
C     PERFORMED AT THE USER'S OPTION.
C     ON ENTRY
C        X       DOUBLE PRECISION(LDX,P), WHERE LDX .GE. N.
C                X CONTAINS THE MATRIX WHOSE DECOMPOSITION IS TO BE
C                COMPUTED.
C        LDX     INTEGER.
C                LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C        N       INTEGER.
C                N IS THE NUMBER OF ROWS OF THE MATRIX X.
C        P       INTEGER.
C                P IS THE NUMBER OF COLUMNS OF THE MATRIX X.
C        JPVT    INTEGER(P).
C                JPVT CONTAINS INTEGERS THAT CONTROL THE SELECTION
C                OF THE PIVOT COLUMNS.  THE K-TH COLUMN X(K) OF X
C                IS PLACED IN ONE OF THREE CLASSES ACCORDING TO THE
C                VALUE OF JPVT(K).
C                   IF JPVT(K) .GT. 0, THEN X(K) IS AN INITIAL
C                                      COLUMN.
C                   IF JPVT(K) .EQ. 0, THEN X(K) IS A FREE COLUMN.
C                   IF JPVT(K) .LT. 0, THEN X(K) IS A FINAL COLUMN.
C                BEFORE THE DECOMPOSITION IS COMPUTED, INITIAL COLUMNS
C                ARE MOVED TO THE BEGINNING OF THE ARRAY X AND FINAL
C                COLUMNS TO THE END.  BOTH INITIAL AND FINAL COLUMNS
C                ARE FROZEN IN PLACE DURING THE COMPUTATION AND ONLY
C                FREE COLUMNS ARE MOVED.  AT THE K-TH STAGE OF THE
C                REDUCTION, IF X(K) IS OCCUPIED BY A FREE COLUMN
C                IT IS INTERCHANGED WITH THE FREE COLUMN OF LARGEST
C                REDUCED NORM.  JPVT IS NOT REFERENCED IF
C                JOB .EQ. 0.
C        WORK    DOUBLE PRECISION(P).
C                WORK IS A WORK ARRAY.  WORK IS NOT REFERENCED IF
C                JOB .EQ. 0.
C        JOB     INTEGER.
C                JOB IS AN INTEGER THAT INITIATES COLUMN PIVOTING.
C                IF JOB .EQ. 0, NO PIVOTING IS DONE.
C                IF JOB .NE. 0, PIVOTING IS DONE.
C     ON RETURN
C        X       X CONTAINS IN ITS UPPER TRIANGLE THE UPPER
C                TRIANGULAR MATRIX R OF THE QR FACTORIZATION.
C                BELOW ITS DIAGONAL X CONTAINS INFORMATION FROM
C                WHICH THE ORTHOGONAL PART OF THE DECOMPOSITION
C                CAN BE RECOVERED.  NOTE THAT IF PIVOTING HAS
C                BEEN REQUESTED, THE DECOMPOSITION IS NOT THAT
C                OF THE ORIGINAL MATRIX X BUT THAT OF X
C                WITH ITS COLUMNS PERMUTED AS DESCRIBED BY JPVT.
C        QRAUX   DOUBLE PRECISION(P).
C                QRAUX CONTAINS FURTHER INFORMATION REQUIRED TO RECOVER
C                THE ORTHOGONAL PART OF THE DECOMPOSITION.
C        JPVT    JPVT(K) CONTAINS THE INDEX OF THE COLUMN OF THE
C                ORIGINAL MATRIX THAT HAS BEEN INTERCHANGED INTO
C                THE K-TH COLUMN, IF PIVOTING WAS REQUESTED.
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DAXPY,DDOT,DNRM2,DSCAL,DSWAP
C***END PROLOGUE  DQRDC

C...SCALAR ARGUMENTS
      INTEGER
     +   JOB,LDX,N,P

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   QRAUX(*),WORK(*),X(LDX,*)
      INTEGER
     +   JPVT(*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   MAXNRM,NRMXL,T,TT
      INTEGER
     +   J,JJ,JP,L,LP1,LUP,MAXJ,PL,PU
      LOGICAL
     +   NEGJ,SWAPJ

C...EXTERNAL FUNCTIONS
      DOUBLE PRECISION
     +   DDOT,DNRM2
      EXTERNAL
     +   DDOT,DNRM2

C...EXTERNAL SUBROUTINES
      EXTERNAL
     +   DAXPY,DSCAL,DSWAP

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   DABS,DMAX1,DSIGN,DSQRT,MIN0


C***FIRST EXECUTABLE STATEMENT  DQRDC


      PL = 1
      PU = 0
      IF (JOB .EQ. 0) GO TO 60

C        PIVOTING HAS BEEN REQUESTED.  REARRANGE THE COLUMNS
C        ACCORDING TO JPVT.

         DO 20 J = 1, P
            SWAPJ = JPVT(J) .GT. 0
            NEGJ = JPVT(J) .LT. 0
            JPVT(J) = J
            IF (NEGJ) JPVT(J) = -J
            IF (.NOT.SWAPJ) GO TO 10
               IF (J .NE. PL) CALL DSWAP(N,X(1,PL),1,X(1,J),1)
               JPVT(J) = JPVT(PL)
               JPVT(PL) = J
               PL = PL + 1
   10       CONTINUE
   20    CONTINUE
         PU = P
         DO 50 JJ = 1, P
            J = P - JJ + 1
            IF (JPVT(J) .GE. 0) GO TO 40
               JPVT(J) = -JPVT(J)
               IF (J .EQ. PU) GO TO 30
                  CALL DSWAP(N,X(1,PU),1,X(1,J),1)
                  JP = JPVT(PU)
                  JPVT(PU) = JPVT(J)
                  JPVT(J) = JP
   30          CONTINUE
               PU = PU - 1
   40       CONTINUE
   50    CONTINUE
   60 CONTINUE

C     COMPUTE THE NORMS OF THE FREE COLUMNS.

      IF (PU .LT. PL) GO TO 80
      DO 70 J = PL, PU
         QRAUX(J) = DNRM2(N,X(1,J),1)
         WORK(J) = QRAUX(J)
   70 CONTINUE
   80 CONTINUE

C     PERFORM THE HOUSEHOLDER REDUCTION OF X.

      LUP = MIN0(N,P)
      DO 200 L = 1, LUP
         IF (L .LT. PL .OR. L .GE. PU) GO TO 120

C           LOCATE THE COLUMN OF LARGEST NORM AND BRING IT
C           INTO THE PIVOT POSITION.

