1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
|
*DASUM
DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
C***BEGIN PROLOGUE DASUM
C***DATE WRITTEN 791001 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D1A3A
C***KEYWORDS ADD,BLAS,DOUBLE PRECISION,LINEAR ALGEBRA,MAGNITUDE,SUM,
C VECTOR
C***AUTHOR LAWSON, C. L., (JPL)
C HANSON, R. J., (SNLA)
C KINCAID, D. R., (U. OF TEXAS)
C KROGH, F. T., (JPL)
C***PURPOSE SUM OF MAGNITUDES OF D.P. VECTOR COMPONENTS
C***DESCRIPTION
C B L A S SUBPROGRAM
C DESCRIPTION OF PARAMETERS
C --INPUT--
C N NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C DX DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCX STORAGE SPACING BETWEEN ELEMENTS OF DX
C --OUTPUT--
C DASUM DOUBLE PRECISION RESULT (ZERO IF N .LE. 0)
C RETURNS SUM OF MAGNITUDES OF DOUBLE PRECISION DX.
C DASUM = SUM FROM 0 TO N-1 OF DABS(DX(1+I*INCX))
C***REFERENCES LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DASUM
C...SCALAR ARGUMENTS
INTEGER
+ INCX,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ DX(*)
C...LOCAL SCALARS
INTEGER
+ I,M,MP1,NS
C...INTRINSIC FUNCTIONS
INTRINSIC
+ DABS,MOD
C***FIRST EXECUTABLE STATEMENT DASUM
DASUM = 0.D0
IF(N.LE.0)RETURN
IF(INCX.EQ.1)GOTO 20
C CODE FOR INCREMENTS NOT EQUAL TO 1.
NS = N*INCX
DO 10 I=1,NS,INCX
DASUM = DASUM + DABS(DX(I))
10 CONTINUE
RETURN
C CODE FOR INCREMENTS EQUAL TO 1.
C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 6.
20 M = MOD(N,6)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DASUM = DASUM + DABS(DX(I))
30 CONTINUE
IF( N .LT. 6 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,6
DASUM = DASUM + DABS(DX(I)) + DABS(DX(I+1)) + DABS(DX(I+2))
1 + DABS(DX(I+3)) + DABS(DX(I+4)) + DABS(DX(I+5))
50 CONTINUE
RETURN
END
*DAXPY
SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
C***BEGIN PROLOGUE DAXPY
C***DATE WRITTEN 791001 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D1A7
C***KEYWORDS BLAS,DOUBLE PRECISION,LINEAR ALGEBRA,TRIAD,VECTOR
C***AUTHOR LAWSON, C. L., (JPL)
C HANSON, R. J., (SNLA)
C KINCAID, D. R., (U. OF TEXAS)
C KROGH, F. T., (JPL)
C***PURPOSE D.P COMPUTATION Y = A*X + Y
C***DESCRIPTION
C B L A S SUBPROGRAM
C DESCRIPTION OF PARAMETERS
C --INPUT--
C N NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C DA DOUBLE PRECISION SCALAR MULTIPLIER
C DX DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCX STORAGE SPACING BETWEEN ELEMENTS OF DX
C DY DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCY STORAGE SPACING BETWEEN ELEMENTS OF DY
C --OUTPUT--
C DY DOUBLE PRECISION RESULT (UNCHANGED IF N .LE. 0)
C OVERWRITE DOUBLE PRECISION DY WITH DOUBLE PRECISION DA*DX + DY.
C FOR I = 0 TO N-1, REPLACE DY(LY+I*INCY) WITH DA*DX(LX+I*INCX) +
C DY(LY+I*INCY), WHERE LX = 1 IF INCX .GE. 0, ELSE LX = (-INCX)*N
C AND LY IS DEFINED IN A SIMILAR WAY USING INCY.
C***REFERENCES LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DAXPY
C...SCALAR ARGUMENTS
DOUBLE PRECISION
+ DA
INTEGER
+ INCX,INCY,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ DX(*),DY(*)
C...LOCAL SCALARS
INTEGER
+ I,IX,IY,M,MP1,NS
C...INTRINSIC FUNCTIONS
INTRINSIC
+ MOD
C***FIRST EXECUTABLE STATEMENT DAXPY
IF(N.LE.0.OR.DA.EQ.0.D0) RETURN
IF (INCX.EQ.INCY) IF(INCX.lt.1) GOTO 5
IF (INCX.EQ.INCY) IF(INCX.eq.1) GOTO 20
GOTO 60
5 CONTINUE
C CODE FOR NONEQUAL OR NONPOSITIVE INCREMENTS.
IX = 1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DY(IY) = DY(IY) + DA*DX(IX)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 4.
20 M = MOD(N,4)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DY(I) = DY(I) + DA*DX(I)
30 CONTINUE
IF( N .LT. 4 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,4
DY(I) = DY(I) + DA*DX(I)
DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
DY(I + 3) = DY(I + 3) + DA*DX(I + 3)
50 CONTINUE
RETURN
C CODE FOR EQUAL, POSITIVE, NONUNIT INCREMENTS.
60 CONTINUE
NS = N*INCX
DO 70 I=1,NS,INCX
DY(I) = DA*DX(I) + DY(I)
70 CONTINUE
RETURN
END
*DCHEX
SUBROUTINE DCHEX(R,LDR,P,K,L,Z,LDZ,NZ,C,S,JOB)
C***BEGIN PROLOGUE DCHEX
C***DATE WRITTEN 780814 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D7B
C***KEYWORDS CHOLESKY DECOMPOSITION,DOUBLE PRECISION,EXCHANGE,
C LINEAR ALGEBRA,LINPACK,MATRIX,POSITIVE DEFINITE
C***AUTHOR STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE UPDATES THE CHOLESKY FACTORIZATION A=TRANS(R)*R OF A
C POSITIVE DEFINITE MATRIX A OF ORDER P UNDER DIAGONAL
C PERMUTATIONS OF THE FORM TRANS(E)*A*E WHERE E IS A
C PERMUTATION MATRIX.
C***DESCRIPTION
C DCHEX UPDATES THE CHOLESKY FACTORIZATION
C A = TRANS(R)*R
C OF A POSITIVE DEFINITE MATRIX A OF ORDER P UNDER DIAGONAL
C PERMUTATIONS OF THE FORM
C TRANS(E)*A*E
C WHERE E IS A PERMUTATION MATRIX. SPECIFICALLY, GIVEN
C AN UPPER TRIANGULAR MATRIX R AND A PERMUTATION MATRIX
C E (WHICH IS SPECIFIED BY K, L, AND JOB), DCHEX DETERMINES
C AN ORTHOGONAL MATRIX U SUCH THAT
C U*R*E = RR,
C WHERE RR IS UPPER TRIANGULAR. AT THE USERS OPTION, THE
C TRANSFORMATION U WILL BE MULTIPLIED INTO THE ARRAY Z.
C IF A = TRANS(X)*X, SO THAT R IS THE TRIANGULAR PART OF THE
C QR FACTORIZATION OF X, THEN RR IS THE TRIANGULAR PART OF THE
C QR FACTORIZATION OF X*E, I.E. X WITH ITS COLUMNS PERMUTED.
C FOR A LESS TERSE DESCRIPTION OF WHAT DCHEX DOES AND HOW
C IT MAY BE APPLIED, SEE THE LINPACK GUIDE.
C THE MATRIX Q IS DETERMINED AS THE PRODUCT U(L-K)*...*U(1)
C OF PLANE ROTATIONS OF THE FORM
C ( C(I) S(I) )
C ( ) ,
C ( -S(I) C(I) )
C WHERE C(I) IS DOUBLE PRECISION. THE ROWS THESE ROTATIONS OPERATE
C ON ARE DESCRIBED BELOW.
C THERE ARE TWO TYPES OF PERMUTATIONS, WHICH ARE DETERMINED
C BY THE VALUE OF JOB.
C 1. RIGHT CIRCULAR SHIFT (JOB = 1).
C THE COLUMNS ARE REARRANGED IN THE FOLLOWING ORDER.
C 1,...,K-1,L,K,K+1,...,L-1,L+1,...,P.
C U IS THE PRODUCT OF L-K ROTATIONS U(I), WHERE U(I)
C ACTS IN THE (L-I,L-I+1)-PLANE.
C 2. LEFT CIRCULAR SHIFT (JOB = 2).
C THE COLUMNS ARE REARRANGED IN THE FOLLOWING ORDER
C 1,...,K-1,K+1,K+2,...,L,K,L+1,...,P.
C U IS THE PRODUCT OF L-K ROTATIONS U(I), WHERE U(I)
C ACTS IN THE (K+I-1,K+I)-PLANE.
C ON ENTRY
C R DOUBLE PRECISION(LDR,P), WHERE LDR .GE. P.
C R CONTAINS THE UPPER TRIANGULAR FACTOR
C THAT IS TO BE UPDATED. ELEMENTS OF R
C BELOW THE DIAGONAL ARE NOT REFERENCED.
C LDR INTEGER.
C LDR IS THE LEADING DIMENSION OF THE ARRAY R.
C P INTEGER.
C P IS THE ORDER OF THE MATRIX R.
C K INTEGER.
C K IS THE FIRST COLUMN TO BE PERMUTED.
C L INTEGER.
C L IS THE LAST COLUMN TO BE PERMUTED.
C L MUST BE STRICTLY GREATER THAN K.
C Z DOUBLE PRECISION(LDZ,N)Z), WHERE LDZ .GE. P.
C Z IS AN ARRAY OF NZ P-VECTORS INTO WHICH THE
C TRANSFORMATION U IS MULTIPLIED. Z IS
C NOT REFERENCED IF NZ = 0.
C LDZ INTEGER.
C LDZ IS THE LEADING DIMENSION OF THE ARRAY Z.
C NZ INTEGER.
C NZ IS THE NUMBER OF COLUMNS OF THE MATRIX Z.
C JOB INTEGER.
C JOB DETERMINES THE TYPE OF PERMUTATION.
C JOB = 1 RIGHT CIRCULAR SHIFT.
C JOB = 2 LEFT CIRCULAR SHIFT.
C ON RETURN
C R CONTAINS THE UPDATED FACTOR.
C Z CONTAINS THE UPDATED MATRIX Z.
C C DOUBLE PRECISION(P).
C C CONTAINS THE COSINES OF THE TRANSFORMING ROTATIONS.
C S DOUBLE PRECISION(P).
