1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
|
"""
differential_evolution: The differential evolution global optimization algorithm
Added by Andrew Nelson 2014
"""
from __future__ import division, print_function, absolute_import
import numpy as np
from scipy.optimize import OptimizeResult, minimize
from scipy.optimize.optimize import _status_message
import numbers
__all__ = ['differential_evolution']
_MACHEPS = np.finfo(np.float64).eps
def differential_evolution(func, bounds, args=(), strategy='best1bin',
maxiter=1000, popsize=15, tol=0.01,
mutation=(0.5, 1), recombination=0.7, seed=None,
callback=None, disp=False, polish=True,
init='latinhypercube'):
"""Finds the global minimum of a multivariate function.
Differential Evolution is stochastic in nature (does not use gradient
methods) to find the minimium, and can search large areas of candidate
space, but often requires larger numbers of function evaluations than
conventional gradient based techniques.
The algorithm is due to Storn and Price [1]_.
Parameters
----------
func : callable
The objective function to be minimized. Must be in the form
``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
and ``args`` is a tuple of any additional fixed parameters needed to
completely specify the function.
bounds : sequence
Bounds for variables. ``(min, max)`` pairs for each element in ``x``,
defining the lower and upper bounds for the optimizing argument of
`func`. It is required to have ``len(bounds) == len(x)``.
``len(bounds)`` is used to determine the number of parameters in ``x``.
args : tuple, optional
Any additional fixed parameters needed to
completely specify the objective function.
strategy : str, optional
The differential evolution strategy to use. Should be one of:
- 'best1bin'
- 'best1exp'
- 'rand1exp'
- 'randtobest1exp'
- 'best2exp'
- 'rand2exp'
- 'randtobest1bin'
- 'best2bin'
- 'rand2bin'
- 'rand1bin'
The default is 'best1bin'.
maxiter : int, optional
The maximum number of generations over which the entire population is
evolved. The maximum number of function evaluations (with no polishing)
is: ``(maxiter + 1) * popsize * len(x)``
popsize : int, optional
A multiplier for setting the total population size. The population has
``popsize * len(x)`` individuals.
tol : float, optional
When the mean of the population energies, multiplied by tol,
divided by the standard deviation of the population energies
is greater than 1 the solving process terminates:
``convergence = mean(pop) * tol / stdev(pop) > 1``
mutation : float or tuple(float, float), optional
The mutation constant. In the literature this is also known as
differential weight, being denoted by F.
If specified as a float it should be in the range [0, 2].
If specified as a tuple ``(min, max)`` dithering is employed. Dithering
randomly changes the mutation constant on a generation by generation
basis. The mutation constant for that generation is taken from
``U[min, max)``. Dithering can help speed convergence significantly.
Increasing the mutation constant increases the search radius, but will
slow down convergence.
recombination : float, optional
The recombination constant, should be in the range [0, 1]. In the
literature this is also known as the crossover probability, being
denoted by CR. Increasing this value allows a larger number of mutants
to progress into the next generation, but at the risk of population
stability.
seed : int or `np.random.RandomState`, optional
If `seed` is not specified the `np.RandomState` singleton is used.
If `seed` is an int, a new `np.random.RandomState` instance is used,
seeded with seed.
If `seed` is already a `np.random.RandomState instance`, then that
`np.random.RandomState` instance is used.
Specify `seed` for repeatable minimizations.
disp : bool, optional
Display status messages
callback : callable, `callback(xk, convergence=val)`, optional
A function to follow the progress of the minimization. ``xk`` is
the current value of ``x0``. ``val`` represents the fractional
value of the population convergence. When ``val`` is greater than one
the function halts. If callback returns `True`, then the minimization
is halted (any polishing is still carried out).
polish : bool, optional
If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B`
method is used to polish the best population member at the end, which
can improve the minimization slightly.
init : string, optional
Specify how the population initialization is performed. Should be
one of:
- 'latinhypercube'
- 'random'
The default is 'latinhypercube'. Latin Hypercube sampling tries to
maximize coverage of the available parameter space. 'random' initializes
the population randomly - this has the drawback that clustering can
occur, preventing the whole of parameter space being covered.