            MAXNRM = 0.0D0
            MAXJ = L
            DO 100 J = L, PU
               IF (QRAUX(J) .LE. MAXNRM) GO TO 90
                  MAXNRM = QRAUX(J)
                  MAXJ = J
   90          CONTINUE
  100       CONTINUE
            IF (MAXJ .EQ. L) GO TO 110
               CALL DSWAP(N,X(1,L),1,X(1,MAXJ),1)
               QRAUX(MAXJ) = QRAUX(L)
               WORK(MAXJ) = WORK(L)
               JP = JPVT(MAXJ)
               JPVT(MAXJ) = JPVT(L)
               JPVT(L) = JP
  110       CONTINUE
  120    CONTINUE
         QRAUX(L) = 0.0D0
         IF (L .EQ. N) GO TO 190

C           COMPUTE THE HOUSEHOLDER TRANSFORMATION FOR COLUMN L.

            NRMXL = DNRM2(N-L+1,X(L,L),1)
            IF (NRMXL .EQ. 0.0D0) GO TO 180
               IF (X(L,L) .NE. 0.0D0) NRMXL = DSIGN(NRMXL,X(L,L))
               CALL DSCAL(N-L+1,1.0D0/NRMXL,X(L,L),1)
               X(L,L) = 1.0D0 + X(L,L)

C              APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS,
C              UPDATING THE NORMS.

               LP1 = L + 1
               IF (P .LT. LP1) GO TO 170
               DO 160 J = LP1, P
                  T = -DDOT(N-L+1,X(L,L),1,X(L,J),1)/X(L,L)
                  CALL DAXPY(N-L+1,T,X(L,L),1,X(L,J),1)
                  IF (J .LT. PL .OR. J .GT. PU) GO TO 150
                  IF (QRAUX(J) .EQ. 0.0D0) GO TO 150
                     TT = 1.0D0 - (DABS(X(L,J))/QRAUX(J))**2
                     TT = DMAX1(TT,0.0D0)
                     T = TT
                     TT = 1.0D0 + 0.05D0*TT*(QRAUX(J)/WORK(J))**2
                     IF (TT .EQ. 1.0D0) GO TO 130
                        QRAUX(J) = QRAUX(J)*DSQRT(T)
                     GO TO 140
  130                CONTINUE
                        QRAUX(J) = DNRM2(N-L,X(L+1,J),1)
                        WORK(J) = QRAUX(J)
  140                CONTINUE
  150             CONTINUE
  160          CONTINUE
  170          CONTINUE

C              SAVE THE TRANSFORMATION.

               QRAUX(L) = X(L,L)
               X(L,L) = -NRMXL
  180       CONTINUE
  190    CONTINUE
  200 CONTINUE
      RETURN
      END
*DQRSL
      SUBROUTINE DQRSL(X,LDX,N,K,QRAUX,Y,QY,QTY,B,RSD,XB,JOB,INFO)
C***BEGIN PROLOGUE  DQRSL
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D9,D2A1
C***KEYWORDS  DOUBLE PRECISION,LINEAR ALGEBRA,LINPACK,MATRIX,
C             ORTHOGONAL TRIANGULAR,SOLVE
C***AUTHOR  STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE  APPLIES THE OUTPUT OF DQRDC TO COMPUTE COORDINATE
C            TRANSFORMATIONS, PROJECTIONS, AND LEAST SQUARES SOLUTIONS.
C***DESCRIPTION
C     DQRSL APPLIES THE OUTPUT OF DQRDC TO COMPUTE COORDINATE
C     TRANSFORMATIONS, PROJECTIONS, AND LEAST SQUARES SOLUTIONS.
C     FOR K .LE. MIN(N,P), LET XK BE THE MATRIX
C            XK = (X(JPVT(1)),X(JPVT(2)), ... ,X(JPVT(K)))
C     FORMED FROM COLUMNNS JPVT(1), ... ,JPVT(K) OF THE ORIGINAL
C     N X P MATRIX X THAT WAS INPUT TO DQRDC (IF NO PIVOTING WAS
C     DONE, XK CONSISTS OF THE FIRST K COLUMNS OF X IN THEIR
C     ORIGINAL ORDER).  DQRDC PRODUCES A FACTORED ORTHOGONAL MATRIX Q
C     AND AN UPPER TRIANGULAR MATRIX R SUCH THAT
C              XK = Q * (R)
C                       (0)
C     THIS INFORMATION IS CONTAINED IN CODED FORM IN THE ARRAYS
C     X AND QRAUX.
C     ON ENTRY
C        X      DOUBLE PRECISION(LDX,P).
C               X CONTAINS THE OUTPUT OF DQRDC.
C        LDX    INTEGER.
C               LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C        N      INTEGER.
C               N IS THE NUMBER OF ROWS OF THE MATRIX XK.  IT MUST
C               HAVE THE SAME VALUE AS N IN DQRDC.
C        K      INTEGER.
C               K IS THE NUMBER OF COLUMNS OF THE MATRIX XK.  K
C               MUST NOT BE GREATER THAN MIN(N,P), WHERE P IS THE
C               SAME AS IN THE CALLING SEQUENCE TO DQRDC.
C        QRAUX  DOUBLE PRECISION(P).
C               QRAUX CONTAINS THE AUXILIARY OUTPUT FROM DQRDC.
C        Y      DOUBLE PRECISION(N)
C               Y CONTAINS AN N-VECTOR THAT IS TO BE MANIPULATED
C               BY DQRSL.
C        JOB    INTEGER.
C               JOB SPECIFIES WHAT IS TO BE COMPUTED.  JOB HAS
C               THE DECIMAL EXPANSION ABCDE, WITH THE FOLLOWING
C               MEANING.
C                    IF A .NE. 0, COMPUTE QY.
C                    IF B,C,D, OR E .NE. 0, COMPUTE QTY.
C                    IF C .NE. 0, COMPUTE B.
C                    IF D .NE. 0, COMPUTE RSD.
C                    IF E .NE. 0, COMPUTE XB.
C               NOTE THAT A REQUEST TO COMPUTE B, RSD, OR XB
C               AUTOMATICALLY TRIGGERS THE COMPUTATION OF QTY, FOR
C               WHICH AN ARRAY MUST BE PROVIDED IN THE CALLING
C               SEQUENCE.
C     ON RETURN
C        QY     DOUBLE PRECISION(N).
C               QY CONTAINS Q*Y, IF ITS COMPUTATION HAS BEEN
C               REQUESTED.
C        QTY    DOUBLE PRECISION(N).
C               QTY CONTAINS TRANS(Q)*Y, IF ITS COMPUTATION HAS
C               BEEN REQUESTED.  HERE TRANS(Q) IS THE
C               TRANSPOSE OF THE MATRIX Q.
C        B      DOUBLE PRECISION(K)
C               B CONTAINS THE SOLUTION OF THE LEAST SQUARES PROBLEM
C                    MINIMIZE NORM2(Y - XK*B),
C               IF ITS COMPUTATION HAS BEEN REQUESTED.  (NOTE THAT
C               IF PIVOTING WAS REQUESTED IN DQRDC, THE J-TH
C               COMPONENT OF B WILL BE ASSOCIATED WITH COLUMN JPVT(J)
C               OF THE ORIGINAL MATRIX X THAT WAS INPUT INTO DQRDC.)
C        RSD    DOUBLE PRECISION(N).
C               RSD CONTAINS THE LEAST SQUARES RESIDUAL Y - XK*B,
C               IF ITS COMPUTATION HAS BEEN REQUESTED.  RSD IS
C               ALSO THE ORTHOGONAL PROJECTION OF Y ONTO THE
C               ORTHOGONAL COMPLEMENT OF THE COLUMN SPACE OF XK.
C        XB     DOUBLE PRECISION(N).
C               XB CONTAINS THE LEAST SQUARES APPROXIMATION XK*B,
C               IF ITS COMPUTATION HAS BEEN REQUESTED.  XB IS ALSO
C               THE ORTHOGONAL PROJECTION OF Y ONTO THE COLUMN SPACE
C               OF X.
C        INFO   INTEGER.
C               INFO IS ZERO UNLESS THE COMPUTATION OF B HAS
C               BEEN REQUESTED AND R IS EXACTLY SINGULAR.  IN
C               THIS CASE, INFO IS THE INDEX OF THE FIRST ZERO
C               DIAGONAL ELEMENT OF R AND B IS LEFT UNALTERED.
C     THE PARAMETERS QY, QTY, B, RSD, AND XB ARE NOT REFERENCED
C     IF THEIR COMPUTATION IS NOT REQUESTED AND IN THIS CASE
C     CAN BE REPLACED BY DUMMY VARIABLES IN THE CALLING PROGRAM.
C     TO SAVE STORAGE, THE USER MAY IN SOME CASES USE THE SAME
C     ARRAY FOR DIFFERENT PARAMETERS IN THE CALLING SEQUENCE.  A
C     FREQUENTLY OCCURING EXAMPLE IS WHEN ONE WISHES TO COMPUTE
C     ANY OF B, RSD, OR XB AND DOES NOT NEED Y OR QTY.  IN THIS
C     CASE ONE MAY IDENTIFY Y, QTY, AND ONE OF B, RSD, OR XB, WHILE
C     PROVIDING SEPARATE ARRAYS FOR ANYTHING ELSE THAT IS TO BE
C     COMPUTED.  THUS THE CALLING SEQUENCE
C          CALL DQRSL(X,LDX,N,K,QRAUX,Y,DUM,Y,B,Y,DUM,110,INFO)
C     WILL RESULT IN THE COMPUTATION OF B AND RSD, WITH RSD
C     OVERWRITING Y.  MORE GENERALLY, EACH ITEM IN THE FOLLOWING
C     LIST CONTAINS GROUPS OF PERMISSIBLE IDENTIFICATIONS FOR
C     A SINGLE CALLING SEQUENCE.
C          1. (Y,QTY,B) (RSD) (XB) (QY)
C          2. (Y,QTY,RSD) (B) (XB) (QY)
C          3. (Y,QTY,XB) (B) (RSD) (QY)
C          4. (Y,QY) (QTY,B) (RSD) (XB)
C          5. (Y,QY) (QTY,RSD) (B) (XB)
C          6. (Y,QY) (QTY,XB) (B) (RSD)
C     IN ANY GROUP THE VALUE RETURNED IN THE ARRAY ALLOCATED TO
C     THE GROUP CORRESPONDS TO THE LAST MEMBER OF THE GROUP.
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DAXPY,DCOPY,DDOT
C***END PROLOGUE  DQRSL