C S CONTAINS THE SINES OF THE TRANSFORMING ROTATIONS.
C LINPACK. THIS VERSION DATED 08/14/78 .
C G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C *LINPACK USERS GUIDE*, SIAM, 1979.
C***ROUTINES CALLED DROTG
C***END PROLOGUE DCHEX
C...SCALAR ARGUMENTS
INTEGER
+ JOB,K,L,LDR,LDZ,NZ,P
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ C(*),R(LDR,*),S(*),Z(LDZ,*)
C...LOCAL SCALARS
DOUBLE PRECISION
+ T,T1
INTEGER
+ I,II,IL,IU,J,JJ,KM1,KP1,LM1,LMK
C...EXTERNAL SUBROUTINES
EXTERNAL
+ DROTG
C...INTRINSIC FUNCTIONS
INTRINSIC
+ MAX0,MIN0
C***FIRST EXECUTABLE STATEMENT DCHEX
KM1 = K - 1
KP1 = K + 1
LMK = L - K
LM1 = L - 1
C PERFORM THE APPROPRIATE TASK.
GO TO (10,130), JOB
C RIGHT CIRCULAR SHIFT.
10 CONTINUE
C REORDER THE COLUMNS.
DO 20 I = 1, L
II = L - I + 1
S(I) = R(II,L)
20 CONTINUE
DO 40 JJ = K, LM1
J = LM1 - JJ + K
DO 30 I = 1, J
R(I,J+1) = R(I,J)
30 CONTINUE
R(J+1,J+1) = 0.0D0
40 CONTINUE
IF (K .EQ. 1) GO TO 60
DO 50 I = 1, KM1
II = L - I + 1
R(I,K) = S(II)
50 CONTINUE
60 CONTINUE
C CALCULATE THE ROTATIONS.
T = S(1)
DO 70 I = 1, LMK
T1 = S(I)
CALL DROTG(S(I+1),T,C(I),T1)
S(I) = T1
T = S(I+1)
70 CONTINUE
R(K,K) = T
DO 90 J = KP1, P
IL = MAX0(1,L-J+1)
DO 80 II = IL, LMK
I = L - II
T = C(II)*R(I,J) + S(II)*R(I+1,J)
R(I+1,J) = C(II)*R(I+1,J) - S(II)*R(I,J)
R(I,J) = T
80 CONTINUE
90 CONTINUE
C IF REQUIRED, APPLY THE TRANSFORMATIONS TO Z.
IF (NZ .LT. 1) GO TO 120
DO 110 J = 1, NZ
DO 100 II = 1, LMK
I = L - II
T = C(II)*Z(I,J) + S(II)*Z(I+1,J)
Z(I+1,J) = C(II)*Z(I+1,J) - S(II)*Z(I,J)
Z(I,J) = T
100 CONTINUE
110 CONTINUE
120 CONTINUE
GO TO 260
C LEFT CIRCULAR SHIFT
130 CONTINUE
C REORDER THE COLUMNS
DO 140 I = 1, K
II = LMK + I
S(II) = R(I,K)
140 CONTINUE
DO 160 J = K, LM1
DO 150 I = 1, J
R(I,J) = R(I,J+1)
150 CONTINUE
JJ = J - KM1
S(JJ) = R(J+1,J+1)
160 CONTINUE
DO 170 I = 1, K
II = LMK + I
R(I,L) = S(II)
170 CONTINUE
DO 180 I = KP1, L
R(I,L) = 0.0D0
180 CONTINUE
C REDUCTION LOOP.
DO 220 J = K, P
IF (J .EQ. K) GO TO 200
C APPLY THE ROTATIONS.
IU = MIN0(J-1,L-1)
DO 190 I = K, IU
II = I - K + 1
T = C(II)*R(I,J) + S(II)*R(I+1,J)
R(I+1,J) = C(II)*R(I+1,J) - S(II)*R(I,J)
R(I,J) = T
190 CONTINUE
200 CONTINUE
IF (J .GE. L) GO TO 210
JJ = J - K + 1
T = S(JJ)
CALL DROTG(R(J,J),T,C(JJ),S(JJ))
210 CONTINUE
220 CONTINUE
C APPLY THE ROTATIONS TO Z.
IF (NZ .LT. 1) GO TO 250
DO 240 J = 1, NZ
DO 230 I = K, LM1
II = I - KM1
T = C(II)*Z(I,J) + S(II)*Z(I+1,J)
Z(I+1,J) = C(II)*Z(I+1,J) - S(II)*Z(I,J)
Z(I,J) = T
230 CONTINUE
240 CONTINUE
250 CONTINUE
260 CONTINUE
RETURN
END
*DCOPY
SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
C***BEGIN PROLOGUE DCOPY
C***DATE WRITTEN 791001 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D1A5
C***KEYWORDS BLAS,COPY,DOUBLE PRECISION,LINEAR ALGEBRA,VECTOR
C***AUTHOR LAWSON, C. L., (JPL)
C HANSON, R. J., (SNLA)
C KINCAID, D. R., (U. OF TEXAS)
C KROGH, F. T., (JPL)
C***PURPOSE D.P. VECTOR COPY Y = X
C***DESCRIPTION
C B L A S SUBPROGRAM
C DESCRIPTION OF PARAMETERS
C --INPUT--
C N NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C DX DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCX STORAGE SPACING BETWEEN ELEMENTS OF DX
C DY DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCY STORAGE SPACING BETWEEN ELEMENTS OF DY
C --OUTPUT--
C DY COPY OF VECTOR DX (UNCHANGED IF N .LE. 0)
C COPY DOUBLE PRECISION DX TO DOUBLE PRECISION DY.
C FOR I = 0 TO N-1, COPY DX(LX+I*INCX) TO DY(LY+I*INCY),
C WHERE LX = 1 IF INCX .GE. 0, ELSE LX = (-INCX)*N, AND LY IS
C DEFINED IN A SIMILAR WAY USING INCY.
C***REFERENCES LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DCOPY
C...SCALAR ARGUMENTS
INTEGER
+ INCX,INCY,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ DX(*),DY(*)
C...LOCAL SCALARS
INTEGER
+ I,IX,IY,M,MP1,NS
C...INTRINSIC FUNCTIONS
INTRINSIC
+ MOD
C***FIRST EXECUTABLE STATEMENT DCOPY
IF(N.LE.0)RETURN
IF (INCX.EQ.INCY) IF(INCX.lt.1) GOTO 5
IF (INCX.EQ.INCY) IF(INCX.eq.1) GOTO 20
GOTO 60
5 CONTINUE
C CODE FOR UNEQUAL OR NONPOSITIVE INCREMENTS.
IX = 1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DY(IY) = DX(IX)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 7.
20 M = MOD(N,7)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DY(I) = DX(I)
30 CONTINUE
IF( N .LT. 7 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,7
DY(I) = DX(I)
DY(I + 1) = DX(I + 1)
DY(I + 2) = DX(I + 2)
DY(I + 3) = DX(I + 3)
DY(I + 4) = DX(I + 4)
DY(I + 5) = DX(I + 5)
DY(I + 6) = DX(I + 6)
50 CONTINUE
RETURN
C CODE FOR EQUAL, POSITIVE, NONUNIT INCREMENTS.
60 CONTINUE
NS=N*INCX
DO 70 I=1,NS,INCX
DY(I) = DX(I)
70 CONTINUE
RETURN
END
*DDOT
DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
C***BEGIN PROLOGUE DDOT
C***DATE WRITTEN 791001 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D1A4
C***KEYWORDS BLAS,DOUBLE PRECISION,INNER PRODUCT,LINEAR ALGEBRA,VECTOR
C***AUTHOR LAWSON, C. L., (JPL)
C HANSON, R. J., (SNLA)
C KINCAID, D. R., (U. OF TEXAS)
C KROGH, F. T., (JPL)
C***PURPOSE D.P. INNER PRODUCT OF D.P. VECTORS
C***DESCRIPTION
C B L A S SUBPROGRAM
C DESCRIPTION OF PARAMETERS
C --INPUT--
C N NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C DX DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCX STORAGE SPACING BETWEEN ELEMENTS OF DX
C DY DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCY STORAGE SPACING BETWEEN ELEMENTS OF DY
C --OUTPUT--
C DDOT DOUBLE PRECISION DOT PRODUCT (ZERO IF N .LE. 0)
C RETURNS THE DOT PRODUCT OF DOUBLE PRECISION DX AND DY.
C DDOT = SUM FOR I = 0 TO N-1 OF DX(LX+I*INCX) * DY(LY+I*INCY)
C WHERE LX = 1 IF INCX .GE. 0, ELSE LX = (-INCX)*N, AND LY IS
C DEFINED IN A SIMILAR WAY USING INCY.
C***REFERENCES LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DDOT
C...SCALAR ARGUMENTS
INTEGER
+ INCX,INCY,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ DX(*),DY(*)
C...LOCAL SCALARS
INTEGER
+ I,IX,IY,M,MP1,NS
C...INTRINSIC FUNCTIONS
INTRINSIC
+ MOD
C***FIRST EXECUTABLE STATEMENT DDOT
DDOT = 0.D0
IF(N.LE.0)RETURN
IF (INCX.EQ.INCY) IF(INCX.lt.1) GOTO 5
IF (INCX.EQ.INCY) IF(INCX.eq.1) GOTO 20
GOTO 60
5 CONTINUE
C CODE FOR UNEQUAL OR NONPOSITIVE INCREMENTS.
IX = 1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DDOT = DDOT + DX(IX)*DY(IY)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
C CODE FOR BOTH INCREMENTS EQUAL TO 1.
C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 5.
20 M = MOD(N,5)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DDOT = DDOT + DX(I)*DY(I)
30 CONTINUE
IF( N .LT. 5 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,5
DDOT = DDOT + DX(I)*DY(I) + DX(I+1)*DY(I+1) +
1 DX(I + 2)*DY(I + 2) + DX(I + 3)*DY(I + 3) + DX(I + 4)*DY(I + 4)
50 CONTINUE
RETURN
C CODE FOR POSITIVE EQUAL INCREMENTS .NE.1.