Returns
-------
res : OptimizeResult
The optimization result represented as a `OptimizeResult` object.
Important attributes are: ``x`` the solution array, ``success`` a
Boolean flag indicating if the optimizer exited successfully and
``message`` which describes the cause of the termination. See
`OptimizeResult` for a description of other attributes. If `polish`
was employed, and a lower minimum was obtained by the polishing, then
OptimizeResult also contains the ``jac`` attribute.
Notes
-----
Differential evolution is a stochastic population based method that is
useful for global optimization problems. At each pass through the population
the algorithm mutates each candidate solution by mixing with other candidate
solutions to create a trial candidate. There are several strategies [2]_ for
creating trial candidates, which suit some problems more than others. The
'best1bin' strategy is a good starting point for many systems. In this
strategy two members of the population are randomly chosen. Their difference
is used to mutate the best member (the `best` in `best1bin`), :math:`b_0`,
so far:
.. math::
b' = b_0 + mutation * (population[rand0] - population[rand1])
A trial vector is then constructed. Starting with a randomly chosen 'i'th
parameter the trial is sequentially filled (in modulo) with parameters from
`b'` or the original candidate. The choice of whether to use `b'` or the
original candidate is made with a binomial distribution (the 'bin' in
'best1bin') - a random number in [0, 1) is generated. If this number is
less than the `recombination` constant then the parameter is loaded from
`b'`, otherwise it is loaded from the original candidate. The final
parameter is always loaded from `b'`. Once the trial candidate is built
its fitness is assessed. If the trial is better than the original candidate
then it takes its place. If it is also better than the best overall
candidate it also replaces that.
To improve your chances of finding a global minimum use higher `popsize`
values, with higher `mutation` and (dithering), but lower `recombination`
values. This has the effect of widening the search radius, but slowing
convergence.
.. versionadded:: 0.15.0
Examples
--------
Let us consider the problem of minimizing the Rosenbrock function. This
function is implemented in `rosen` in `scipy.optimize`.
>>> from scipy.optimize import rosen, differential_evolution
>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = differential_evolution(rosen, bounds)
>>> result.x, result.fun
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)
Next find the minimum of the Ackley function
(http://en.wikipedia.org/wiki/Test_functions_for_optimization).
>>> from scipy.optimize import differential_evolution
>>> import numpy as np
>>> def ackley(x):
... arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2))
... arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi * x[1]))
... return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e
>>> bounds = [(-5, 5), (-5, 5)]
>>> result = differential_evolution(ackley, bounds)
>>> result.x, result.fun
(array([ 0., 0.]), 4.4408920985006262e-16)
References
----------
.. [1] Storn, R and Price, K, Differential Evolution - a Simple and
Efficient Heuristic for Global Optimization over Continuous Spaces,
Journal of Global Optimization, 1997, 11, 341 - 359.
.. [2] http://www1.icsi.berkeley.edu/~storn/code.html
.. [3] http://en.wikipedia.org/wiki/Differential_evolution
"""
solver = DifferentialEvolutionSolver(func, bounds, args=args,
strategy=strategy, maxiter=maxiter,
popsize=popsize, tol=tol,
mutation=mutation,
recombination=recombination,
seed=seed, polish=polish,
callback=callback,
disp=disp,
init=init)
return solver.solve()
class DifferentialEvolutionSolver(object):
"""This class implements the differential evolution solver
Parameters
----------
func : callable
The objective function to be minimized. Must be in the form
``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
and ``args`` is a tuple of any additional fixed parameters needed to
completely specify the function.
bounds : sequence
Bounds for variables. ``(min, max)`` pairs for each element in ``x``,
defining the lower and upper bounds for the optimizing argument of
`func`. It is required to have ``len(bounds) == len(x)``.
