File: least_squares.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (901 lines) | stat: -rw-r--r-- 36,536 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
"""Generic interface for least-square minimization."""
from __future__ import division, print_function, absolute_import

from warnings import warn

import numpy as np
from numpy.linalg import norm

from scipy.sparse import issparse, csr_matrix
from scipy.sparse.linalg import LinearOperator
from scipy.optimize import _minpack, OptimizeResult
from scipy.optimize._numdiff import approx_derivative, group_columns
from scipy._lib.six import string_types

from .trf import trf
from .dogbox import dogbox
from .common import EPS, in_bounds, make_strictly_feasible


TERMINATION_MESSAGES = {
    -1: "Improper input parameters status returned from `leastsq`",
    0: "The maximum number of function evaluations is exceeded.",
    1: "`gtol` termination condition is satisfied.",
    2: "`ftol` termination condition is satisfied.",
    3: "`xtol` termination condition is satisfied.",
    4: "Both `ftol` and `xtol` termination conditions are satisfied."
}


FROM_MINPACK_TO_COMMON = {
    0: -1,  # Improper input parameters from MINPACK.
    1: 2,
    2: 3,
    3: 4,
    4: 1,
    5: 0
    # There are 6, 7, 8 for too small tolerance parameters,
    # but we guard against it by checking ftol, xtol, gtol beforehand.
}


def call_minpack(fun, x0, jac, ftol, xtol, gtol, max_nfev, x_scale, diff_step):
    n = x0.size

    if diff_step is None:
        epsfcn = EPS
    else:
        epsfcn = diff_step**2

    # Compute MINPACK's `diag`, which is inverse of our `x_scale` and
    # ``x_scale='jac'`` corresponds to ``diag=None``.
    if isinstance(x_scale, string_types) and x_scale == 'jac':
        diag = None
    else:
        diag = 1 / x_scale

    full_output = True
    col_deriv = False
    factor = 100.0

    if jac is None:
        if max_nfev is None:
            # n squared to account for Jacobian evaluations.
            max_nfev = 100 * n * (n + 1)
        x, info, status = _minpack._lmdif(
            fun, x0, (), full_output, ftol, xtol, gtol,
            max_nfev, epsfcn, factor, diag)
    else:
        if max_nfev is None:
            max_nfev = 100 * n
        x, info, status = _minpack._lmder(
            fun, jac, x0, (), full_output, col_deriv,
            ftol, xtol, gtol, max_nfev, factor, diag)

    f = info['fvec']

    if callable(jac):
        J = jac(x)
    else:
        J = np.atleast_2d(approx_derivative(fun, x))

    cost = 0.5 * np.dot(f, f)
    g = J.T.dot(f)
    g_norm = norm(g, ord=np.inf)

    nfev = info['nfev']
    njev = info.get('njev', None)

    status = FROM_MINPACK_TO_COMMON[status]
    active_mask = np.zeros_like(x0, dtype=int)

    return OptimizeResult(
        x=x, cost=cost, fun=f, jac=J, grad=g, optimality=g_norm,
        active_mask=active_mask, nfev=nfev, njev=njev, status=status)


def prepare_bounds(bounds, n):
    lb, ub = [np.asarray(b, dtype=float) for b in bounds]
    if lb.ndim == 0:
        lb = np.resize(lb, n)

    if ub.ndim == 0:
        ub = np.resize(ub, n)

    return lb, ub


def check_tolerance(ftol, xtol, gtol):
    message = "{} is too low, setting to machine epsilon {}."
    if ftol < EPS:
        warn(message.format("`ftol`", EPS))
        ftol = EPS
    if xtol < EPS:
        warn(message.format("`xtol`", EPS))
        xtol = EPS
    if gtol < EPS:
        warn(message.format("`gtol`", EPS))
        gtol = EPS

    return ftol, xtol, gtol


def check_x_scale(x_scale, x0):
    if isinstance(x_scale, string_types) and x_scale == 'jac':
        return x_scale

    try:
        x_scale = np.asarray(x_scale, dtype=float)
        valid = np.all(np.isfinite(x_scale)) and np.all(x_scale > 0)
    except (ValueError, TypeError):
        valid = False

    if not valid:
        raise ValueError("`x_scale` must be 'jac' or array_like with "
                         "positive numbers.")