60 CONTINUE
NS = N*INCX
DO 70 I=1,NS,INCX
DDOT = DDOT + DX(I)*DY(I)
70 CONTINUE
RETURN
END
*DNRM2
DOUBLE PRECISION FUNCTION DNRM2(N,DX,INCX)
C***BEGIN PROLOGUE DNRM2
C***DATE WRITTEN 791001 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D1A3B
C***KEYWORDS BLAS,DOUBLE PRECISION,EUCLIDEAN,L2,LENGTH,LINEAR ALGEBRA,
C NORM,VECTOR
C***AUTHOR LAWSON, C. L., (JPL)
C HANSON, R. J., (SNLA)
C KINCAID, D. R., (U. OF TEXAS)
C KROGH, F. T., (JPL)
C***PURPOSE EUCLIDEAN LENGTH (L2 NORM) OF D.P. VECTOR
C***DESCRIPTION
C B L A S SUBPROGRAM
C DESCRIPTION OF PARAMETERS
C --INPUT--
C N NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C DX DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCX STORAGE SPACING BETWEEN ELEMENTS OF DX
C --OUTPUT--
C DNRM2 DOUBLE PRECISION RESULT (ZERO IF N .LE. 0)
C EUCLIDEAN NORM OF THE N-VECTOR STORED IN DX() WITH STORAGE
C INCREMENT INCX .
C IF N .LE. 0 RETURN WITH RESULT = 0.
C IF N .GE. 1 THEN INCX MUST BE .GE. 1
C C.L. LAWSON, 1978 JAN 08
C FOUR PHASE METHOD USING TWO BUILT-IN CONSTANTS THAT ARE
C HOPEFULLY APPLICABLE TO ALL MACHINES.
C CUTLO = MAXIMUM OF DSQRT(U/EPS) OVER ALL KNOWN MACHINES.
C CUTHI = MINIMUM OF DSQRT(V) OVER ALL KNOWN MACHINES.
C WHERE
C EPS = SMALLEST NO. SUCH THAT EPS + 1. .GT. 1.
C U = SMALLEST POSITIVE NO. (UNDERFLOW LIMIT)
C V = LARGEST NO. (OVERFLOW LIMIT)
C BRIEF OUTLINE OF ALGORITHM..
C PHASE 1 SCANS ZERO COMPONENTS.
C MOVE TO PHASE 2 WHEN A COMPONENT IS NONZERO AND .LE. CUTLO
C MOVE TO PHASE 3 WHEN A COMPONENT IS .GT. CUTLO
C MOVE TO PHASE 4 WHEN A COMPONENT IS .GE. CUTHI/M
C WHERE M = N FOR X() REAL AND M = 2*N FOR COMPLEX.
C VALUES FOR CUTLO AND CUTHI..
C FROM THE ENVIRONMENTAL PARAMETERS LISTED IN THE IMSL CONVERTER
C DOCUMENT THE LIMITING VALUES ARE AS FOLLOWS..
C CUTLO, S.P. U/EPS = 2**(-102) FOR HONEYWELL. CLOSE SECONDS ARE
C UNIVAC AND DEC AT 2**(-103)
C THUS CUTLO = 2**(-51) = 4.44089E-16
C CUTHI, S.P. V = 2**127 FOR UNIVAC, HONEYWELL, AND DEC.
C THUS CUTHI = 2**(63.5) = 1.30438E19
C CUTLO, D.P. U/EPS = 2**(-67) FOR HONEYWELL AND DEC.
C THUS CUTLO = 2**(-33.5) = 8.23181D-11
C CUTHI, D.P. SAME AS S.P. CUTHI = 1.30438D19
C DATA CUTLO, CUTHI / 8.232D-11, 1.304D19 /
C DATA CUTLO, CUTHI / 4.441E-16, 1.304E19 /
C***REFERENCES LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DNRM2
C...SCALAR ARGUMENTS
INTEGER
+ INCX,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ DX(*)
C...LOCAL SCALARS
DOUBLE PRECISION
+ CUTHI,CUTLO,HITEST,ONE,SUM,XMAX,ZERO
INTEGER
+ I,J,NEXT,NN
C...INTRINSIC FUNCTIONS
INTRINSIC
+ DABS,DSQRT,FLOAT
C...DATA STATEMENTS
DATA
+ ZERO,ONE/0.0D0,1.0D0/
DATA
+ CUTLO,CUTHI/8.232D-11,1.304D19/
C***FIRST EXECUTABLE STATEMENT DNRM2
XMAX = ZERO
IF(N .GT. 0) GO TO 10
DNRM2 = ZERO
GO TO 300
10 ASSIGN 30 TO NEXT
SUM = ZERO
NN = N * INCX
C BEGIN MAIN LOOP
I = 1
C 20 GO TO NEXT,(30, 50, 70, 110)
20 GO TO NEXT
30 IF( DABS(DX(I)) .GT. CUTLO) GO TO 85
ASSIGN 50 TO NEXT
XMAX = ZERO
C PHASE 1. SUM IS ZERO
50 IF( DX(I) .EQ. ZERO) GO TO 200
IF( DABS(DX(I)) .GT. CUTLO) GO TO 85
C PREPARE FOR PHASE 2.
ASSIGN 70 TO NEXT
GO TO 105
C PREPARE FOR PHASE 4.
100 I = J
ASSIGN 110 TO NEXT
SUM = (SUM / DX(I)) / DX(I)
105 XMAX = DABS(DX(I))
GO TO 115
C PHASE 2. SUM IS SMALL.
C SCALE TO AVOID DESTRUCTIVE UNDERFLOW.
70 IF( DABS(DX(I)) .GT. CUTLO ) GO TO 75
C COMMON CODE FOR PHASES 2 AND 4.
C IN PHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW.
110 IF( DABS(DX(I)) .LE. XMAX ) GO TO 115
SUM = ONE + SUM * (XMAX / DX(I))**2
XMAX = DABS(DX(I))
GO TO 200
115 SUM = SUM + (DX(I)/XMAX)**2
GO TO 200
C PREPARE FOR PHASE 3.
75 SUM = (SUM * XMAX) * XMAX
C FOR REAL OR D.P. SET HITEST = CUTHI/N
C FOR COMPLEX SET HITEST = CUTHI/(2*N)
85 HITEST = CUTHI/FLOAT( N )
C PHASE 3. SUM IS MID-RANGE. NO SCALING.
DO 95 J =I,NN,INCX
IF(DABS(DX(J)) .GE. HITEST) GO TO 100
95 SUM = SUM + DX(J)**2
DNRM2 = DSQRT( SUM )
GO TO 300
200 CONTINUE
I = I + INCX
IF ( I .LE. NN ) GO TO 20
C END OF MAIN LOOP.
C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING.
DNRM2 = XMAX * DSQRT(SUM)
300 CONTINUE
RETURN
END
*DPODI
SUBROUTINE DPODI(A,LDA,N,DET,JOB)
C***BEGIN PROLOGUE DPODI
C***DATE WRITTEN 780814 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D2B1B,D3B1B
C***KEYWORDS DETERMINANT,DOUBLE PRECISION,FACTOR,INVERSE,
C LINEAR ALGEBRA,LINPACK,MATRIX,POSITIVE DEFINITE
C***AUTHOR MOLER, C. B., (U. OF NEW MEXICO)
C***PURPOSE COMPUTES THE DETERMINANT AND INVERSE OF A CERTAIN DOUBLE
C PRECISION SYMMETRIC POSITIVE DEFINITE MATRIX (SEE ABSTRACT)
C USING THE FACTORS COMPUTED BY DPOCO, DPOFA OR DQRDC.
C***DESCRIPTION
C DPODI COMPUTES THE DETERMINANT AND INVERSE OF A CERTAIN
C DOUBLE PRECISION SYMMETRIC POSITIVE DEFINITE MATRIX (SEE BELOW)
C USING THE FACTORS COMPUTED BY DPOCO, DPOFA OR DQRDC.
C ON ENTRY
C A DOUBLE PRECISION(LDA, N)
C THE OUTPUT A FROM DPOCO OR DPOFA
C OR THE OUTPUT X FROM DQRDC.
C LDA INTEGER
C THE LEADING DIMENSION OF THE ARRAY A .
C N INTEGER
C THE ORDER OF THE MATRIX A .
C JOB INTEGER
C = 11 BOTH DETERMINANT AND INVERSE.
C = 01 INVERSE ONLY.
C = 10 DETERMINANT ONLY.
C ON RETURN
C A IF DPOCO OR DPOFA WAS USED TO FACTOR A , THEN
C DPODI PRODUCES THE UPPER HALF OF INVERSE(A) .
C IF DQRDC WAS USED TO DECOMPOSE X , THEN
C DPODI PRODUCES THE UPPER HALF OF INVERSE(TRANS(X)*X)
C WHERE TRANS(X) IS THE TRANSPOSE.
C ELEMENTS OF A BELOW THE DIAGONAL ARE UNCHANGED.
C IF THE UNITS DIGIT OF JOB IS ZERO, A IS UNCHANGED.
C DET DOUBLE PRECISION(2)
C DETERMINANT OF A OR OF TRANS(X)*X IF REQUESTED.
C OTHERWISE NOT REFERENCED.
C DETERMINANT = DET(1) * 10.0**DET(2)
C WITH 1.0 .LE. DET(1) .LT. 10.0
C OR DET(1) .EQ. 0.0 .
C ERROR CONDITION
C A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS
C A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.
C IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY
C AND IF DPOCO OR DPOFA HAS SET INFO .EQ. 0 .
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C***REFERENCES DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C *LINPACK USERS GUIDE*, SIAM, 1979.