``len(bounds)`` is used to determine the number of parameters in ``x``.
args : tuple, optional
Any additional fixed parameters needed to
completely specify the objective function.
strategy : str, optional
The differential evolution strategy to use. Should be one of:
- 'best1bin'
- 'best1exp'
- 'rand1exp'
- 'randtobest1exp'
- 'best2exp'
- 'rand2exp'
- 'randtobest1bin'
- 'best2bin'
- 'rand2bin'
- 'rand1bin'
The default is 'best1bin'
maxiter : int, optional
The maximum number of generations over which the entire population is
evolved. The maximum number of function evaluations (with no polishing)
is: ``(maxiter + 1) * popsize * len(x)``
popsize : int, optional
A multiplier for setting the total population size. The population has
``popsize * len(x)`` individuals.
tol : float, optional
When the mean of the population energies, multiplied by tol,
divided by the standard deviation of the population energies
is greater than 1 the solving process terminates:
``convergence = mean(pop) * tol / stdev(pop) > 1``
mutation : float or tuple(float, float), optional
The mutation constant. In the literature this is also known as
differential weight, being denoted by F.
If specified as a float it should be in the range [0, 2].
If specified as a tuple ``(min, max)`` dithering is employed. Dithering
randomly changes the mutation constant on a generation by generation
basis. The mutation constant for that generation is taken from
U[min, max). Dithering can help speed convergence significantly.
Increasing the mutation constant increases the search radius, but will
slow down convergence.
recombination : float, optional
The recombination constant, should be in the range [0, 1]. In the
literature this is also known as the crossover probability, being
denoted by CR. Increasing this value allows a larger number of mutants
to progress into the next generation, but at the risk of population
stability.
seed : int or `np.random.RandomState`, optional
If `seed` is not specified the `np.random.RandomState` singleton is
used.
If `seed` is an int, a new `np.random.RandomState` instance is used,
seeded with `seed`.
If `seed` is already a `np.random.RandomState` instance, then that
`np.random.RandomState` instance is used.
Specify `seed` for repeatable minimizations.
disp : bool, optional
Display status messages
callback : callable, `callback(xk, convergence=val)`, optional
A function to follow the progress of the minimization. ``xk`` is
the current value of ``x0``. ``val`` represents the fractional
value of the population convergence. When ``val`` is greater than one
the function halts. If callback returns `True`, then the minimization
is halted (any polishing is still carried out).
polish : bool, optional
If True, then `scipy.optimize.minimize` with the `L-BFGS-B` method
is used to polish the best population member at the end. This requires
a few more function evaluations.
maxfun : int, optional
Set the maximum number of function evaluations. However, it probably
makes more sense to set `maxiter` instead.
init : string, optional
Specify which type of population initialization is performed. Should be
one of:
- 'latinhypercube'
- 'random'
"""
# Dispatch of mutation strategy method (binomial or exponential).
_binomial = {'best1bin': '_best1',
'randtobest1bin': '_randtobest1',
'best2bin': '_best2',
'rand2bin': '_rand2',
'rand1bin': '_rand1'}
_exponential = {'best1exp': '_best1',
'rand1exp': '_rand1',
'randtobest1exp': '_randtobest1',
'best2exp': '_best2',
'rand2exp': '_rand2'}
def __init__(self, func, bounds, args=(),
strategy='best1bin', maxiter=1000, popsize=15,
tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None,
maxfun=np.inf, callback=None, disp=False, polish=True,
init='latinhypercube'):
if strategy in self._binomial:
self.mutation_func = getattr(self, self._binomial[strategy])
elif strategy in self._exponential:
self.mutation_func = getattr(self, self._exponential[strategy])
else:
raise ValueError("Please select a valid mutation strategy")
self.strategy = strategy
self.callback = callback
self.polish = polish
self.tol = tol
# Mutation constant should be in [0, 2). If specified as a sequence
# then dithering is performed.
self.scale = mutation
if (not np.all(np.isfinite(mutation)) or
np.any(np.array(mutation) >= 2) or
np.any(np.array(mutation) < 0)):
raise ValueError('The mutation constant must be a float in '
'U[0, 2), or specified as a tuple(min, max)'
' where min < max and min, max are in U[0, 2).')