C...SCALAR ARGUMENTS
      INTEGER
     +   INFO,JOB,K,LDX,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   B(*),QRAUX(*),QTY(*),QY(*),RSD(*),X(LDX,*),XB(*),
     +   Y(*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   T,TEMP
      INTEGER
     +   I,J,JJ,JU,KP1
      LOGICAL
     +   CB,CQTY,CQY,CR,CXB

C...EXTERNAL FUNCTIONS
      DOUBLE PRECISION
     +   DDOT
      EXTERNAL
     +   DDOT

C...EXTERNAL SUBROUTINES
      EXTERNAL
     +   DAXPY,DCOPY

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   MIN0,MOD


C***FIRST EXECUTABLE STATEMENT  DQRSL


      INFO = 0

C     DETERMINE WHAT IS TO BE COMPUTED.

      CQY = JOB/10000 .NE. 0
      CQTY = MOD(JOB,10000) .NE. 0
      CB = MOD(JOB,1000)/100 .NE. 0
      CR = MOD(JOB,100)/10 .NE. 0
      CXB = MOD(JOB,10) .NE. 0
      JU = MIN0(K,N-1)

C     SPECIAL ACTION WHEN N=1.

      IF (JU .NE. 0) GO TO 40
         IF (CQY) QY(1) = Y(1)
         IF (CQTY) QTY(1) = Y(1)
         IF (CXB) XB(1) = Y(1)
         IF (.NOT.CB) GO TO 30
            IF (X(1,1) .NE. 0.0D0) GO TO 10
               INFO = 1
            GO TO 20
   10       CONTINUE
               B(1) = Y(1)/X(1,1)
   20       CONTINUE
   30    CONTINUE
         IF (CR) RSD(1) = 0.0D0
      GO TO 250
   40 CONTINUE

C        SET UP TO COMPUTE QY OR QTY.

         IF (CQY) CALL DCOPY(N,Y,1,QY,1)
         IF (CQTY) CALL DCOPY(N,Y,1,QTY,1)
         IF (.NOT.CQY) GO TO 70

C           COMPUTE QY.

            DO 60 JJ = 1, JU
               J = JU - JJ + 1
               IF (QRAUX(J) .EQ. 0.0D0) GO TO 50
                  TEMP = X(J,J)
                  X(J,J) = QRAUX(J)
                  T = -DDOT(N-J+1,X(J,J),1,QY(J),1)/X(J,J)
                  CALL DAXPY(N-J+1,T,X(J,J),1,QY(J),1)
                  X(J,J) = TEMP
   50          CONTINUE
   60       CONTINUE
   70    CONTINUE
         IF (.NOT.CQTY) GO TO 100

C           COMPUTE TRANS(Q)*Y.