C***ROUTINES CALLED DAXPY,DSCAL
C***END PROLOGUE DPODI
C...SCALAR ARGUMENTS
INTEGER JOB,LDA,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION A(LDA,*),DET(*)
C...LOCAL SCALARS
DOUBLE PRECISION S,T
INTEGER I,J,JM1,K,KP1
C...EXTERNAL SUBROUTINES
EXTERNAL DAXPY,DSCAL
C...INTRINSIC FUNCTIONS
INTRINSIC MOD
C***FIRST EXECUTABLE STATEMENT DPODI
IF (JOB/10 .EQ. 0) GO TO 70
DET(1) = 1.0D0
DET(2) = 0.0D0
S = 10.0D0
DO 50 I = 1, N
DET(1) = A(I,I)**2*DET(1)
C ...EXIT
IF (DET(1) .EQ. 0.0D0) GO TO 60
10 IF (DET(1) .GE. 1.0D0) GO TO 20
DET(1) = S*DET(1)
DET(2) = DET(2) - 1.0D0
GO TO 10
20 CONTINUE
30 IF (DET(1) .LT. S) GO TO 40
DET(1) = DET(1)/S
DET(2) = DET(2) + 1.0D0
GO TO 30
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
C COMPUTE INVERSE(R)
IF (MOD(JOB,10) .EQ. 0) GO TO 140
DO 100 K = 1, N
A(K,K) = 1.0D0/A(K,K)
T = -A(K,K)
CALL DSCAL(K-1,T,A(1,K),1)
KP1 = K + 1
IF (N .LT. KP1) GO TO 90
DO 80 J = KP1, N
T = A(K,J)
A(K,J) = 0.0D0
CALL DAXPY(K,T,A(1,K),1,A(1,J),1)
80 CONTINUE
90 CONTINUE
100 CONTINUE
C FORM INVERSE(R) * TRANS(INVERSE(R))
DO 130 J = 1, N
JM1 = J - 1
IF (JM1 .LT. 1) GO TO 120
DO 110 K = 1, JM1
T = A(K,J)
CALL DAXPY(K,T,A(1,J),1,A(1,K),1)
110 CONTINUE
120 CONTINUE
T = A(J,J)
CALL DSCAL(J,T,A(1,J),1)
130 CONTINUE
140 CONTINUE
RETURN
END
*DQRDC
SUBROUTINE DQRDC(X,LDX,N,P,QRAUX,JPVT,WORK,JOB)
C***BEGIN PROLOGUE DQRDC
C***DATE WRITTEN 780814 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D5
C***KEYWORDS DECOMPOSITION,DOUBLE PRECISION,LINEAR ALGEBRA,LINPACK,
C MATRIX,ORTHOGONAL TRIANGULAR
C***AUTHOR STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE USES HOUSEHOLDER TRANSFORMATIONS TO COMPUTE THE QR FACTORI-
C ZATION OF N BY P MATRIX X. COLUMN PIVOTING IS OPTIONAL.
C***DESCRIPTION
C DQRDC USES HOUSEHOLDER TRANSFORMATIONS TO COMPUTE THE QR
C FACTORIZATION OF AN N BY P MATRIX X. COLUMN PIVOTING
C BASED ON THE 2-NORMS OF THE REDUCED COLUMNS MAY BE
C PERFORMED AT THE USER'S OPTION.
C ON ENTRY
C X DOUBLE PRECISION(LDX,P), WHERE LDX .GE. N.
C X CONTAINS THE MATRIX WHOSE DECOMPOSITION IS TO BE
C COMPUTED.
C LDX INTEGER.
C LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C N INTEGER.
C N IS THE NUMBER OF ROWS OF THE MATRIX X.
C P INTEGER.
C P IS THE NUMBER OF COLUMNS OF THE MATRIX X.
C JPVT INTEGER(P).
C JPVT CONTAINS INTEGERS THAT CONTROL THE SELECTION
C OF THE PIVOT COLUMNS. THE K-TH COLUMN X(K) OF X
C IS PLACED IN ONE OF THREE CLASSES ACCORDING TO THE
C VALUE OF JPVT(K).
C IF JPVT(K) .GT. 0, THEN X(K) IS AN INITIAL
C COLUMN.
C IF JPVT(K) .EQ. 0, THEN X(K) IS A FREE COLUMN.
C IF JPVT(K) .LT. 0, THEN X(K) IS A FINAL COLUMN.
C BEFORE THE DECOMPOSITION IS COMPUTED, INITIAL COLUMNS
C ARE MOVED TO THE BEGINNING OF THE ARRAY X AND FINAL
C COLUMNS TO THE END. BOTH INITIAL AND FINAL COLUMNS
C ARE FROZEN IN PLACE DURING THE COMPUTATION AND ONLY
C FREE COLUMNS ARE MOVED. AT THE K-TH STAGE OF THE
C REDUCTION, IF X(K) IS OCCUPIED BY A FREE COLUMN
C IT IS INTERCHANGED WITH THE FREE COLUMN OF LARGEST
C REDUCED NORM. JPVT IS NOT REFERENCED IF
C JOB .EQ. 0.
C WORK DOUBLE PRECISION(P).
C WORK IS A WORK ARRAY. WORK IS NOT REFERENCED IF
C JOB .EQ. 0.
C JOB INTEGER.
C JOB IS AN INTEGER THAT INITIATES COLUMN PIVOTING.
C IF JOB .EQ. 0, NO PIVOTING IS DONE.
C IF JOB .NE. 0, PIVOTING IS DONE.
C ON RETURN
C X X CONTAINS IN ITS UPPER TRIANGLE THE UPPER
C TRIANGULAR MATRIX R OF THE QR FACTORIZATION.
C BELOW ITS DIAGONAL X CONTAINS INFORMATION FROM
C WHICH THE ORTHOGONAL PART OF THE DECOMPOSITION
C CAN BE RECOVERED. NOTE THAT IF PIVOTING HAS
C BEEN REQUESTED, THE DECOMPOSITION IS NOT THAT
C OF THE ORIGINAL MATRIX X BUT THAT OF X
C WITH ITS COLUMNS PERMUTED AS DESCRIBED BY JPVT.
C QRAUX DOUBLE PRECISION(P).
C QRAUX CONTAINS FURTHER INFORMATION REQUIRED TO RECOVER
C THE ORTHOGONAL PART OF THE DECOMPOSITION.
C JPVT JPVT(K) CONTAINS THE INDEX OF THE COLUMN OF THE
C ORIGINAL MATRIX THAT HAS BEEN INTERCHANGED INTO
C THE K-TH COLUMN, IF PIVOTING WAS REQUESTED.
C LINPACK. THIS VERSION DATED 08/14/78 .
C G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C *LINPACK USERS GUIDE*, SIAM, 1979.
C***ROUTINES CALLED DAXPY,DDOT,DNRM2,DSCAL,DSWAP
C***END PROLOGUE DQRDC
C...SCALAR ARGUMENTS
INTEGER
+ JOB,LDX,N,P
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ QRAUX(*),WORK(*),X(LDX,*)
INTEGER
+ JPVT(*)
C...LOCAL SCALARS
DOUBLE PRECISION
+ MAXNRM,NRMXL,T,TT
INTEGER
+ J,JJ,JP,L,LP1,LUP,MAXJ,PL,PU
LOGICAL
+ NEGJ,SWAPJ
C...EXTERNAL FUNCTIONS
DOUBLE PRECISION
+ DDOT,DNRM2
EXTERNAL
+ DDOT,DNRM2
C...EXTERNAL SUBROUTINES
EXTERNAL
+ DAXPY,DSCAL,DSWAP
C...INTRINSIC FUNCTIONS
INTRINSIC
+ DABS,DMAX1,DSIGN,DSQRT,MIN0
C***FIRST EXECUTABLE STATEMENT DQRDC
PL = 1
PU = 0
IF (JOB .EQ. 0) GO TO 60
C PIVOTING HAS BEEN REQUESTED. REARRANGE THE COLUMNS
C ACCORDING TO JPVT.
DO 20 J = 1, P
SWAPJ = JPVT(J) .GT. 0
NEGJ = JPVT(J) .LT. 0
JPVT(J) = J
IF (NEGJ) JPVT(J) = -J
IF (.NOT.SWAPJ) GO TO 10
IF (J .NE. PL) CALL DSWAP(N,X(1,PL),1,X(1,J),1)
JPVT(J) = JPVT(PL)
JPVT(PL) = J
PL = PL + 1
10 CONTINUE
20 CONTINUE
PU = P
DO 50 JJ = 1, P
J = P - JJ + 1
IF (JPVT(J) .GE. 0) GO TO 40
JPVT(J) = -JPVT(J)
IF (J .EQ. PU) GO TO 30
CALL DSWAP(N,X(1,PU),1,X(1,J),1)
JP = JPVT(PU)
JPVT(PU) = JPVT(J)
JPVT(J) = JP
30 CONTINUE
PU = PU - 1
40 CONTINUE
50 CONTINUE
60 CONTINUE
C COMPUTE THE NORMS OF THE FREE COLUMNS.
IF (PU .LT. PL) GO TO 80
DO 70 J = PL, PU
QRAUX(J) = DNRM2(N,X(1,J),1)
WORK(J) = QRAUX(J)
70 CONTINUE
80 CONTINUE
C PERFORM THE HOUSEHOLDER REDUCTION OF X.
LUP = MIN0(N,P)
DO 200 L = 1, LUP
IF (L .LT. PL .OR. L .GE. PU) GO TO 120
C LOCATE THE COLUMN OF LARGEST NORM AND BRING IT
C INTO THE PIVOT POSITION.
MAXNRM = 0.0D0
MAXJ = L
DO 100 J = L, PU
IF (QRAUX(J) .LE. MAXNRM) GO TO 90
MAXNRM = QRAUX(J)
MAXJ = J
90 CONTINUE
100 CONTINUE
IF (MAXJ .EQ. L) GO TO 110
CALL DSWAP(N,X(1,L),1,X(1,MAXJ),1)
QRAUX(MAXJ) = QRAUX(L)
WORK(MAXJ) = WORK(L)
JP = JPVT(MAXJ)
JPVT(MAXJ) = JPVT(L)
JPVT(L) = JP
110 CONTINUE
120 CONTINUE
QRAUX(L) = 0.0D0
IF (L .EQ. N) GO TO 190
C COMPUTE THE HOUSEHOLDER TRANSFORMATION FOR COLUMN L.
NRMXL = DNRM2(N-L+1,X(L,L),1)
IF (NRMXL .EQ. 0.0D0) GO TO 180
IF (X(L,L) .NE. 0.0D0) NRMXL = DSIGN(NRMXL,X(L,L))
CALL DSCAL(N-L+1,1.0D0/NRMXL,X(L,L),1)
X(L,L) = 1.0D0 + X(L,L)
C APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS,
C UPDATING THE NORMS.
LP1 = L + 1
IF (P .LT. LP1) GO TO 170
DO 160 J = LP1, P
T = -DDOT(N-L+1,X(L,L),1,X(L,J),1)/X(L,L)
CALL DAXPY(N-L+1,T,X(L,L),1,X(L,J),1)
IF (J .LT. PL .OR. J .GT. PU) GO TO 150
IF (QRAUX(J) .EQ. 0.0D0) GO TO 150
TT = 1.0D0 - (DABS(X(L,J))/QRAUX(J))**2
TT = DMAX1(TT,0.0D0)
T = TT
TT = 1.0D0 + 0.05D0*TT*(QRAUX(J)/WORK(J))**2
IF (TT .EQ. 1.0D0) GO TO 130
QRAUX(J) = QRAUX(J)*DSQRT(T)
GO TO 140
130 CONTINUE
QRAUX(J) = DNRM2(N-L,X(L+1,J),1)
WORK(J) = QRAUX(J)
140 CONTINUE
150 CONTINUE
160 CONTINUE
170 CONTINUE
C SAVE THE TRANSFORMATION.