self.dither = None
if hasattr(mutation, '__iter__') and len(mutation) > 1:
self.dither = [mutation[0], mutation[1]]
self.dither.sort()
self.cross_over_probability = recombination
self.func = func
self.args = args
# convert tuple of lower and upper bounds to limits
# [(low_0, high_0), ..., (low_n, high_n]
# -> [[low_0, ..., low_n], [high_0, ..., high_n]]
self.limits = np.array(bounds, dtype='float').T
if (np.size(self.limits, 0) != 2 or not
np.all(np.isfinite(self.limits))):
raise ValueError('bounds should be a sequence containing '
'real valued (min, max) pairs for each value'
' in x')
if maxiter is None: # the default used to be None
maxiter = 1000
self.maxiter = maxiter
if maxfun is None: # the default used to be None
maxfun = np.inf
self.maxfun = maxfun
# population is scaled to between [0, 1].
# We have to scale between parameter <-> population
# save these arguments for _scale_parameter and
# _unscale_parameter. This is an optimization
self.__scale_arg1 = 0.5 * (self.limits[0] + self.limits[1])
self.__scale_arg2 = np.fabs(self.limits[0] - self.limits[1])
self.parameter_count = np.size(self.limits, 1)
self.random_number_generator = _make_random_gen(seed)
# default population initialization is a latin hypercube design, but
# there are other population initializations possible.
self.num_population_members = popsize * self.parameter_count
self.population_shape = (self.num_population_members,
self.parameter_count)
self._nfev = 0
if init == 'latinhypercube':
self.init_population_lhs()
elif init == 'random':
self.init_population_random()
else:
raise ValueError("The population initialization method must be one"
"of 'latinhypercube' or 'random'")
self.disp = disp
def init_population_lhs(self):
"""
Initializes the population with Latin Hypercube Sampling.
Latin Hypercube Sampling ensures that each parameter is uniformly
sampled over its range.
"""
rng = self.random_number_generator
# Each parameter range needs to be sampled uniformly. The scaled
# parameter range ([0, 1)) needs to be split into
# `self.num_population_members` segments, each of which has the following
# size:
segsize = 1.0 / self.num_population_members
# Within each segment we sample from a uniform random distribution.
# We need to do this sampling for each parameter.
samples = (segsize * rng.random_sample(self.population_shape)
# Offset each segment to cover the entire parameter range [0, 1)
+ np.linspace(0., 1., self.num_population_members,
endpoint=False)[:, np.newaxis])
# Create an array for population of candidate solutions.
self.population = np.zeros_like(samples)
# Initialize population of candidate solutions by permutation of the
# random samples.
for j in range(self.parameter_count):
order = rng.permutation(range(self.num_population_members))
self.population[:, j] = samples[order, j]
# reset population energies
self.population_energies = (np.ones(self.num_population_members) *
np.inf)
# reset number of function evaluations counter
self._nfev = 0
def init_population_random(self):
"""
Initialises the population at random. This type of initialization
can possess clustering, Latin Hypercube sampling is generally better.
"""
rng = self.random_number_generator
self.population = rng.random_sample(self.population_shape)
# reset population energies
self.population_energies = (np.ones(self.num_population_members) *
np.inf)
# reset number of function evaluations counter
self._nfev = 0
@property
def x(self):
"""
The best solution from the solver
Returns
-------
x : ndarray
The best solution from the solver.
"""
return self._scale_parameters(self.population[0])
@property
def convergence(self):
"""
The standard deviation of the population energies divided by their
mean.
"""
return (np.std(self.population_energies) /
np.abs(np.mean(self.population_energies) + _MACHEPS))
def solve(self):
"""
Runs the DifferentialEvolutionSolver.