    if x_scale.ndim == 0:
        x_scale = np.resize(x_scale, x0.shape)

    if x_scale.shape != x0.shape:
        raise ValueError("Inconsistent shapes between `x_scale` and `x0`.")

    return x_scale


def check_jac_sparsity(jac_sparsity, m, n):
    if jac_sparsity is None:
        return None

    if not issparse(jac_sparsity):
        jac_sparsity = np.atleast_2d(jac_sparsity)

    if jac_sparsity.shape != (m, n):
        raise ValueError("`jac_sparsity` has wrong shape.")

    return jac_sparsity, group_columns(jac_sparsity)


# Loss functions.


def huber(z, rho, cost_only):
    mask = z <= 1
    rho[0, mask] = z[mask]
    rho[0, ~mask] = 2 * z[~mask]**0.5 - 1
    if cost_only:
        return
    rho[1, mask] = 1
    rho[1, ~mask] = z[~mask]**-0.5
    rho[2, mask] = 0
    rho[2, ~mask] = -0.5 * z[~mask]**-1.5


def soft_l1(z, rho, cost_only):
    t = 1 + z
    rho[0] = 2 * (t**0.5 - 1)
    if cost_only:
        return
    rho[1] = t**-0.5
    rho[2] = -0.5 * t**-1.5


def cauchy(z, rho, cost_only):
    rho[0] = np.log1p(z)
    if cost_only:
        return
    t = 1 + z
    rho[1] = 1 / t
    rho[2] = -1 / t**2


def arctan(z, rho, cost_only):
    rho[0] = np.arctan(z)
    if cost_only:
        return
    t = 1 + z**2
    rho[1] = 1 / t
    rho[2] = -2 * z / t**2


IMPLEMENTED_LOSSES = dict(linear=None, huber=huber, soft_l1=soft_l1,
                          cauchy=cauchy, arctan=arctan)


def construct_loss_function(m, loss, f_scale):
    if loss == 'linear':
        return None

    if not callable(loss):
        loss = IMPLEMENTED_LOSSES[loss]
        rho = np.empty((3, m))

        def loss_function(f, cost_only=False):
            z = (f / f_scale) ** 2
            loss(z, rho, cost_only=cost_only)
            if cost_only:
                return 0.5 * f_scale ** 2 * np.sum(rho[0])
            rho[0] *= f_scale ** 2
            rho[2] /= f_scale ** 2
            return rho
    else:
        def loss_function(f, cost_only=False):
            z = (f / f_scale) ** 2
            rho = loss(z)
            if cost_only:
                return 0.5 * f_scale ** 2 * np.sum(rho[0])
            rho[0] *= f_scale ** 2
            rho[2] /= f_scale ** 2
            return rho

    return loss_function


def least_squares(
        fun, x0, jac='2-point', bounds=(-np.inf, np.inf), method='trf',
        ftol=1e-8, xtol=1e-8, gtol=1e-8, x_scale=1.0, loss='linear',
        f_scale=1.0, diff_step=None, tr_solver=None, tr_options={},
        jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={}):
    """Solve a nonlinear least-squares problem with bounds on the variables.

    Given the residuals f(x) (an m-dimensional function of n variables) and
    the loss function rho(s) (a scalar function), `least_squares` finds a
    local minimum of the cost function F(x)::

        minimize F(x) = 0.5 * sum(rho(f_i(x)**2), i = 0, ..., m - 1)
        subject to lb <= x <= ub

    The purpose of the loss function rho(s) is to reduce the influence of
    outliers on the solution.