QRAUX(L) = X(L,L)
X(L,L) = -NRMXL
180 CONTINUE
190 CONTINUE
200 CONTINUE
RETURN
END
*DQRSL
SUBROUTINE DQRSL(X,LDX,N,K,QRAUX,Y,QY,QTY,B,RSD,XB,JOB,INFO)
C***BEGIN PROLOGUE DQRSL
C***DATE WRITTEN 780814 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D9,D2A1
C***KEYWORDS DOUBLE PRECISION,LINEAR ALGEBRA,LINPACK,MATRIX,
C ORTHOGONAL TRIANGULAR,SOLVE
C***AUTHOR STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE APPLIES THE OUTPUT OF DQRDC TO COMPUTE COORDINATE
C TRANSFORMATIONS, PROJECTIONS, AND LEAST SQUARES SOLUTIONS.
C***DESCRIPTION
C DQRSL APPLIES THE OUTPUT OF DQRDC TO COMPUTE COORDINATE
C TRANSFORMATIONS, PROJECTIONS, AND LEAST SQUARES SOLUTIONS.
C FOR K .LE. MIN(N,P), LET XK BE THE MATRIX
C XK = (X(JPVT(1)),X(JPVT(2)), ... ,X(JPVT(K)))
C FORMED FROM COLUMNNS JPVT(1), ... ,JPVT(K) OF THE ORIGINAL
C N X P MATRIX X THAT WAS INPUT TO DQRDC (IF NO PIVOTING WAS
C DONE, XK CONSISTS OF THE FIRST K COLUMNS OF X IN THEIR
C ORIGINAL ORDER). DQRDC PRODUCES A FACTORED ORTHOGONAL MATRIX Q
C AND AN UPPER TRIANGULAR MATRIX R SUCH THAT
C XK = Q * (R)
C (0)
C THIS INFORMATION IS CONTAINED IN CODED FORM IN THE ARRAYS
C X AND QRAUX.
C ON ENTRY
C X DOUBLE PRECISION(LDX,P).
C X CONTAINS THE OUTPUT OF DQRDC.
C LDX INTEGER.
C LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C N INTEGER.
C N IS THE NUMBER OF ROWS OF THE MATRIX XK. IT MUST
C HAVE THE SAME VALUE AS N IN DQRDC.
C K INTEGER.
C K IS THE NUMBER OF COLUMNS OF THE MATRIX XK. K
C MUST NOT BE GREATER THAN MIN(N,P), WHERE P IS THE
C SAME AS IN THE CALLING SEQUENCE TO DQRDC.
C QRAUX DOUBLE PRECISION(P).
C QRAUX CONTAINS THE AUXILIARY OUTPUT FROM DQRDC.
C Y DOUBLE PRECISION(N)
C Y CONTAINS AN N-VECTOR THAT IS TO BE MANIPULATED
C BY DQRSL.
C JOB INTEGER.
C JOB SPECIFIES WHAT IS TO BE COMPUTED. JOB HAS
C THE DECIMAL EXPANSION ABCDE, WITH THE FOLLOWING
C MEANING.
C IF A .NE. 0, COMPUTE QY.
C IF B,C,D, OR E .NE. 0, COMPUTE QTY.
C IF C .NE. 0, COMPUTE B.
C IF D .NE. 0, COMPUTE RSD.
C IF E .NE. 0, COMPUTE XB.
C NOTE THAT A REQUEST TO COMPUTE B, RSD, OR XB
C AUTOMATICALLY TRIGGERS THE COMPUTATION OF QTY, FOR
C WHICH AN ARRAY MUST BE PROVIDED IN THE CALLING
C SEQUENCE.
C ON RETURN
C QY DOUBLE PRECISION(N).
C QY CONTAINS Q*Y, IF ITS COMPUTATION HAS BEEN
C REQUESTED.
C QTY DOUBLE PRECISION(N).
C QTY CONTAINS TRANS(Q)*Y, IF ITS COMPUTATION HAS
C BEEN REQUESTED. HERE TRANS(Q) IS THE
C TRANSPOSE OF THE MATRIX Q.
C B DOUBLE PRECISION(K)
C B CONTAINS THE SOLUTION OF THE LEAST SQUARES PROBLEM
C MINIMIZE NORM2(Y - XK*B),
C IF ITS COMPUTATION HAS BEEN REQUESTED. (NOTE THAT
C IF PIVOTING WAS REQUESTED IN DQRDC, THE J-TH
C COMPONENT OF B WILL BE ASSOCIATED WITH COLUMN JPVT(J)
C OF THE ORIGINAL MATRIX X THAT WAS INPUT INTO DQRDC.)
C RSD DOUBLE PRECISION(N).
C RSD CONTAINS THE LEAST SQUARES RESIDUAL Y - XK*B,
C IF ITS COMPUTATION HAS BEEN REQUESTED. RSD IS
C ALSO THE ORTHOGONAL PROJECTION OF Y ONTO THE
C ORTHOGONAL COMPLEMENT OF THE COLUMN SPACE OF XK.
C XB DOUBLE PRECISION(N).
C XB CONTAINS THE LEAST SQUARES APPROXIMATION XK*B,
C IF ITS COMPUTATION HAS BEEN REQUESTED. XB IS ALSO
C THE ORTHOGONAL PROJECTION OF Y ONTO THE COLUMN SPACE
C OF X.
C INFO INTEGER.
C INFO IS ZERO UNLESS THE COMPUTATION OF B HAS
C BEEN REQUESTED AND R IS EXACTLY SINGULAR. IN
C THIS CASE, INFO IS THE INDEX OF THE FIRST ZERO
C DIAGONAL ELEMENT OF R AND B IS LEFT UNALTERED.
C THE PARAMETERS QY, QTY, B, RSD, AND XB ARE NOT REFERENCED
C IF THEIR COMPUTATION IS NOT REQUESTED AND IN THIS CASE
C CAN BE REPLACED BY DUMMY VARIABLES IN THE CALLING PROGRAM.
C TO SAVE STORAGE, THE USER MAY IN SOME CASES USE THE SAME
C ARRAY FOR DIFFERENT PARAMETERS IN THE CALLING SEQUENCE. A
C FREQUENTLY OCCURING EXAMPLE IS WHEN ONE WISHES TO COMPUTE
C ANY OF B, RSD, OR XB AND DOES NOT NEED Y OR QTY. IN THIS
C CASE ONE MAY IDENTIFY Y, QTY, AND ONE OF B, RSD, OR XB, WHILE
C PROVIDING SEPARATE ARRAYS FOR ANYTHING ELSE THAT IS TO BE
C COMPUTED. THUS THE CALLING SEQUENCE
C CALL DQRSL(X,LDX,N,K,QRAUX,Y,DUM,Y,B,Y,DUM,110,INFO)
C WILL RESULT IN THE COMPUTATION OF B AND RSD, WITH RSD
C OVERWRITING Y. MORE GENERALLY, EACH ITEM IN THE FOLLOWING
C LIST CONTAINS GROUPS OF PERMISSIBLE IDENTIFICATIONS FOR
C A SINGLE CALLING SEQUENCE.
C 1. (Y,QTY,B) (RSD) (XB) (QY)
C 2. (Y,QTY,RSD) (B) (XB) (QY)
C 3. (Y,QTY,XB) (B) (RSD) (QY)
C 4. (Y,QY) (QTY,B) (RSD) (XB)
C 5. (Y,QY) (QTY,RSD) (B) (XB)
C 6. (Y,QY) (QTY,XB) (B) (RSD)
C IN ANY GROUP THE VALUE RETURNED IN THE ARRAY ALLOCATED TO
C THE GROUP CORRESPONDS TO THE LAST MEMBER OF THE GROUP.
C LINPACK. THIS VERSION DATED 08/14/78 .
C G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C *LINPACK USERS GUIDE*, SIAM, 1979.
C***ROUTINES CALLED DAXPY,DCOPY,DDOT
C***END PROLOGUE DQRSL
C...SCALAR ARGUMENTS
INTEGER
+ INFO,JOB,K,LDX,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ B(*),QRAUX(*),QTY(*),QY(*),RSD(*),X(LDX,*),XB(*),
+ Y(*)
C...LOCAL SCALARS
DOUBLE PRECISION
+ T,TEMP
INTEGER
+ I,J,JJ,JU,KP1
LOGICAL
+ CB,CQTY,CQY,CR,CXB
C...EXTERNAL FUNCTIONS
DOUBLE PRECISION
+ DDOT
EXTERNAL
+ DDOT
C...EXTERNAL SUBROUTINES
EXTERNAL
+ DAXPY,DCOPY
C...INTRINSIC FUNCTIONS
INTRINSIC
+ MIN0,MOD
C***FIRST EXECUTABLE STATEMENT DQRSL
INFO = 0
C DETERMINE WHAT IS TO BE COMPUTED.
CQY = JOB/10000 .NE. 0
CQTY = MOD(JOB,10000) .NE. 0
CB = MOD(JOB,1000)/100 .NE. 0
CR = MOD(JOB,100)/10 .NE. 0
CXB = MOD(JOB,10) .NE. 0
JU = MIN0(K,N-1)
C SPECIAL ACTION WHEN N=1.
IF (JU .NE. 0) GO TO 40
IF (CQY) QY(1) = Y(1)
IF (CQTY) QTY(1) = Y(1)
IF (CXB) XB(1) = Y(1)
IF (.NOT.CB) GO TO 30
IF (X(1,1) .NE. 0.0D0) GO TO 10
INFO = 1
GO TO 20
10 CONTINUE
B(1) = Y(1)/X(1,1)
20 CONTINUE
30 CONTINUE
IF (CR) RSD(1) = 0.0D0
GO TO 250
40 CONTINUE
C SET UP TO COMPUTE QY OR QTY.
IF (CQY) CALL DCOPY(N,Y,1,QY,1)
IF (CQTY) CALL DCOPY(N,Y,1,QTY,1)
IF (.NOT.CQY) GO TO 70
C COMPUTE QY.