            DO 90 J = 1, JU
               IF (QRAUX(J) .EQ. 0.0D0) GO TO 80
                  TEMP = X(J,J)
                  X(J,J) = QRAUX(J)
                  T = -DDOT(N-J+1,X(J,J),1,QTY(J),1)/X(J,J)
                  CALL DAXPY(N-J+1,T,X(J,J),1,QTY(J),1)
                  X(J,J) = TEMP
   80          CONTINUE
   90       CONTINUE
  100    CONTINUE

C        SET UP TO COMPUTE B, RSD, OR XB.

         IF (CB) CALL DCOPY(K,QTY,1,B,1)
         KP1 = K + 1
         IF (CXB) CALL DCOPY(K,QTY,1,XB,1)
         IF (CR .AND. K .LT. N) CALL DCOPY(N-K,QTY(KP1),1,RSD(KP1),1)
         IF (.NOT.CXB .OR. KP1 .GT. N) GO TO 120
            DO 110 I = KP1, N
               XB(I) = 0.0D0
  110       CONTINUE
  120    CONTINUE
         IF (.NOT.CR) GO TO 140
            DO 130 I = 1, K
               RSD(I) = 0.0D0
  130       CONTINUE
  140    CONTINUE
         IF (.NOT.CB) GO TO 190

C           COMPUTE B.

            DO 170 JJ = 1, K
               J = K - JJ + 1
               IF (X(J,J) .NE. 0.0D0) GO TO 150
                  INFO = J
C           ......EXIT
                  GO TO 180
  150          CONTINUE
               B(J) = B(J)/X(J,J)
               IF (J .EQ. 1) GO TO 160
                  T = -B(J)
                  CALL DAXPY(J-1,T,X(1,J),1,B,1)
  160          CONTINUE
  170       CONTINUE
  180       CONTINUE
  190    CONTINUE
         IF (.NOT.CR .AND. .NOT.CXB) GO TO 240

C           COMPUTE RSD OR XB AS REQUIRED.

            DO 230 JJ = 1, JU
               J = JU - JJ + 1
               IF (QRAUX(J) .EQ. 0.0D0) GO TO 220
                  TEMP = X(J,J)
                  X(J,J) = QRAUX(J)
                  IF (.NOT.CR) GO TO 200
                     T = -DDOT(N-J+1,X(J,J),1,RSD(J),1)/X(J,J)
                     CALL DAXPY(N-J+1,T,X(J,J),1,RSD(J),1)
  200             CONTINUE
                  IF (.NOT.CXB) GO TO 210
                     T = -DDOT(N-J+1,X(J,J),1,XB(J),1)/X(J,J)
                     CALL DAXPY(N-J+1,T,X(J,J),1,XB(J),1)
  210             CONTINUE
                  X(J,J) = TEMP
  220          CONTINUE
  230       CONTINUE
  240    CONTINUE
  250 CONTINUE
      RETURN
      END
*DROT
      SUBROUTINE DROT(N,DX,INCX,DY,INCY,DC,DS)
C***BEGIN PROLOGUE  DROT
C***DATE WRITTEN   791001   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D1A8
C***KEYWORDS  BLAS,GIVENS ROTATION,LINEAR ALGEBRA,VECTOR
C***AUTHOR  LAWSON, C. L., (JPL)
C           HANSON, R. J., (SNLA)
C           KINCAID, D. R., (U. OF TEXAS)
C           KROGH, F. T., (JPL)
C***PURPOSE  APPLY D.P. GIVENS ROTATION
C***DESCRIPTION
C                B L A S  SUBPROGRAM
C    DESCRIPTION OF PARAMETERS
C     --INPUT--
C        N  NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C       DX  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCX  STORAGE SPACING BETWEEN ELEMENTS OF DX
C       DY  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCY  STORAGE SPACING BETWEEN ELEMENTS OF DY
C       DC  D.P. ELEMENT OF ROTATION MATRIX
C       DS  D.P. ELEMENT OF ROTATION MATRIX
C     --OUTPUT--
C       DX  ROTATED VECTOR (UNCHANGED IF N .LE. 0)
C       DY  ROTATED VECTOR (UNCHANGED IF N .LE. 0)
C     MULTIPLY THE 2 X 2 MATRIX  ( DC DS) TIMES THE 2 X N MATRIX (DX**T)
C                                (-DS DC)                        (DY**T)
C     WHERE **T INDICATES TRANSPOSE.  THE ELEMENTS OF DX ARE IN
C     DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE
C     LX = (-INCX)*N, AND SIMILARLY FOR DY USING LY AND INCY.
C***REFERENCES  LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C                 *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C                 ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C                 SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DROT

C...SCALAR ARGUMENTS
      DOUBLE PRECISION
     +   DC,DS
      INTEGER
     +   INCX,INCY,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   DX(*),DY(*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   ONE,W,Z,ZERO
      INTEGER
     +   I,KX,KY,NSTEPS

C...DATA STATEMENTS
      DATA
     +   ZERO,ONE/0.D0,1.D0/


C***FIRST EXECUTABLE STATEMENT  DROT


      IF(N .LE. 0 .OR. (DS .EQ. ZERO .AND. DC .EQ. ONE)) GO TO 40
      IF(.NOT. (INCX .EQ. INCY .AND. INCX .GT. 0)) GO TO 20

           NSTEPS=INCX*N
           DO 10 I=1,NSTEPS,INCX
                W=DX(I)
                Z=DY(I)
                DX(I)=DC*W+DS*Z
                DY(I)=-DS*W+DC*Z
   10           CONTINUE
           GO TO 40

   20 CONTINUE
           KX=1
           KY=1

           IF(INCX .LT. 0) KX=1-(N-1)*INCX
           IF(INCY .LT. 0) KY=1-(N-1)*INCY

           DO 30 I=1,N
                W=DX(KX)
                Z=DY(KY)
                DX(KX)=DC*W+DS*Z
                DY(KY)=-DS*W+DC*Z
                KX=KX+INCX
                KY=KY+INCY
   30           CONTINUE
   40 CONTINUE