    Parameters
    ----------
    fun : callable
        Function which computes the vector of residuals, with the signature
        ``fun(x, *args, **kwargs)``, i.e., the minimization proceeds with
        respect to its first argument. The argument ``x`` passed to this
        function is an ndarray of shape (n,) (never a scalar, even for n=1).
        It must return a 1-d array_like of shape (m,) or a scalar.
    x0 : array_like with shape (n,) or float
        Initial guess on independent variables. If float, it will be treated
        as a 1-d array with one element.
    jac : {'2-point', '3-point', 'cs', callable}, optional
        Method of computing the Jacobian matrix (an m-by-n matrix, where
        element (i, j) is the partial derivative of f[i] with respect to
        x[j]). The keywords select a finite difference scheme for numerical
        estimation. The scheme '3-point' is more accurate, but requires
        twice as much operations compared to '2-point' (default). The
        scheme 'cs' uses complex steps, and while potentially the most
        accurate, it is applicable only when `fun` correctly handles
        complex inputs and can be analytically continued to the complex
        plane. Method 'lm' always uses the '2-point' scheme. If callable,
        it is used as ``jac(x, *args, **kwargs)`` and should return a
        good approximation (or the exact value) for the Jacobian as an
        array_like (np.atleast_2d is applied), a sparse matrix or a
        `scipy.sparse.linalg.LinearOperator`.
    bounds : 2-tuple of array_like, optional
        Lower and upper bounds on independent variables. Defaults to no bounds.
        Each array must match the size of `x0` or be a scalar, in the latter
        case a bound will be the same for all variables. Use ``np.inf`` with
        an appropriate sign to disable bounds on all or some variables.
    method : {'trf', 'dogbox', 'lm'}, optional
        Algorithm to perform minimization.

            * 'trf' : Trust Region Reflective algorithm, particularly suitable
              for large sparse problems with bounds. Generally robust method.
            * 'dogbox' : dogleg algorithm with rectangular trust regions,
              typical use case is small problems with bounds. Not recommended
              for problems with rank-deficient Jacobian.
            * 'lm' : Levenberg-Marquardt algorithm as implemented in MINPACK.
              Doesn't handle bounds and sparse Jacobians. Usually the most
              efficient method for small unconstrained problems.

        Default is 'trf'. See Notes for more information.
    ftol : float, optional
        Tolerance for termination by the change of the cost function. Default
        is 1e-8. The optimization process is stopped when  ``dF < ftol * F``,
        and there was an adequate agreement between a local quadratic model and
        the true model in the last step.
    xtol : float, optional
        Tolerance for termination by the change of the independent variables.
        Default is 1e-8. The exact condition depends on the `method` used:

            * For 'trf' and 'dogbox' : ``norm(dx) < xtol * (xtol + norm(x))``
            * For 'lm' : ``Delta < xtol * norm(xs)``, where ``Delta`` is
              a trust-region radius and ``xs`` is the value of ``x``
              scaled according to `x_scale` parameter (see below).

    gtol : float, optional
        Tolerance for termination by the norm of the gradient. Default is 1e-8.
        The exact condition depends on a `method` used:

            * For 'trf' : ``norm(g_scaled, ord=np.inf) < gtol``, where
              ``g_scaled`` is the value of the gradient scaled to account for
              the presence of the bounds [STIR]_.
            * For 'dogbox' : ``norm(g_free, ord=np.inf) < gtol``, where
              ``g_free`` is the gradient with respect to the variables which
              are not in the optimal state on the boundary.
            * For 'lm' : the maximum absolute value of the cosine of angles
              between columns of the Jacobian and the residual vector is less
              than `gtol`, or the residual vector is zero.

    x_scale : array_like or 'jac', optional
        Characteristic scale of each variable. Setting `x_scale` is equivalent
        to reformulating the problem in scaled variables ``xs = x / x_scale``.
        An alternative view is that the size of a trust region along j-th
        dimension is proportional to ``x_scale[j]``. Improved convergence may
        be achieved by setting `x_scale` such that a step of a given size
        along any of the scaled variables has a similar effect on the cost
        function. If set to 'jac', the scale is iteratively updated using the
        inverse norms of the columns of the Jacobian matrix (as described in
        [JJMore]_).
    loss : str or callable, optional
        Determines the loss function. The following keyword values are allowed:

            * 'linear' (default) : ``rho(z) = z``. Gives a standard
              least-squares problem.
            * 'soft_l1' : ``rho(z) = 2 * ((1 + z)**0.5 - 1)``. The smooth
              approximation of l1 (absolute value) loss. Usually a good
              choice for robust least squares.
            * 'huber' : ``rho(z) = z if z <= 1 else 2*z**0.5 - 1``. Works
              similarly to 'soft_l1'.
            * 'cauchy' : ``rho(z) = ln(1 + z)``. Severely weakens outliers
              influence, but may cause difficulties in optimization process.
            * 'arctan' : ``rho(z) = arctan(z)``. Limits a maximum loss on
              a single residual, has properties similar to 'cauchy'.

        If callable, it must take a 1-d ndarray ``z=f**2`` and return an
        array_like with shape (3, m) where row 0 contains function values,
        row 1 contains first derivatives and row 2 contains second
        derivatives. Method 'lm' supports only 'linear' loss.
    f_scale : float, optional
        Value of soft margin between inlier and outlier residuals, default
        is 1.0. The loss function is evaluated as follows
        ``rho_(f**2) = C**2 * rho(f**2 / C**2)``, where ``C`` is `f_scale`,
        and ``rho`` is determined by `loss` parameter. This parameter has
        no effect with ``loss='linear'``, but for other `loss` values it is
        of crucial importance.
    max_nfev : None or int, optional
        Maximum number of function evaluations before the termination.
        If None (default), the value is chosen automatically:

            * For 'trf' and 'dogbox' : 100 * n.
            * For 'lm' :  100 * n if `jac` is callable and 100 * n * (n + 1)
              otherwise (because 'lm' counts function calls in Jacobian
              estimation).

    diff_step : None or array_like, optional
        Determines the relative step size for the finite difference
        approximation of the Jacobian. The actual step is computed as
        ``x * diff_step``. If None (default), then `diff_step` is taken to be
        a conventional "optimal" power of machine epsilon for the finite
        difference scheme used [NR]_.
    tr_solver : {None, 'exact', 'lsmr'}, optional
        Method for solving trust-region subproblems, relevant only for 'trf'
        and 'dogbox' methods.

            * 'exact' is suitable for not very large problems with dense
              Jacobian matrices. The computational complexity per iteration is
              comparable to a singular value decomposition of the Jacobian
              matrix.
            * 'lsmr' is suitable for problems with sparse and large Jacobian
              matrices. It uses the iterative procedure
              `scipy.sparse.linalg.lsmr` for finding a solution of a linear
              least-squares problem and only requires matrix-vector product
              evaluations.

        If None (default) the solver is chosen based on the type of Jacobian
        returned on the first iteration.
    tr_options : dict, optional
        Keyword options passed to trust-region solver.

            * ``tr_solver='exact'``: `tr_options` are ignored.
            * ``tr_solver='lsmr'``: options for `scipy.sparse.linalg.lsmr`.
              Additionally  ``method='trf'`` supports  'regularize' option
              (bool, default is True) which adds a regularization term to the
              normal equation, which improves convergence if the Jacobian is
              rank-deficient [Byrd]_ (eq. 3.4).

    jac_sparsity : {None, array_like, sparse matrix}, optional
        Defines the sparsity structure of the Jacobian matrix for finite
        difference estimation, its shape must be (m, n). If the Jacobian has
        only few non-zero elements in *each* row, providing the sparsity
        structure will greatly speed up the computations [Curtis]_. A zero
        entry means that a corresponding element in the Jacobian is identically
        zero. If provided, forces the use of 'lsmr' trust-region solver.
        If None (default) then dense differencing will be used. Has no effect
        for 'lm' method.
    verbose : {0, 1, 2}, optional
        Level of algorithm's verbosity:

            * 0 (default) : work silently.
            * 1 : display a termination report.
            * 2 : display progress during iterations (not supported by 'lm'
              method).

    args, kwargs : tuple and dict, optional
        Additional arguments passed to `fun` and `jac`. Both empty by default.
        The calling signature is ``fun(x, *args, **kwargs)`` and the same for
        `jac`.