Returns
-------
res : OptimizeResult
The optimization result represented as a ``OptimizeResult`` object.
Important attributes are: ``x`` the solution array, ``success`` a
Boolean flag indicating if the optimizer exited successfully and
``message`` which describes the cause of the termination. See
`OptimizeResult` for a description of other attributes. If `polish`
was employed, and a lower minimum was obtained by the polishing,
then OptimizeResult also contains the ``jac`` attribute.
"""
nit, warning_flag = 0, False
status_message = _status_message['success']
# The population may have just been initialized (all entries are
# np.inf). If it has you have to calculate the initial energies.
# Although this is also done in the evolve generator it's possible
# that someone can set maxiter=0, at which point we still want the
# initial energies to be calculated (the following loop isn't run).
if np.all(np.isinf(self.population_energies)):
self._calculate_population_energies()
# do the optimisation.
for nit in range(1, self.maxiter + 1):
# evolve the population by a generation
try:
next(self)
except StopIteration:
warning_flag = True
status_message = _status_message['maxfev']
break
if self.disp:
print("differential_evolution step %d: f(x)= %g"
% (nit,
self.population_energies[0]))
# stop when the fractional s.d. of the population is less than tol
# of the mean energy
convergence = self.convergence
if (self.callback and
self.callback(self._scale_parameters(self.population[0]),
convergence=self.tol / convergence) is True):
warning_flag = True
status_message = ('callback function requested stop early '
'by returning True')
break
if convergence < self.tol or warning_flag:
break
else:
status_message = _status_message['maxiter']
warning_flag = True
DE_result = OptimizeResult(
x=self.x,
fun=self.population_energies[0],
nfev=self._nfev,
nit=nit,
message=status_message,
success=(warning_flag is not True))
if self.polish:
result = minimize(self.func,
np.copy(DE_result.x),
method='L-BFGS-B',
bounds=self.limits.T,
args=self.args)
self._nfev += result.nfev
DE_result.nfev = self._nfev
if result.fun < DE_result.fun:
DE_result.fun = result.fun
DE_result.x = result.x
DE_result.jac = result.jac
# to keep internal state consistent
self.population_energies[0] = result.fun
self.population[0] = self._unscale_parameters(result.x)
return DE_result
def _calculate_population_energies(self):
"""
Calculate the energies of all the population members at the same time.
Puts the best member in first place. Useful if the population has just
been initialised.
"""
for index, candidate in enumerate(self.population):
if self._nfev > self.maxfun:
break
parameters = self._scale_parameters(candidate)
self.population_energies[index] = self.func(parameters,
*self.args)
self._nfev += 1
minval = np.argmin(self.population_energies)
# put the lowest energy into the best solution position.
lowest_energy = self.population_energies[minval]
self.population_energies[minval] = self.population_energies[0]
self.population_energies[0] = lowest_energy
self.population[[0, minval], :] = self.population[[minval, 0], :]
def __iter__(self):
return self
def __next__(self):
"""
Evolve the population by a single generation
Returns
-------
x : ndarray
The best solution from the solver.
fun : float
Value of objective function obtained from the best solution.
"""
# the population may have just been initialized (all entries are
# np.inf). If it has you have to calculate the initial energies
if np.all(np.isinf(self.population_energies)):
self._calculate_population_energies()
if self.dither is not None:
self.scale = (self.random_number_generator.rand()
* (self.dither[1] - self.dither[0]) + self.dither[0])
for candidate in range(self.num_population_members):
if self._nfev > self.maxfun:
raise StopIteration
# create a trial solution
trial = self._mutate(candidate)
# ensuring that it's in the range [0, 1)
self._ensure_constraint(trial)
# scale from [0, 1) to the actual parameter value
parameters = self._scale_parameters(trial)
# determine the energy of the objective function
energy = self.func(parameters, *self.args)
self._nfev += 1
# if the energy of the trial candidate is lower than the
# original population member then replace it
if energy < self.population_energies[candidate]:
self.population[candidate] = trial
self.population_energies[candidate] = energy
# if the trial candidate also has a lower energy than the
# best solution then replace that as well
if energy < self.population_energies[0]:
self.population_energies[0] = energy
self.population[0] = trial
return self.x, self.population_energies[0]
def next(self):
"""
Evolve the population by a single generation
Returns
-------
x : ndarray
The best solution from the solver.
fun : float
Value of objective function obtained from the best solution.