      RETURN
      END
*DROTG
      SUBROUTINE DROTG(DA,DB,DC,DS)
C***BEGIN PROLOGUE  DROTG
C***DATE WRITTEN   791001   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D1B10
C***KEYWORDS  BLAS,GIVENS ROTATION,LINEAR ALGEBRA,VECTOR
C***AUTHOR  LAWSON, C. L., (JPL)
C           HANSON, R. J., (SNLA)
C           KINCAID, D. R., (U. OF TEXAS)
C           KROGH, F. T., (JPL)
C***PURPOSE  CONSTRUCT D.P. PLANE GIVENS ROTATION
C***DESCRIPTION
C                B L A S  SUBPROGRAM
C    DESCRIPTION OF PARAMETERS
C     --INPUT--
C       DA  DOUBLE PRECISION SCALAR
C       DB  DOUBLE PRECISION SCALAR
C     --OUTPUT--
C       DA  DOUBLE PRECISION RESULT R
C       DB  DOUBLE PRECISION RESULT Z
C       DC  DOUBLE PRECISION RESULT
C       DS  DOUBLE PRECISION RESULT
C     DESIGNED BY C. L. LAWSON, JPL, 1977 SEPT 08
C     CONSTRUCT THE GIVENS TRANSFORMATION
C         ( DC  DS )
C     G = (        ) ,    DC**2 + DS**2 = 1 ,
C         (-DS  DC )
C     WHICH ZEROS THE SECOND ENTRY OF THE 2-VECTOR  (DA,DB)**T .
C     THE QUANTITY R = (+/-)DSQRT(DA**2 + DB**2) OVERWRITES DA IN
C     STORAGE.  THE VALUE OF DB IS OVERWRITTEN BY A VALUE Z WHICH
C     ALLOWS DC AND DS TO BE RECOVERED BY THE FOLLOWING ALGORITHM.
C           IF Z=1  SET  DC=0.D0  AND  DS=1.D0
C           IF DABS(Z) .LT. 1  SET  DC=DSQRT(1-Z**2)  AND  DS=Z
C           IF DABS(Z) .GT. 1  SET  DC=1/Z  AND  DS=DSQRT(1-DC**2)
C     NORMALLY, THE SUBPROGRAM DROT(N,DX,INCX,DY,INCY,DC,DS) WILL
C     NEXT BE CALLED TO APPLY THE TRANSFORMATION TO A 2 BY N MATRIX.
C***REFERENCES  LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C                 *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C                 ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C                 SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DROTG

C...SCALAR ARGUMENTS
      DOUBLE PRECISION
     +   DA,DB,DC,DS

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   R,U,V

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   DABS,DSQRT


C***FIRST EXECUTABLE STATEMENT  DROTG


      IF (DABS(DA) .LE. DABS(DB)) GO TO 10

C     *** HERE DABS(DA) .GT. DABS(DB) ***

      U = DA + DA
      V = DB / U

C     NOTE THAT U AND R HAVE THE SIGN OF DA

      R = DSQRT(.25D0 + V**2) * U

C     NOTE THAT DC IS POSITIVE

      DC = DA / R
      DS = V * (DC + DC)
      DB = DS
      DA = R
      RETURN

C *** HERE DABS(DA) .LE. DABS(DB) ***

   10 IF (DB .EQ. 0.D0) GO TO 20
      U = DB + DB
      V = DA / U

C     NOTE THAT U AND R HAVE THE SIGN OF DB
C     (R IS IMMEDIATELY STORED IN DA)

      DA = DSQRT(.25D0 + V**2) * U

C     NOTE THAT DS IS POSITIVE

      DS = DB / DA
      DC = V * (DS + DS)
      IF (DC .EQ. 0.D0) GO TO 15
      DB = 1.D0 / DC
      RETURN
   15 DB = 1.D0
      RETURN

C *** HERE DA = DB = 0.D0 ***

   20 DC = 1.D0
      DS = 0.D0
      RETURN

      END
*DSCAL
      SUBROUTINE DSCAL(N,DA,DX,INCX)
C***BEGIN PROLOGUE  DSCAL
C***DATE WRITTEN   791001   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D1A6
C***KEYWORDS  BLAS,LINEAR ALGEBRA,SCALE,VECTOR
C***AUTHOR  LAWSON, C. L., (JPL)
C           HANSON, R. J., (SNLA)
C           KINCAID, D. R., (U. OF TEXAS)
C           KROGH, F. T., (JPL)
C***PURPOSE  D.P. VECTOR SCALE X = A*X
C***DESCRIPTION
C                B L A S  SUBPROGRAM
C    DESCRIPTION OF PARAMETERS
C     --INPUT--
C        N  NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C       DA  DOUBLE PRECISION SCALE FACTOR
C       DX  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCX  STORAGE SPACING BETWEEN ELEMENTS OF DX
C     --OUTPUT--
C       DX  DOUBLE PRECISION RESULT (UNCHANGED IF N.LE.0)
C     REPLACE DOUBLE PRECISION DX BY DOUBLE PRECISION DA*DX.
C     FOR I = 0 TO N-1, REPLACE DX(1+I*INCX) WITH  DA * DX(1+I*INCX)
C***REFERENCES  LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C                 *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C                 ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C                 SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DSCAL

C...SCALAR ARGUMENTS
      DOUBLE PRECISION
     +   DA
      INTEGER
     +   INCX,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   DX(*)

C...LOCAL SCALARS
      INTEGER
     +   I,M,MP1,NS

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   MOD


C***FIRST EXECUTABLE STATEMENT  DSCAL


      IF(N.LE.0)RETURN
      IF(INCX.EQ.1)GOTO 20

C        CODE FOR INCREMENTS NOT EQUAL TO 1.

      NS = N*INCX
          DO 10 I = 1,NS,INCX
          DX(I) = DA*DX(I)
   10     CONTINUE
      RETURN

C        CODE FOR INCREMENTS EQUAL TO 1.


C        CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 5.