    Returns
    -------
    `OptimizeResult` with the following fields defined:
    x : ndarray, shape (n,)
        Solution found.
    cost : float
        Value of the cost function at the solution.
    fun : ndarray, shape (m,)
        Vector of residuals at the solution.
    jac : ndarray, sparse matrix or LinearOperator, shape (m, n)
        Modified Jacobian matrix at the solution, in the sense that J^T J
        is a Gauss-Newton approximation of the Hessian of the cost function.
        The type is the same as the one used by the algorithm.
    grad : ndarray, shape (m,)
        Gradient of the cost function at the solution.
    optimality : float
        First-order optimality measure. In unconstrained problems, it is always
        the uniform norm of the gradient. In constrained problems, it is the
        quantity which was compared with `gtol` during iterations.
    active_mask : ndarray of int, shape (n,)
        Each component shows whether a corresponding constraint is active
        (that is, whether a variable is at the bound):

            *  0 : a constraint is not active.
            * -1 : a lower bound is active.
            *  1 : an upper bound is active.

        Might be somewhat arbitrary for 'trf' method as it generates a sequence
        of strictly feasible iterates and `active_mask` is determined within a
        tolerance threshold.
    nfev : int
        Number of function evaluations done. Methods 'trf' and 'dogbox' do not
        count function calls for numerical Jacobian approximation, as opposed
        to 'lm' method.
    njev : int or None
        Number of Jacobian evaluations done. If numerical Jacobian
        approximation is used in 'lm' method, it is set to None.
    status : int
        The reason for algorithm termination:

            * -1 : improper input parameters status returned from MINPACK.
            *  0 : the maximum number of function evaluations is exceeded.
            *  1 : `gtol` termination condition is satisfied.
            *  2 : `ftol` termination condition is satisfied.
            *  3 : `xtol` termination condition is satisfied.
            *  4 : Both `ftol` and `xtol` termination conditions are satisfied.

    message : str
        Verbal description of the termination reason.
    success : bool
        True if one of the convergence criteria is satisfied (`status` > 0).

    See Also
    --------
    leastsq : A legacy wrapper for the MINPACK implementation of the
              Levenberg-Marquadt algorithm.
    curve_fit : Least-squares minimization applied to a curve fitting problem.

    Notes
    -----
    Method 'lm' (Levenberg-Marquardt) calls a wrapper over least-squares
    algorithms implemented in MINPACK (lmder, lmdif). It runs the
    Levenberg-Marquardt algorithm formulated as a trust-region type algorithm.
    The implementation is based on paper [JJMore]_, it is very robust and
    efficient with a lot of smart tricks. It should be your first choice
    for unconstrained problems. Note that it doesn't support bounds. Also
    it doesn't work when m < n.

    Method 'trf' (Trust Region Reflective) is motivated by the process of
    solving a system of equations, which constitute the first-order optimality
    condition for a bound-constrained minimization problem as formulated in
    [STIR]_. The algorithm iteratively solves trust-region subproblems
    augmented by a special diagonal quadratic term and with trust-region shape
    determined by the distance from the bounds and the direction of the
    gradient. This enhancements help to avoid making steps directly into bounds
    and efficiently explore the whole space of variables. To further improve
    convergence, the algorithm considers search directions reflected from the
    bounds. To obey theoretical requirements, the algorithm keeps iterates
    strictly feasible. With dense Jacobians trust-region subproblems are
    solved by an exact method very similar to the one described in [JJMore]_
    (and implemented in MINPACK). The difference from the MINPACK
    implementation is that a singular value decomposition of a Jacobian
    matrix is done once per iteration, instead of a QR decomposition and series
    of Givens rotation eliminations. For large sparse Jacobians a 2-d subspace
    approach of solving trust-region subproblems is used [STIR]_, [Byrd]_.
    The subspace is spanned by a scaled gradient and an approximate
    Gauss-Newton solution delivered by `scipy.sparse.linalg.lsmr`. When no
    constraints are imposed the algorithm is very similar to MINPACK and has
    generally comparable performance. The algorithm works quite robust in
    unbounded and bounded problems, thus it is chosen as a default algorithm.