DO 60 JJ = 1, JU
J = JU - JJ + 1
IF (QRAUX(J) .EQ. 0.0D0) GO TO 50
TEMP = X(J,J)
X(J,J) = QRAUX(J)
T = -DDOT(N-J+1,X(J,J),1,QY(J),1)/X(J,J)
CALL DAXPY(N-J+1,T,X(J,J),1,QY(J),1)
X(J,J) = TEMP
50 CONTINUE
60 CONTINUE
70 CONTINUE
IF (.NOT.CQTY) GO TO 100
C COMPUTE TRANS(Q)*Y.
DO 90 J = 1, JU
IF (QRAUX(J) .EQ. 0.0D0) GO TO 80
TEMP = X(J,J)
X(J,J) = QRAUX(J)
T = -DDOT(N-J+1,X(J,J),1,QTY(J),1)/X(J,J)
CALL DAXPY(N-J+1,T,X(J,J),1,QTY(J),1)
X(J,J) = TEMP
80 CONTINUE
90 CONTINUE
100 CONTINUE
C SET UP TO COMPUTE B, RSD, OR XB.
IF (CB) CALL DCOPY(K,QTY,1,B,1)
KP1 = K + 1
IF (CXB) CALL DCOPY(K,QTY,1,XB,1)
IF (CR .AND. K .LT. N) CALL DCOPY(N-K,QTY(KP1),1,RSD(KP1),1)
IF (.NOT.CXB .OR. KP1 .GT. N) GO TO 120
DO 110 I = KP1, N
XB(I) = 0.0D0
110 CONTINUE
120 CONTINUE
IF (.NOT.CR) GO TO 140
DO 130 I = 1, K
RSD(I) = 0.0D0
130 CONTINUE
140 CONTINUE
IF (.NOT.CB) GO TO 190
C COMPUTE B.
DO 170 JJ = 1, K
J = K - JJ + 1
IF (X(J,J) .NE. 0.0D0) GO TO 150
INFO = J
C ......EXIT
GO TO 180
150 CONTINUE
B(J) = B(J)/X(J,J)
IF (J .EQ. 1) GO TO 160
T = -B(J)
CALL DAXPY(J-1,T,X(1,J),1,B,1)
160 CONTINUE
170 CONTINUE
180 CONTINUE
190 CONTINUE
IF (.NOT.CR .AND. .NOT.CXB) GO TO 240
C COMPUTE RSD OR XB AS REQUIRED.
DO 230 JJ = 1, JU
J = JU - JJ + 1
IF (QRAUX(J) .EQ. 0.0D0) GO TO 220
TEMP = X(J,J)
X(J,J) = QRAUX(J)
IF (.NOT.CR) GO TO 200
T = -DDOT(N-J+1,X(J,J),1,RSD(J),1)/X(J,J)
CALL DAXPY(N-J+1,T,X(J,J),1,RSD(J),1)
200 CONTINUE
IF (.NOT.CXB) GO TO 210
T = -DDOT(N-J+1,X(J,J),1,XB(J),1)/X(J,J)
CALL DAXPY(N-J+1,T,X(J,J),1,XB(J),1)
210 CONTINUE
X(J,J) = TEMP
220 CONTINUE
230 CONTINUE
240 CONTINUE
250 CONTINUE
RETURN
END
*DROT
SUBROUTINE DROT(N,DX,INCX,DY,INCY,DC,DS)
C***BEGIN PROLOGUE DROT
C***DATE WRITTEN 791001 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D1A8
C***KEYWORDS BLAS,GIVENS ROTATION,LINEAR ALGEBRA,VECTOR
C***AUTHOR LAWSON, C. L., (JPL)
C HANSON, R. J., (SNLA)
C KINCAID, D. R., (U. OF TEXAS)
C KROGH, F. T., (JPL)
C***PURPOSE APPLY D.P. GIVENS ROTATION
C***DESCRIPTION
C B L A S SUBPROGRAM
C DESCRIPTION OF PARAMETERS
C --INPUT--
C N NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C DX DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCX STORAGE SPACING BETWEEN ELEMENTS OF DX
C DY DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCY STORAGE SPACING BETWEEN ELEMENTS OF DY
C DC D.P. ELEMENT OF ROTATION MATRIX
C DS D.P. ELEMENT OF ROTATION MATRIX
C --OUTPUT--
C DX ROTATED VECTOR (UNCHANGED IF N .LE. 0)
C DY ROTATED VECTOR (UNCHANGED IF N .LE. 0)
C MULTIPLY THE 2 X 2 MATRIX ( DC DS) TIMES THE 2 X N MATRIX (DX**T)
C (-DS DC) (DY**T)
C WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN
C DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE
C LX = (-INCX)*N, AND SIMILARLY FOR DY USING LY AND INCY.
C***REFERENCES LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DROT
C...SCALAR ARGUMENTS
DOUBLE PRECISION
+ DC,DS
INTEGER
+ INCX,INCY,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ DX(*),DY(*)
C...LOCAL SCALARS
DOUBLE PRECISION
+ ONE,W,Z,ZERO
INTEGER
+ I,KX,KY,NSTEPS
C...DATA STATEMENTS
DATA
+ ZERO,ONE/0.D0,1.D0/
C***FIRST EXECUTABLE STATEMENT DROT
IF(N .LE. 0 .OR. (DS .EQ. ZERO .AND. DC .EQ. ONE)) GO TO 40
IF(.NOT. (INCX .EQ. INCY .AND. INCX .GT. 0)) GO TO 20
NSTEPS=INCX*N
DO 10 I=1,NSTEPS,INCX
W=DX(I)
Z=DY(I)
DX(I)=DC*W+DS*Z
DY(I)=-DS*W+DC*Z
10 CONTINUE
GO TO 40
20 CONTINUE
KX=1
KY=1
IF(INCX .LT. 0) KX=1-(N-1)*INCX
IF(INCY .LT. 0) KY=1-(N-1)*INCY
DO 30 I=1,N
W=DX(KX)
Z=DY(KY)
DX(KX)=DC*W+DS*Z
DY(KY)=-DS*W+DC*Z
KX=KX+INCX
KY=KY+INCY
30 CONTINUE
40 CONTINUE
RETURN
END
*DROTG
SUBROUTINE DROTG(DA,DB,DC,DS)
C***BEGIN PROLOGUE DROTG
C***DATE WRITTEN 791001 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D1B10
C***KEYWORDS BLAS,GIVENS ROTATION,LINEAR ALGEBRA,VECTOR
C***AUTHOR LAWSON, C. L., (JPL)
C HANSON, R. J., (SNLA)
C KINCAID, D. R., (U. OF TEXAS)
C KROGH, F. T., (JPL)
C***PURPOSE CONSTRUCT D.P. PLANE GIVENS ROTATION
C***DESCRIPTION
C B L A S SUBPROGRAM
C DESCRIPTION OF PARAMETERS
C --INPUT--
C DA DOUBLE PRECISION SCALAR
C DB DOUBLE PRECISION SCALAR
C --OUTPUT--
C DA DOUBLE PRECISION RESULT R
C DB DOUBLE PRECISION RESULT Z
C DC DOUBLE PRECISION RESULT
C DS DOUBLE PRECISION RESULT
C DESIGNED BY C. L. LAWSON, JPL, 1977 SEPT 08
C CONSTRUCT THE GIVENS TRANSFORMATION
C ( DC DS )
C G = ( ) , DC**2 + DS**2 = 1 ,
C (-DS DC )
C WHICH ZEROS THE SECOND ENTRY OF THE 2-VECTOR (DA,DB)**T .
C THE QUANTITY R = (+/-)DSQRT(DA**2 + DB**2) OVERWRITES DA IN
C STORAGE. THE VALUE OF DB IS OVERWRITTEN BY A VALUE Z WHICH
C ALLOWS DC AND DS TO BE RECOVERED BY THE FOLLOWING ALGORITHM.
C IF Z=1 SET DC=0.D0 AND DS=1.D0
C IF DABS(Z) .LT. 1 SET DC=DSQRT(1-Z**2) AND DS=Z
C IF DABS(Z) .GT. 1 SET DC=1/Z AND DS=DSQRT(1-DC**2)
C NORMALLY, THE SUBPROGRAM DROT(N,DX,INCX,DY,INCY,DC,DS) WILL
C NEXT BE CALLED TO APPLY THE TRANSFORMATION TO A 2 BY N MATRIX.
C***REFERENCES LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DROTG
C...SCALAR ARGUMENTS
DOUBLE PRECISION
+ DA,DB,DC,DS
C...LOCAL SCALARS
DOUBLE PRECISION
+ R,U,V
C...INTRINSIC FUNCTIONS
INTRINSIC
+ DABS,DSQRT
C***FIRST EXECUTABLE STATEMENT DROTG
IF (DABS(DA) .LE. DABS(DB)) GO TO 10
C *** HERE DABS(DA) .GT. DABS(DB) ***
U = DA + DA
V = DB / U
C NOTE THAT U AND R HAVE THE SIGN OF DA
R = DSQRT(.25D0 + V**2) * U
C NOTE THAT DC IS POSITIVE
DC = DA / R
DS = V * (DC + DC)
DB = DS
DA = R
RETURN
C *** HERE DABS(DA) .LE. DABS(DB) ***
10 IF (DB .EQ. 0.D0) GO TO 20
U = DB + DB
V = DA / U
C NOTE THAT U AND R HAVE THE SIGN OF DB
C (R IS IMMEDIATELY STORED IN DA)
DA = DSQRT(.25D0 + V**2) * U
C NOTE THAT DS IS POSITIVE
DS = DB / DA
DC = V * (DS + DS)
IF (DC .EQ. 0.D0) GO TO 15
DB = 1.D0 / DC
RETURN
15 DB = 1.D0
RETURN
C *** HERE DA = DB = 0.D0 ***
20 DC = 1.D0
DS = 0.D0
RETURN
END
*DSCAL
SUBROUTINE DSCAL(N,DA,DX,INCX)
C***BEGIN PROLOGUE DSCAL
C***DATE WRITTEN 791001 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D1A6
C***KEYWORDS BLAS,LINEAR ALGEBRA,SCALE,VECTOR
C***AUTHOR LAWSON, C. L., (JPL)
C HANSON, R. J., (SNLA)
C KINCAID, D. R., (U. OF TEXAS)
C KROGH, F. T., (JPL)
C***PURPOSE D.P. VECTOR SCALE X = A*X
C***DESCRIPTION
C B L A S SUBPROGRAM
C DESCRIPTION OF PARAMETERS
C --INPUT--
C N NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C DA DOUBLE PRECISION SCALE FACTOR
C DX DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCX STORAGE SPACING BETWEEN ELEMENTS OF DX
C --OUTPUT--
C DX DOUBLE PRECISION RESULT (UNCHANGED IF N.LE.0)
C REPLACE DOUBLE PRECISION DX BY DOUBLE PRECISION DA*DX.