   20 M = MOD(N,5)
      IF( M .EQ. 0 ) GO TO 40
      DO 30 I = 1,M
        DX(I) = DA*DX(I)
   30 CONTINUE
      IF( N .LT. 5 ) RETURN
   40 MP1 = M + 1
      DO 50 I = MP1,N,5
        DX(I) = DA*DX(I)
        DX(I + 1) = DA*DX(I + 1)
        DX(I + 2) = DA*DX(I + 2)
        DX(I + 3) = DA*DX(I + 3)
        DX(I + 4) = DA*DX(I + 4)
   50 CONTINUE
      RETURN
      END
*DSWAP
      SUBROUTINE DSWAP(N,DX,INCX,DY,INCY)
C***BEGIN PROLOGUE  DSWAP
C***DATE WRITTEN   791001   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D1A5
C***KEYWORDS  BLAS,DOUBLE PRECISION,INTERCHANGE,LINEAR ALGEBRA,VECTOR
C***AUTHOR  LAWSON, C. L., (JPL)
C           HANSON, R. J., (SNLA)
C           KINCAID, D. R., (U. OF TEXAS)
C           KROGH, F. T., (JPL)
C***PURPOSE  INTERCHANGE D.P. VECTORS
C***DESCRIPTION
C                B L A S  SUBPROGRAM
C    DESCRIPTION OF PARAMETERS
C     --INPUT--
C        N  NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C       DX  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCX  STORAGE SPACING BETWEEN ELEMENTS OF DX
C       DY  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCY  STORAGE SPACING BETWEEN ELEMENTS OF DY
C     --OUTPUT--
C       DX  INPUT VECTOR DY (UNCHANGED IF N .LE. 0)
C       DY  INPUT VECTOR DX (UNCHANGED IF N .LE. 0)
C     INTERCHANGE DOUBLE PRECISION DX AND DOUBLE PRECISION DY.
C     FOR I = 0 TO N-1, INTERCHANGE  DX(LX+I*INCX) AND DY(LY+I*INCY),
C     WHERE LX = 1 IF INCX .GE. 0, ELSE LX = (-INCX)*N, AND LY IS
C     DEFINED IN A SIMILAR WAY USING INCY.
C***REFERENCES  LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C                 *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C                 ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C                 SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  DSWAP

C...SCALAR ARGUMENTS
      INTEGER
     +   INCX,INCY,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   DX(*),DY(*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   DTEMP1,DTEMP2,DTEMP3
      INTEGER
     +   I,IX,IY,M,MP1,NS

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   MOD


C***FIRST EXECUTABLE STATEMENT  DSWAP


      IF(N.LE.0)RETURN
      IF (INCX.EQ.INCY) IF(INCX.lt.1) GOTO 5
      IF (INCX.EQ.INCY) IF(INCX.eq.1) GOTO 20
      GOTO 60
    5 CONTINUE

C       CODE FOR UNEQUAL OR NONPOSITIVE INCREMENTS.

      IX = 1
      IY = 1
      IF(INCX.LT.0)IX = (-N+1)*INCX + 1
      IF(INCY.LT.0)IY = (-N+1)*INCY + 1
      DO 10 I = 1,N
        DTEMP1 = DX(IX)
        DX(IX) = DY(IY)
        DY(IY) = DTEMP1
        IX = IX + INCX
        IY = IY + INCY
   10 CONTINUE
      RETURN

C       CODE FOR BOTH INCREMENTS EQUAL TO 1


C       CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 3.

   20 M = MOD(N,3)
      IF( M .EQ. 0 ) GO TO 40
      DO 30 I = 1,M
        DTEMP1 = DX(I)
        DX(I) = DY(I)
        DY(I) = DTEMP1
   30 CONTINUE
      IF( N .LT. 3 ) RETURN
   40 MP1 = M + 1
      DO 50 I = MP1,N,3
        DTEMP1 = DX(I)
        DTEMP2 = DX(I+1)
        DTEMP3 = DX(I+2)
        DX(I) = DY(I)
        DX(I+1) = DY(I+1)
        DX(I+2) = DY(I+2)
        DY(I) = DTEMP1
        DY(I+1) = DTEMP2
        DY(I+2) = DTEMP3
   50 CONTINUE
      RETURN
   60 CONTINUE

C     CODE FOR EQUAL, POSITIVE, NONUNIT INCREMENTS.

      NS = N*INCX
        DO 70 I=1,NS,INCX
        DTEMP1 = DX(I)
        DX(I) = DY(I)
        DY(I) = DTEMP1
   70   CONTINUE
      RETURN
      END
*DTRCO
      SUBROUTINE DTRCO(T,LDT,N,RCOND,Z,JOB)
C***BEGIN PROLOGUE  DTRCO
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D2A3
C***KEYWORDS  CONDITION,DOUBLE PRECISION,FACTOR,LINEAR ALGEBRA,LINPACK,
C             MATRIX,TRIANGULAR
C***AUTHOR  MOLER, C. B., (U. OF NEW MEXICO)
C***PURPOSE  ESTIMATES THE CONDITION OF A DOUBLE PRECISION TRIANGULAR
C            MATRIX.
C***DESCRIPTION
C     DTRCO ESTIMATES THE CONDITION OF A DOUBLE PRECISION TRIANGULAR
C     MATRIX.
C     ON ENTRY
C        T       DOUBLE PRECISION(LDT,N)
C                T CONTAINS THE TRIANGULAR MATRIX.  THE ZERO
C                ELEMENTS OF THE MATRIX ARE NOT REFERENCED, AND
C                THE CORRESPONDING ELEMENTS OF THE ARRAY CAN BE
C                USED TO STORE OTHER INFORMATION.
C        LDT     INTEGER
C                LDT IS THE LEADING DIMENSION OF THE ARRAY T.
C        N       INTEGER
C                N IS THE ORDER OF THE SYSTEM.
C        JOB     INTEGER
C                = 0         T  IS LOWER TRIANGULAR.
C                = NONZERO   T  IS UPPER TRIANGULAR.
C     ON RETURN
C        RCOND   DOUBLE PRECISION
C                AN ESTIMATE OF THE RECIPROCAL CONDITION OF  T .
C                FOR THE SYSTEM  T*X = B , RELATIVE PERTURBATIONS
C                IN  T  AND  B  OF SIZE  EPSILON  MAY CAUSE
C                RELATIVE PERTURBATIONS IN  X  OF SIZE  EPSILON/RCOND .
C                IF  RCOND  IS SO SMALL THAT THE LOGICAL EXPRESSION
C                           1.0 + RCOND .EQ. 1.0
C                IS TRUE, THEN  T  MAY BE SINGULAR TO WORKING
C                PRECISION.  IN PARTICULAR,  RCOND  IS ZERO  IF
C                EXACT SINGULARITY IS DETECTED OR THE ESTIMATE
C                UNDERFLOWS.
C        Z       DOUBLE PRECISION(N)
C                A WORK VECTOR WHOSE CONTENTS ARE USUALLY UNIMPORTANT.
C                IF  T  IS CLOSE TO A SINGULAR MATRIX, THEN  Z  IS
C                AN APPROXIMATE NULL VECTOR IN THE SENSE THAT
C                NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DASUM,DAXPY,DSCAL
C***END PROLOGUE  DTRCO

C...SCALAR ARGUMENTS
      DOUBLE PRECISION
     +   RCOND
      INTEGER
     +   JOB,LDT,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   T(LDT,*),Z(*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   EK,S,SM,TNORM,W,WK,WKM,YNORM
      INTEGER
     +   I1,J,J1,J2,K,KK,L
      LOGICAL
     +   LOWER