    Method 'dogbox' operates in a trust-region framework, but considers
    rectangular trust regions as opposed to conventional ellipsoids [Voglis]_.
    The intersection of a current trust region and initial bounds is again
    rectangular, so on each iteration a quadratic minimization problem subject
    to bound constraints is solved approximately by Powell's dogleg method
    [NumOpt]_. The required Gauss-Newton step can be computed exactly for
    dense Jacobians or approximately by `scipy.sparse.linalg.lsmr` for large
    sparse Jacobians. The algorithm is likely to exhibit slow convergence when
    the rank of Jacobian is less than the number of variables. The algorithm
    often outperforms 'trf' in bounded problems with a small number of
    variables.

    Robust loss functions are implemented as described in [BA]_. The idea
    is to modify a residual vector and a Jacobian matrix on each iteration
    such that computed gradient and Gauss-Newton Hessian approximation match
    the true gradient and Hessian approximation of the cost function. Then
    the algorithm proceeds in a normal way, i.e. robust loss functions are
    implemented as a simple wrapper over standard least-squares algorithms.

    .. versionadded:: 0.17.0

    References
    ----------
    .. [STIR] M. A. Branch, T. F. Coleman, and Y. Li, "A Subspace, Interior,
              and Conjugate Gradient Method for Large-Scale Bound-Constrained
              Minimization Problems," SIAM Journal on Scientific Computing,
              Vol. 21, Number 1, pp 1-23, 1999.
    .. [NR] William H. Press et. al., "Numerical Recipes. The Art of Scientific
            Computing. 3rd edition", Sec. 5.7.
    .. [Byrd] R. H. Byrd, R. B. Schnabel and G. A. Shultz, "Approximate
              solution of the trust region problem by minimization over
              two-dimensional subspaces", Math. Programming, 40, pp. 247-263,
              1988.
    .. [Curtis] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
                sparse Jacobian matrices", Journal of the Institute of
                Mathematics and its Applications, 13, pp. 117-120, 1974.
    .. [JJMore] J. J. More, "The Levenberg-Marquardt Algorithm: Implementation
                and Theory," Numerical Analysis, ed. G. A. Watson, Lecture
                Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
    .. [Voglis] C. Voglis and I. E. Lagaris, "A Rectangular Trust Region
                Dogleg Approach for Unconstrained and Bound Constrained
                Nonlinear Optimization", WSEAS International Conference on
                Applied Mathematics, Corfu, Greece, 2004.
    .. [NumOpt] J. Nocedal and S. J. Wright, "Numerical optimization,
                2nd edition", Chapter 4.
    .. [BA] B. Triggs et. al., "Bundle Adjustment - A Modern Synthesis",
            Proceedings of the International Workshop on Vision Algorithms:
            Theory and Practice, pp. 298-372, 1999.

    Examples
    --------
    In this example we find a minimum of the Rosenbrock function without bounds
    on independed variables.

    >>> def fun_rosenbrock(x):
    ...     return np.array([10 * (x[1] - x[0]**2), (1 - x[0])])

    Notice that we only provide the vector of the residuals. The algorithm
    constructs the cost function as a sum of squares of the residuals, which
    gives the Rosenbrock function. The exact minimum is at ``x = [1.0, 1.0]``.

    >>> from scipy.optimize import least_squares
    >>> x0_rosenbrock = np.array([2, 2])
    >>> res_1 = least_squares(fun_rosenbrock, x0_rosenbrock)
    >>> res_1.x
    array([ 1.,  1.])
    >>> res_1.cost
    9.8669242910846867e-30
    >>> res_1.optimality
    8.8928864934219529e-14

    We now constrain the variables, in such a way that the previous solution
    becomes infeasible. Specifically, we require that ``x[1] >= 1.5``, and
    ``x[0]`` left unconstrained. To this end, we specify the `bounds` parameter
    to `least_squares` in the form ``bounds=([-np.inf, 1.5], np.inf)``.