C FOR I = 0 TO N-1, REPLACE DX(1+I*INCX) WITH DA * DX(1+I*INCX)
C***REFERENCES LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DSCAL
C...SCALAR ARGUMENTS
DOUBLE PRECISION
+ DA
INTEGER
+ INCX,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ DX(*)
C...LOCAL SCALARS
INTEGER
+ I,M,MP1,NS
C...INTRINSIC FUNCTIONS
INTRINSIC
+ MOD
C***FIRST EXECUTABLE STATEMENT DSCAL
IF(N.LE.0)RETURN
IF(INCX.EQ.1)GOTO 20
C CODE FOR INCREMENTS NOT EQUAL TO 1.
NS = N*INCX
DO 10 I = 1,NS,INCX
DX(I) = DA*DX(I)
10 CONTINUE
RETURN
C CODE FOR INCREMENTS EQUAL TO 1.
C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 5.
20 M = MOD(N,5)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DX(I) = DA*DX(I)
30 CONTINUE
IF( N .LT. 5 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,5
DX(I) = DA*DX(I)
DX(I + 1) = DA*DX(I + 1)
DX(I + 2) = DA*DX(I + 2)
DX(I + 3) = DA*DX(I + 3)
DX(I + 4) = DA*DX(I + 4)
50 CONTINUE
RETURN
END
*DSWAP
SUBROUTINE DSWAP(N,DX,INCX,DY,INCY)
C***BEGIN PROLOGUE DSWAP
C***DATE WRITTEN 791001 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D1A5
C***KEYWORDS BLAS,DOUBLE PRECISION,INTERCHANGE,LINEAR ALGEBRA,VECTOR
C***AUTHOR LAWSON, C. L., (JPL)
C HANSON, R. J., (SNLA)
C KINCAID, D. R., (U. OF TEXAS)
C KROGH, F. T., (JPL)
C***PURPOSE INTERCHANGE D.P. VECTORS
C***DESCRIPTION
C B L A S SUBPROGRAM
C DESCRIPTION OF PARAMETERS
C --INPUT--
C N NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C DX DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCX STORAGE SPACING BETWEEN ELEMENTS OF DX
C DY DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCY STORAGE SPACING BETWEEN ELEMENTS OF DY
C --OUTPUT--
C DX INPUT VECTOR DY (UNCHANGED IF N .LE. 0)
C DY INPUT VECTOR DX (UNCHANGED IF N .LE. 0)
C INTERCHANGE DOUBLE PRECISION DX AND DOUBLE PRECISION DY.
C FOR I = 0 TO N-1, INTERCHANGE DX(LX+I*INCX) AND DY(LY+I*INCY),
C WHERE LX = 1 IF INCX .GE. 0, ELSE LX = (-INCX)*N, AND LY IS
C DEFINED IN A SIMILAR WAY USING INCY.
C***REFERENCES LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED (NONE)
C***END PROLOGUE DSWAP
C...SCALAR ARGUMENTS
INTEGER
+ INCX,INCY,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ DX(*),DY(*)
C...LOCAL SCALARS
DOUBLE PRECISION
+ DTEMP1,DTEMP2,DTEMP3
INTEGER
+ I,IX,IY,M,MP1,NS
C...INTRINSIC FUNCTIONS
INTRINSIC
+ MOD
C***FIRST EXECUTABLE STATEMENT DSWAP
IF(N.LE.0)RETURN
IF (INCX.EQ.INCY) IF(INCX.lt.1) GOTO 5
IF (INCX.EQ.INCY) IF(INCX.eq.1) GOTO 20
GOTO 60
5 CONTINUE
C CODE FOR UNEQUAL OR NONPOSITIVE INCREMENTS.
IX = 1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DTEMP1 = DX(IX)
DX(IX) = DY(IY)
DY(IY) = DTEMP1
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 3.
20 M = MOD(N,3)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DTEMP1 = DX(I)
DX(I) = DY(I)
DY(I) = DTEMP1
30 CONTINUE
IF( N .LT. 3 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,3
DTEMP1 = DX(I)
DTEMP2 = DX(I+1)
DTEMP3 = DX(I+2)
DX(I) = DY(I)
DX(I+1) = DY(I+1)
DX(I+2) = DY(I+2)
DY(I) = DTEMP1
DY(I+1) = DTEMP2
DY(I+2) = DTEMP3
50 CONTINUE
RETURN
60 CONTINUE
C CODE FOR EQUAL, POSITIVE, NONUNIT INCREMENTS.
NS = N*INCX
DO 70 I=1,NS,INCX
DTEMP1 = DX(I)
DX(I) = DY(I)
DY(I) = DTEMP1
70 CONTINUE
RETURN
END
*DTRCO
SUBROUTINE DTRCO(T,LDT,N,RCOND,Z,JOB)
C***BEGIN PROLOGUE DTRCO
C***DATE WRITTEN 780814 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D2A3
C***KEYWORDS CONDITION,DOUBLE PRECISION,FACTOR,LINEAR ALGEBRA,LINPACK,
C MATRIX,TRIANGULAR
C***AUTHOR MOLER, C. B., (U. OF NEW MEXICO)
C***PURPOSE ESTIMATES THE CONDITION OF A DOUBLE PRECISION TRIANGULAR
C MATRIX.
C***DESCRIPTION
C DTRCO ESTIMATES THE CONDITION OF A DOUBLE PRECISION TRIANGULAR
C MATRIX.
C ON ENTRY
C T DOUBLE PRECISION(LDT,N)
C T CONTAINS THE TRIANGULAR MATRIX. THE ZERO
C ELEMENTS OF THE MATRIX ARE NOT REFERENCED, AND
C THE CORRESPONDING ELEMENTS OF THE ARRAY CAN BE
C USED TO STORE OTHER INFORMATION.
C LDT INTEGER
C LDT IS THE LEADING DIMENSION OF THE ARRAY T.
C N INTEGER
C N IS THE ORDER OF THE SYSTEM.
C JOB INTEGER
C = 0 T IS LOWER TRIANGULAR.
C = NONZERO T IS UPPER TRIANGULAR.
C ON RETURN
C RCOND DOUBLE PRECISION
C AN ESTIMATE OF THE RECIPROCAL CONDITION OF T .
C FOR THE SYSTEM T*X = B , RELATIVE PERTURBATIONS
C IN T AND B OF SIZE EPSILON MAY CAUSE
C RELATIVE PERTURBATIONS IN X OF SIZE EPSILON/RCOND .
C IF RCOND IS SO SMALL THAT THE LOGICAL EXPRESSION
C 1.0 + RCOND .EQ. 1.0
C IS TRUE, THEN T MAY BE SINGULAR TO WORKING
C PRECISION. IN PARTICULAR, RCOND IS ZERO IF
C EXACT SINGULARITY IS DETECTED OR THE ESTIMATE
C UNDERFLOWS.
C Z DOUBLE PRECISION(N)
C A WORK VECTOR WHOSE CONTENTS ARE USUALLY UNIMPORTANT.
C IF T IS CLOSE TO A SINGULAR MATRIX, THEN Z IS
C AN APPROXIMATE NULL VECTOR IN THE SENSE THAT
C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C***REFERENCES DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C *LINPACK USERS GUIDE*, SIAM, 1979.
C***ROUTINES CALLED DASUM,DAXPY,DSCAL
C***END PROLOGUE DTRCO
C...SCALAR ARGUMENTS
DOUBLE PRECISION
+ RCOND
INTEGER
+ JOB,LDT,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ T(LDT,*),Z(*)
C...LOCAL SCALARS
DOUBLE PRECISION
+ EK,S,SM,TNORM,W,WK,WKM,YNORM
INTEGER
+ I1,J,J1,J2,K,KK,L
LOGICAL
+ LOWER
C...EXTERNAL FUNCTIONS
DOUBLE PRECISION
+ DASUM
EXTERNAL
+ DASUM
C...EXTERNAL SUBROUTINES
EXTERNAL
+ DAXPY,DSCAL
C...INTRINSIC FUNCTIONS
INTRINSIC
+ DABS,DMAX1,DSIGN
C***FIRST EXECUTABLE STATEMENT DTRCO
LOWER = JOB .EQ. 0
C COMPUTE 1-NORM OF T
TNORM = 0.0D0
DO 10 J = 1, N
L = J
IF (LOWER) L = N + 1 - J
I1 = 1
IF (LOWER) I1 = J
TNORM = DMAX1(TNORM,DASUM(L,T(I1,J),1))
10 CONTINUE
C RCOND = 1/(NORM(T)*(ESTIMATE OF NORM(INVERSE(T)))) .
C ESTIMATE = NORM(Z)/NORM(Y) WHERE T*Z = Y AND TRANS(T)*Y = E .
C TRANS(T) IS THE TRANSPOSE OF T .
C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
C GROWTH IN THE ELEMENTS OF Y .