C...EXTERNAL FUNCTIONS
      DOUBLE PRECISION
     +   DASUM
      EXTERNAL
     +   DASUM

C...EXTERNAL SUBROUTINES
      EXTERNAL
     +   DAXPY,DSCAL

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   DABS,DMAX1,DSIGN


C***FIRST EXECUTABLE STATEMENT  DTRCO


      LOWER = JOB .EQ. 0

C     COMPUTE 1-NORM OF T

      TNORM = 0.0D0
      DO 10 J = 1, N
         L = J
         IF (LOWER) L = N + 1 - J
         I1 = 1
         IF (LOWER) I1 = J
         TNORM = DMAX1(TNORM,DASUM(L,T(I1,J),1))
   10 CONTINUE

C     RCOND = 1/(NORM(T)*(ESTIMATE OF NORM(INVERSE(T)))) .
C     ESTIMATE = NORM(Z)/NORM(Y) WHERE  T*Z = Y  AND  TRANS(T)*Y = E .
C     TRANS(T)  IS THE TRANSPOSE OF T .
C     THE COMPONENTS OF  E  ARE CHOSEN TO CAUSE MAXIMUM LOCAL
C     GROWTH IN THE ELEMENTS OF Y .
C     THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.

C     SOLVE TRANS(T)*Y = E

      EK = 1.0D0
      DO 20 J = 1, N
         Z(J) = 0.0D0
   20 CONTINUE
      DO 100 KK = 1, N
         K = KK
         IF (LOWER) K = N + 1 - KK
         IF (Z(K) .NE. 0.0D0) EK = DSIGN(EK,-Z(K))
         IF (DABS(EK-Z(K)) .LE. DABS(T(K,K))) GO TO 30
            S = DABS(T(K,K))/DABS(EK-Z(K))
            CALL DSCAL(N,S,Z,1)
            EK = S*EK
   30    CONTINUE
         WK = EK - Z(K)
         WKM = -EK - Z(K)
         S = DABS(WK)
         SM = DABS(WKM)
         IF (T(K,K) .EQ. 0.0D0) GO TO 40
            WK = WK/T(K,K)
            WKM = WKM/T(K,K)
         GO TO 50
   40    CONTINUE
            WK = 1.0D0
            WKM = 1.0D0
   50    CONTINUE
         IF (KK .EQ. N) GO TO 90
            J1 = K + 1
            IF (LOWER) J1 = 1
            J2 = N
            IF (LOWER) J2 = K - 1
            DO 60 J = J1, J2
               SM = SM + DABS(Z(J)+WKM*T(K,J))
               Z(J) = Z(J) + WK*T(K,J)
               S = S + DABS(Z(J))
   60       CONTINUE
            IF (S .GE. SM) GO TO 80
               W = WKM - WK
               WK = WKM
               DO 70 J = J1, J2
                  Z(J) = Z(J) + W*T(K,J)
   70          CONTINUE
   80       CONTINUE
   90    CONTINUE
         Z(K) = WK
  100 CONTINUE
      S = 1.0D0/DASUM(N,Z,1)
      CALL DSCAL(N,S,Z,1)

      YNORM = 1.0D0

C     SOLVE T*Z = Y

      DO 130 KK = 1, N
         K = N + 1 - KK
         IF (LOWER) K = KK
         IF (DABS(Z(K)) .LE. DABS(T(K,K))) GO TO 110
            S = DABS(T(K,K))/DABS(Z(K))
            CALL DSCAL(N,S,Z,1)
            YNORM = S*YNORM
  110    CONTINUE
         IF (T(K,K) .NE. 0.0D0) Z(K) = Z(K)/T(K,K)
         IF (T(K,K) .EQ. 0.0D0) Z(K) = 1.0D0
         I1 = 1
         IF (LOWER) I1 = K + 1
         IF (KK .GE. N) GO TO 120
            W = -Z(K)
            CALL DAXPY(N-KK,W,T(I1,K),1,Z(I1),1)
  120    CONTINUE
  130 CONTINUE
C     MAKE ZNORM = 1.0
      S = 1.0D0/DASUM(N,Z,1)
      CALL DSCAL(N,S,Z,1)
      YNORM = S*YNORM

      IF (TNORM .NE. 0.0D0) RCOND = YNORM/TNORM
      IF (TNORM .EQ. 0.0D0) RCOND = 0.0D0
      RETURN
      END
*DTRSL
      SUBROUTINE DTRSL(T,LDT,N,B,JOB,INFO)
C***BEGIN PROLOGUE  DTRSL
C***DATE WRITTEN   780814   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D2A3
C***KEYWORDS  DOUBLE PRECISION,LINEAR ALGEBRA,LINPACK,MATRIX,SOLVE,
C             TRIANGULAR
C***AUTHOR  STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE  SOLVES SYSTEMS OF THE FORM  T*X=B OR  TRANS(T)*X=B  WHERE T
C            IS A TRIANGULAR MATRIX OF ORDER N.
C***DESCRIPTION
C     DTRSL SOLVES SYSTEMS OF THE FORM
C                   T * X = B
C     OR
C                   TRANS(T) * X = B
C     WHERE T IS A TRIANGULAR MATRIX OF ORDER N.  HERE TRANS(T)
C     DENOTES THE TRANSPOSE OF THE MATRIX T.
C     ON ENTRY
C         T         DOUBLE PRECISION(LDT,N)
C                   T CONTAINS THE MATRIX OF THE SYSTEM.  THE ZERO
C                   ELEMENTS OF THE MATRIX ARE NOT REFERENCED, AND
C                   THE CORRESPONDING ELEMENTS OF THE ARRAY CAN BE
C                   USED TO STORE OTHER INFORMATION.
C         LDT       INTEGER
C                   LDT IS THE LEADING DIMENSION OF THE ARRAY T.
C         N         INTEGER
C                   N IS THE ORDER OF THE SYSTEM.
C         B         DOUBLE PRECISION(N).
C                   B CONTAINS THE RIGHT HAND SIDE OF THE SYSTEM.
C         JOB       INTEGER
C                   JOB SPECIFIES WHAT KIND OF SYSTEM IS TO BE SOLVED.
C                   IF JOB IS
C                        00   SOLVE T*X=B, T LOWER TRIANGULAR,
C                        01   SOLVE T*X=B, T UPPER TRIANGULAR,
C                        10   SOLVE TRANS(T)*X=B, T LOWER TRIANGULAR,
C                        11   SOLVE TRANS(T)*X=B, T UPPER TRIANGULAR.
C     ON RETURN
C         B         B CONTAINS THE SOLUTION, IF INFO .EQ. 0.
C                   OTHERWISE B IS UNALTERED.
C         INFO      INTEGER
C                   INFO CONTAINS ZERO IF THE SYSTEM IS NONSINGULAR.
C                   OTHERWISE INFO CONTAINS THE INDEX OF
C                   THE FIRST ZERO DIAGONAL ELEMENT OF T.
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES  DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C                 *LINPACK USERS  GUIDE*, SIAM, 1979.
C***ROUTINES CALLED  DAXPY,DDOT
C***END PROLOGUE  DTRSL