    We also provide the analytic Jacobian:

    >>> def jac_rosenbrock(x):
    ...     return np.array([
    ...         [-20 * x[0], 10],
    ...         [-1, 0]])

    Putting this all together, we see that the new solution lies on the bound:

    >>> res_2 = least_squares(fun_rosenbrock, x0_rosenbrock, jac_rosenbrock,
    ...                       bounds=([-np.inf, 1.5], np.inf))
    >>> res_2.x
    array([ 1.22437075,  1.5       ])
    >>> res_2.cost
    0.025213093946805685
    >>> res_2.optimality
    1.5885401433157753e-07

    Now we solve a system of equations (i.e., the cost function should be zero
    at a minimum) for a Broyden tridiagonal vector-valued function of 100000
    variables:

    >>> def fun_broyden(x):
    ...     f = (3 - x) * x + 1
    ...     f[1:] -= x[:-1]
    ...     f[:-1] -= 2 * x[1:]
    ...     return f

    The corresponding Jacobian matrix is sparse. We tell the algorithm to
    estimate it by finite differences and provide the sparsity structure of
    Jacobian to significantly speed up this process.

    >>> from scipy.sparse import lil_matrix
    >>> def sparsity_broyden(n):
    ...     sparsity = lil_matrix((n, n), dtype=int)
    ...     i = np.arange(n)
    ...     sparsity[i, i] = 1
    ...     i = np.arange(1, n)
    ...     sparsity[i, i - 1] = 1
    ...     i = np.arange(n - 1)
    ...     sparsity[i, i + 1] = 1
    ...     return sparsity
    ...
    >>> n = 100000
    >>> x0_broyden = -np.ones(n)
    ...
    >>> res_3 = least_squares(fun_broyden, x0_broyden,
    ...                       jac_sparsity=sparsity_broyden(n))
    >>> res_3.cost
    4.5687069299604613e-23
    >>> res_3.optimality
    1.1650454296851518e-11

    Let's also solve a curve fitting problem using robust loss function to
    take care of outliers in the data. Define the model function as
    ``y = a + b * exp(c * t)``, where t is a predictor variable, y is an
    observation and a, b, c are parameters to estimate.

    First, define the function which generates the data with noise and
    outliers, define the model parameters, and generate data:

    >>> def gen_data(t, a, b, c, noise=0, n_outliers=0, random_state=0):
    ...     y = a + b * np.exp(t * c)
    ...
    ...     rnd = np.random.RandomState(random_state)
    ...     error = noise * rnd.randn(t.size)
    ...     outliers = rnd.randint(0, t.size, n_outliers)
    ...     error[outliers] *= 10
    ...
    ...     return y + error
    ...
    >>> a = 0.5
    >>> b = 2.0
    >>> c = -1
    >>> t_min = 0
    >>> t_max = 10
    >>> n_points = 15
    ...
    >>> t_train = np.linspace(t_min, t_max, n_points)
    >>> y_train = gen_data(t_train, a, b, c, noise=0.1, n_outliers=3)

    Define function for computing residuals and initial estimate of
    parameters.

    >>> def fun(x, t, y):
    ...     return x[0] + x[1] * np.exp(x[2] * t) - y
    ...
    >>> x0 = np.array([1.0, 1.0, 0.0])

    Compute a standard least-squares solution:

    >>> res_lsq = least_squares(fun, x0, args=(t_train, y_train))

    Now compute two solutions with two different robust loss functions. The
    parameter `f_scale` is set to 0.1, meaning that inlier residuals should
    not significantly exceed 0.1 (the noise level used).

    >>> res_soft_l1 = least_squares(fun, x0, loss='soft_l1', f_scale=0.1,
    ...                             args=(t_train, y_train))
    >>> res_log = least_squares(fun, x0, loss='cauchy', f_scale=0.1,
    ...                         args=(t_train, y_train))

    And finally plot all the curves. We see that by selecting an appropriate
    `loss`  we can get estimates close to optimal even in the presence of
    strong outliers. But keep in mind that generally it is recommended to try
    'soft_l1' or 'huber' losses first (if at all necessary) as the other two
    options may cause difficulties in optimization process.