C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
C SOLVE TRANS(T)*Y = E
EK = 1.0D0
DO 20 J = 1, N
Z(J) = 0.0D0
20 CONTINUE
DO 100 KK = 1, N
K = KK
IF (LOWER) K = N + 1 - KK
IF (Z(K) .NE. 0.0D0) EK = DSIGN(EK,-Z(K))
IF (DABS(EK-Z(K)) .LE. DABS(T(K,K))) GO TO 30
S = DABS(T(K,K))/DABS(EK-Z(K))
CALL DSCAL(N,S,Z,1)
EK = S*EK
30 CONTINUE
WK = EK - Z(K)
WKM = -EK - Z(K)
S = DABS(WK)
SM = DABS(WKM)
IF (T(K,K) .EQ. 0.0D0) GO TO 40
WK = WK/T(K,K)
WKM = WKM/T(K,K)
GO TO 50
40 CONTINUE
WK = 1.0D0
WKM = 1.0D0
50 CONTINUE
IF (KK .EQ. N) GO TO 90
J1 = K + 1
IF (LOWER) J1 = 1
J2 = N
IF (LOWER) J2 = K - 1
DO 60 J = J1, J2
SM = SM + DABS(Z(J)+WKM*T(K,J))
Z(J) = Z(J) + WK*T(K,J)
S = S + DABS(Z(J))
60 CONTINUE
IF (S .GE. SM) GO TO 80
W = WKM - WK
WK = WKM
DO 70 J = J1, J2
Z(J) = Z(J) + W*T(K,J)
70 CONTINUE
80 CONTINUE
90 CONTINUE
Z(K) = WK
100 CONTINUE
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
YNORM = 1.0D0
C SOLVE T*Z = Y
DO 130 KK = 1, N
K = N + 1 - KK
IF (LOWER) K = KK
IF (DABS(Z(K)) .LE. DABS(T(K,K))) GO TO 110
S = DABS(T(K,K))/DABS(Z(K))
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
110 CONTINUE
IF (T(K,K) .NE. 0.0D0) Z(K) = Z(K)/T(K,K)
IF (T(K,K) .EQ. 0.0D0) Z(K) = 1.0D0
I1 = 1
IF (LOWER) I1 = K + 1
IF (KK .GE. N) GO TO 120
W = -Z(K)
CALL DAXPY(N-KK,W,T(I1,K),1,Z(I1),1)
120 CONTINUE
130 CONTINUE
C MAKE ZNORM = 1.0
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
IF (TNORM .NE. 0.0D0) RCOND = YNORM/TNORM
IF (TNORM .EQ. 0.0D0) RCOND = 0.0D0
RETURN
END
*DTRSL
SUBROUTINE DTRSL(T,LDT,N,B,JOB,INFO)
C***BEGIN PROLOGUE DTRSL
C***DATE WRITTEN 780814 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D2A3
C***KEYWORDS DOUBLE PRECISION,LINEAR ALGEBRA,LINPACK,MATRIX,SOLVE,
C TRIANGULAR
C***AUTHOR STEWART, G. W., (U. OF MARYLAND)
C***PURPOSE SOLVES SYSTEMS OF THE FORM T*X=B OR TRANS(T)*X=B WHERE T
C IS A TRIANGULAR MATRIX OF ORDER N.
C***DESCRIPTION
C DTRSL SOLVES SYSTEMS OF THE FORM
C T * X = B
C OR
C TRANS(T) * X = B
C WHERE T IS A TRIANGULAR MATRIX OF ORDER N. HERE TRANS(T)
C DENOTES THE TRANSPOSE OF THE MATRIX T.
C ON ENTRY
C T DOUBLE PRECISION(LDT,N)
C T CONTAINS THE MATRIX OF THE SYSTEM. THE ZERO
C ELEMENTS OF THE MATRIX ARE NOT REFERENCED, AND
C THE CORRESPONDING ELEMENTS OF THE ARRAY CAN BE
C USED TO STORE OTHER INFORMATION.
C LDT INTEGER
C LDT IS THE LEADING DIMENSION OF THE ARRAY T.
C N INTEGER
C N IS THE ORDER OF THE SYSTEM.
C B DOUBLE PRECISION(N).
C B CONTAINS THE RIGHT HAND SIDE OF THE SYSTEM.
C JOB INTEGER
C JOB SPECIFIES WHAT KIND OF SYSTEM IS TO BE SOLVED.
C IF JOB IS
C 00 SOLVE T*X=B, T LOWER TRIANGULAR,
C 01 SOLVE T*X=B, T UPPER TRIANGULAR,
C 10 SOLVE TRANS(T)*X=B, T LOWER TRIANGULAR,
C 11 SOLVE TRANS(T)*X=B, T UPPER TRIANGULAR.
C ON RETURN
C B B CONTAINS THE SOLUTION, IF INFO .EQ. 0.
C OTHERWISE B IS UNALTERED.
C INFO INTEGER
C INFO CONTAINS ZERO IF THE SYSTEM IS NONSINGULAR.
C OTHERWISE INFO CONTAINS THE INDEX OF
C THE FIRST ZERO DIAGONAL ELEMENT OF T.
C LINPACK. THIS VERSION DATED 08/14/78 .
C G. W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C***REFERENCES DONGARRA J.J., BUNCH J.R., MOLER C.B., STEWART G.W.,
C *LINPACK USERS GUIDE*, SIAM, 1979.
C***ROUTINES CALLED DAXPY,DDOT
C***END PROLOGUE DTRSL
C...SCALAR ARGUMENTS
INTEGER
+ INFO,JOB,LDT,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ B(*),T(LDT,*)
C...LOCAL SCALARS
DOUBLE PRECISION
+ TEMP
INTEGER
+ CASE,J,JJ
C...EXTERNAL FUNCTIONS
DOUBLE PRECISION
+ DDOT
EXTERNAL
+ DDOT
C...EXTERNAL SUBROUTINES
EXTERNAL
+ DAXPY
C...INTRINSIC FUNCTIONS
INTRINSIC
+ MOD
C***FIRST EXECUTABLE STATEMENT DTRSL
C BEGIN BLOCK PERMITTING ...EXITS TO 150
C CHECK FOR ZERO DIAGONAL ELEMENTS.
DO 10 INFO = 1, N
C ......EXIT
IF (T(INFO,INFO) .EQ. 0.0D0) GO TO 150
10 CONTINUE
INFO = 0
C DETERMINE THE TASK AND GO TO IT.
CASE = 1
IF (MOD(JOB,10) .NE. 0) CASE = 2
IF (MOD(JOB,100)/10 .NE. 0) CASE = CASE + 2
GO TO (20,50,80,110), CASE
C SOLVE T*X=B FOR T LOWER TRIANGULAR
20 CONTINUE
B(1) = B(1)/T(1,1)
IF (N .LT. 2) GO TO 40
DO 30 J = 2, N
TEMP = -B(J-1)
CALL DAXPY(N-J+1,TEMP,T(J,J-1),1,B(J),1)
B(J) = B(J)/T(J,J)
30 CONTINUE
40 CONTINUE
GO TO 140
C SOLVE T*X=B FOR T UPPER TRIANGULAR.
50 CONTINUE
B(N) = B(N)/T(N,N)
IF (N .LT. 2) GO TO 70
DO 60 JJ = 2, N
J = N - JJ + 1
TEMP = -B(J+1)
CALL DAXPY(J,TEMP,T(1,J+1),1,B(1),1)
B(J) = B(J)/T(J,J)
60 CONTINUE
70 CONTINUE
GO TO 140
C SOLVE TRANS(T)*X=B FOR T LOWER TRIANGULAR.
80 CONTINUE
B(N) = B(N)/T(N,N)
IF (N .LT. 2) GO TO 100
DO 90 JJ = 2, N
J = N - JJ + 1
B(J) = B(J) - DDOT(JJ-1,T(J+1,J),1,B(J+1),1)
B(J) = B(J)/T(J,J)
90 CONTINUE
100 CONTINUE
GO TO 140
C SOLVE TRANS(T)*X=B FOR T UPPER TRIANGULAR.
110 CONTINUE
B(1) = B(1)/T(1,1)
IF (N .LT. 2) GO TO 130
DO 120 J = 2, N
B(J) = B(J) - DDOT(J-1,T(1,J),1,B(1),1)
B(J) = B(J)/T(J,J)
120 CONTINUE
130 CONTINUE
140 CONTINUE
150 CONTINUE
RETURN
END
*IDAMAX
INTEGER FUNCTION IDAMAX(N,DX,INCX)
C***BEGIN PROLOGUE IDAMAX
C***DATE WRITTEN 791001 (YYMMDD)
C***REVISION DATE 820801 (YYMMDD)
C***CATEGORY NO. D1A2
C***KEYWORDS BLAS,DOUBLE PRECISION,LINEAR ALGEBRA,MAXIMUM COMPONENT,
C VECTOR
C***AUTHOR LAWSON, C. L., (JPL)
C HANSON, R. J., (SNLA)
C KINCAID, D. R., (U. OF TEXAS)
C KROGH, F. T., (JPL)
C***PURPOSE FIND LARGEST COMPONENT OF D.P. VECTOR
C***DESCRIPTION
C B L A S SUBPROGRAM
C DESCRIPTION OF PARAMETERS
C --INPUT--
C N NUMBER OF ELEMENTS IN INPUT VECTOR(S)
C DX DOUBLE PRECISION VECTOR WITH N ELEMENTS
C INCX STORAGE SPACING BETWEEN ELEMENTS OF DX
C --OUTPUT--
C IDAMAX SMALLEST INDEX (ZERO IF N .LE. 0)
C FIND SMALLEST INDEX OF MAXIMUM MAGNITUDE OF DOUBLE PRECISION DX.
C IDAMAX = FIRST I, I = 1 TO N, TO MINIMIZE ABS(DX(1-INCX+I*INCX)
C***REFERENCES LAWSON C.L., HANSON R.J., KINCAID D.R., KROGH F.T.,
C *BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE*,
C ALGORITHM NO. 539, TRANSACTIONS ON MATHEMATICAL
C SOFTWARE, VOLUME 5, NUMBER 3, SEPTEMBER 1979, 308-323
C***ROUTINES CALLED (NONE)
C***END PROLOGUE IDAMAX
C...SCALAR ARGUMENTS
INTEGER
+ INCX,N
C...ARRAY ARGUMENTS
DOUBLE PRECISION
+ DX(*)
C...LOCAL SCALARS
DOUBLE PRECISION
+ DMAX,XMAG
INTEGER
+ I,II,NS
C...INTRINSIC FUNCTIONS
INTRINSIC
+ DABS
C***FIRST EXECUTABLE STATEMENT IDAMAX
IDAMAX = 0
IF(N.LE.0) RETURN
IDAMAX = 1
IF(N.LE.1)RETURN
IF(INCX.EQ.1)GOTO 20
C CODE FOR INCREMENTS NOT EQUAL TO 1.
DMAX = DABS(DX(1))
NS = N*INCX
II = 1
DO 10 I = 1,NS,INCX
XMAG = DABS(DX(I))
IF(XMAG.LE.DMAX) GO TO 5
IDAMAX = II
DMAX = XMAG
5 II = II + 1
10 CONTINUE
RETURN
C CODE FOR INCREMENTS EQUAL TO 1.
20 DMAX = DABS(DX(1))
DO 30 I = 2,N
XMAG = DABS(DX(I))
IF(XMAG.LE.DMAX) GO TO 30
IDAMAX = I
DMAX = XMAG
30 CONTINUE
RETURN
END
|