C...SCALAR ARGUMENTS
      INTEGER
     +   INFO,JOB,LDT,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   B(*),T(LDT,*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   TEMP
      INTEGER
     +   CASE,J,JJ

C...EXTERNAL FUNCTIONS
      DOUBLE PRECISION
     +   DDOT
      EXTERNAL
     +   DDOT

C...EXTERNAL SUBROUTINES
      EXTERNAL
     +   DAXPY

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   MOD


C***FIRST EXECUTABLE STATEMENT  DTRSL


C     BEGIN BLOCK PERMITTING ...EXITS TO 150

C        CHECK FOR ZERO DIAGONAL ELEMENTS.

         DO 10 INFO = 1, N
C     ......EXIT
            IF (T(INFO,INFO) .EQ. 0.0D0) GO TO 150
   10    CONTINUE
         INFO = 0

C        DETERMINE THE TASK AND GO TO IT.

         CASE = 1
         IF (MOD(JOB,10) .NE. 0) CASE = 2
         IF (MOD(JOB,100)/10 .NE. 0) CASE = CASE + 2
         GO TO (20,50,80,110), CASE

C        SOLVE T*X=B FOR T LOWER TRIANGULAR

   20    CONTINUE
            B(1) = B(1)/T(1,1)
            IF (N .LT. 2) GO TO 40
            DO 30 J = 2, N
               TEMP = -B(J-1)
               CALL DAXPY(N-J+1,TEMP,T(J,J-1),1,B(J),1)
               B(J) = B(J)/T(J,J)
   30       CONTINUE
   40       CONTINUE
         GO TO 140

C        SOLVE T*X=B FOR T UPPER TRIANGULAR.

   50    CONTINUE
            B(N) = B(N)/T(N,N)
            IF (N .LT. 2) GO TO 70
            DO 60 JJ = 2, N
               J = N - JJ + 1
               TEMP = -B(J+1)
               CALL DAXPY(J,TEMP,T(1,J+1),1,B(1),1)
               B(J) = B(J)/T(J,J)
   60       CONTINUE
   70       CONTINUE
         GO TO 140

C        SOLVE TRANS(T)*X=B FOR T LOWER TRIANGULAR.

   80    CONTINUE
            B(N) = B(N)/T(N,N)
            IF (N .LT. 2) GO TO 100
            DO 90 JJ = 2, N
               J = N - JJ + 1
               B(J) = B(J) - DDOT(JJ-1,T(J+1,J),1,B(J+1),1)
               B(J) = B(J)/T(J,J)
   90       CONTINUE
  100       CONTINUE
         GO TO 140

C        SOLVE TRANS(T)*X=B FOR T UPPER TRIANGULAR.

  110    CONTINUE
            B(1) = B(1)/T(1,1)
            IF (N .LT. 2) GO TO 130
            DO 120 J = 2, N
               B(J) = B(J) - DDOT(J-1,T(1,J),1,B(1),1)
               B(J) = B(J)/T(J,J)
  120       CONTINUE
  130       CONTINUE
  140    CONTINUE
  150 CONTINUE
      RETURN
      END
*IDAMAX
      INTEGER FUNCTION IDAMAX(N,DX,INCX)
C***BEGIN PROLOGUE  IDAMAX
C***DATE WRITTEN   791001   (YYMMDD)
C***REVISION DATE  820801   (YYMMDD)
C***CATEGORY NO.  D1A2
C***KEYWORDS  BLAS,DOUBLE PRECISION,LINEAR ALGEBRA,MAXIMUM COMPONENT,
C             VECTOR
C***AUTHOR  LAWSON, C. L., (JPL)
C           HANSON, R. J., (SNLA)
C           KINCAID, D. R., (U. OF TEXAS)
C           KROGH, F. T., (JPL)
C***PURPOSE  FIND LARGEST COMPONENT OF D.P. VECTOR
C***DESCRIPTION
C                B L A S  SUBPROGRAM
C    DESCRIPTION OF PARAMETERS
C     --INPUT--
C        N  NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C       DX  DOUBLE PRECISION VECTOR WITH N ELEMENTS
C     INCX  STORAGE SPACING BETWEEN ELEMENTS OF DX
C     --OUTPUT--
C   IDAMAX  SMALLEST INDEX (ZERO IF N .LE. 0)
C     FIND SMALLEST INDEX OF MAXIMUM MAGNITUDE OF DOUBLE PRECISION DX.
C     IDAMAX =  FIRST I, I = 1 TO N, TO MINIMIZE  ABS(DX(1-INCX+I*INCX)
C***REFERENCES  LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C                 *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C                 ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C                 SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED  (NONE)
C***END PROLOGUE  IDAMAX

C...SCALAR ARGUMENTS
      INTEGER
     +   INCX,N

C...ARRAY ARGUMENTS
      DOUBLE PRECISION
     +   DX(*)

C...LOCAL SCALARS
      DOUBLE PRECISION
     +   DMAX,XMAG
      INTEGER
     +   I,II,NS

C...INTRINSIC FUNCTIONS
      INTRINSIC
     +   DABS


C***FIRST EXECUTABLE STATEMENT  IDAMAX


      IDAMAX = 0
      IF(N.LE.0) RETURN
      IDAMAX = 1
      IF(N.LE.1)RETURN
      IF(INCX.EQ.1)GOTO 20

C        CODE FOR INCREMENTS NOT EQUAL TO 1.

      DMAX = DABS(DX(1))
      NS = N*INCX
      II = 1
          DO 10 I = 1,NS,INCX
          XMAG = DABS(DX(I))
          IF(XMAG.LE.DMAX) GO TO 5
          IDAMAX = II
          DMAX = XMAG
    5     II = II + 1
   10     CONTINUE
      RETURN

C        CODE FOR INCREMENTS EQUAL TO 1.

   20 DMAX = DABS(DX(1))
      DO 30 I = 2,N
          XMAG = DABS(DX(I))
          IF(XMAG.LE.DMAX) GO TO 30
          IDAMAX = I
          DMAX = XMAG
   30 CONTINUE
      RETURN
      END