"""
# next() is required for compatibility with Python2.7.
return self.__next__()
def _scale_parameters(self, trial):
"""
scale from a number between 0 and 1 to parameters.
"""
return self.__scale_arg1 + (trial - 0.5) * self.__scale_arg2
def _unscale_parameters(self, parameters):
"""
scale from parameters to a number between 0 and 1.
"""
return (parameters - self.__scale_arg1) / self.__scale_arg2 + 0.5
def _ensure_constraint(self, trial):
"""
make sure the parameters lie between the limits
"""
for index, param in enumerate(trial):
if param > 1 or param < 0:
trial[index] = self.random_number_generator.rand()
def _mutate(self, candidate):
"""
create a trial vector based on a mutation strategy
"""
trial = np.copy(self.population[candidate])
rng = self.random_number_generator
fill_point = rng.randint(0, self.parameter_count)
if (self.strategy == 'randtobest1exp' or
self.strategy == 'randtobest1bin'):
bprime = self.mutation_func(candidate,
self._select_samples(candidate, 5))
else:
bprime = self.mutation_func(self._select_samples(candidate, 5))
if self.strategy in self._binomial:
crossovers = rng.rand(self.parameter_count)
crossovers = crossovers < self.cross_over_probability
# the last one is always from the bprime vector for binomial
# If you fill in modulo with a loop you have to set the last one to
# true. If you don't use a loop then you can have any random entry
# be True.
crossovers[fill_point] = True
trial = np.where(crossovers, bprime, trial)
return trial
elif self.strategy in self._exponential:
i = 0
while (i < self.parameter_count and
rng.rand() < self.cross_over_probability):
trial[fill_point] = bprime[fill_point]
fill_point = (fill_point + 1) % self.parameter_count
i += 1
return trial
def _best1(self, samples):
"""
best1bin, best1exp
"""
r0, r1 = samples[:2]
return (self.population[0] + self.scale *
(self.population[r0] - self.population[r1]))
def _rand1(self, samples):
"""
rand1bin, rand1exp
"""
r0, r1, r2 = samples[:3]
return (self.population[r0] + self.scale *
(self.population[r1] - self.population[r2]))
def _randtobest1(self, candidate, samples):
"""
randtobest1bin, randtobest1exp
"""
r0, r1 = samples[:2]
bprime = np.copy(self.population[candidate])
bprime += self.scale * (self.population[0] - bprime)
bprime += self.scale * (self.population[r0] -
self.population[r1])
return bprime
def _best2(self, samples):
"""
best2bin, best2exp
"""
r0, r1, r2, r3 = samples[:4]
bprime = (self.population[0] + self.scale *
(self.population[r0] + self.population[r1] -
self.population[r2] - self.population[r3]))
return bprime
def _rand2(self, samples):
"""
rand2bin, rand2exp
"""
r0, r1, r2, r3, r4 = samples
bprime = (self.population[r0] + self.scale *
(self.population[r1] + self.population[r2] -
self.population[r3] - self.population[r4]))
return bprime
def _select_samples(self, candidate, number_samples):
"""
obtain random integers from range(self.num_population_members),
without replacement. You can't have the original candidate either.
"""
idxs = list(range(self.num_population_members))
idxs.remove(candidate)
self.random_number_generator.shuffle(idxs)
idxs = idxs[:number_samples]
return idxs
def _make_random_gen(seed):
"""Turn seed into a np.random.RandomState instance
If seed is None, return the RandomState singleton used by np.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, (numbers.Integral, np.integer)):
return np.random.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return seed
raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
' instance' % seed)
|