    >>> t_test = np.linspace(t_min, t_max, n_points * 10)
    >>> y_true = gen_data(t_test, a, b, c)
    >>> y_lsq = gen_data(t_test, *res_lsq.x)
    >>> y_soft_l1 = gen_data(t_test, *res_soft_l1.x)
    >>> y_log = gen_data(t_test, *res_log.x)
    ...
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(t_train, y_train, 'o')
    >>> plt.plot(t_test, y_true, 'k', linewidth=2, label='true')
    >>> plt.plot(t_test, y_lsq, label='linear loss')
    >>> plt.plot(t_test, y_soft_l1, label='soft_l1 loss')
    >>> plt.plot(t_test, y_log, label='cauchy loss')
    >>> plt.xlabel("t")
    >>> plt.ylabel("y")
    >>> plt.legend()
    >>> plt.show()
    """
    if method not in ['trf', 'dogbox', 'lm']:
        raise ValueError("`method` must be 'trf', 'dogbox' or 'lm'.")

    if jac not in ['2-point', '3-point', 'cs'] and not callable(jac):
        raise ValueError("`jac` must be '2-point', '3-point', 'cs' or "
                         "callable.")

    if tr_solver not in [None, 'exact', 'lsmr']:
        raise ValueError("`tr_solver` must be None, 'exact' or 'lsmr'.")

    if loss not in IMPLEMENTED_LOSSES and not callable(loss):
        raise ValueError("`loss` must be one of {0} or a callable."
                         .format(IMPLEMENTED_LOSSES.keys()))

    if method == 'lm' and loss != 'linear':
        raise ValueError("method='lm' supports only 'linear' loss function.")

    if verbose not in [0, 1, 2]:
        raise ValueError("`verbose` must be in [0, 1, 2].")

    if len(bounds) != 2:
        raise ValueError("`bounds` must contain 2 elements.")

    if max_nfev is not None and max_nfev <= 0:
        raise ValueError("`max_nfev` must be None or positive integer.")

    x0 = np.atleast_1d(x0).astype(float)

    if x0.ndim > 1:
        raise ValueError("`x0` must have at most 1 dimension.")

    lb, ub = prepare_bounds(bounds, x0.shape[0])

    if method == 'lm' and not np.all((lb == -np.inf) & (ub == np.inf)):
        raise ValueError("Method 'lm' doesn't support bounds.")

    if lb.shape != x0.shape or ub.shape != x0.shape:
        raise ValueError("Inconsistent shapes between bounds and `x0`.")

    if np.any(lb >= ub):
        raise ValueError("Each lower bound must be strictly less than each "
                         "upper bound.")

    if not in_bounds(x0, lb, ub):
        raise ValueError("`x0` is infeasible.")

    x_scale = check_x_scale(x_scale, x0)

    ftol, xtol, gtol = check_tolerance(ftol, xtol, gtol)

    def fun_wrapped(x):
        return np.atleast_1d(fun(x, *args, **kwargs))

    if method == 'trf':
        x0 = make_strictly_feasible(x0, lb, ub)

    f0 = fun_wrapped(x0)

    if f0.ndim != 1:
        raise ValueError("`fun` must return at most 1-d array_like.")

    if not np.all(np.isfinite(f0)):
        raise ValueError("Residuals are not finite in the initial point.")

    n = x0.size
    m = f0.size

    if method == 'lm' and m < n:
        raise ValueError("Method 'lm' doesn't work when the number of "
                         "residuals is less than the number of variables.")

    loss_function = construct_loss_function(m, loss, f_scale)
    if callable(loss):
        rho = loss_function(f0)
        if rho.shape != (3, m):
            raise ValueError("The return value of `loss` callable has wrong "
                             "shape.")
        initial_cost = 0.5 * np.sum(rho[0])
    elif loss_function is not None:
        initial_cost = loss_function(f0, cost_only=True)
    else:
        initial_cost = 0.5 * np.dot(f0, f0)

    if callable(jac):
        J0 = jac(x0, *args, **kwargs)

        if issparse(J0):
            J0 = csr_matrix(J0)

            def jac_wrapped(x, _=None):
                return csr_matrix(jac(x, *args, **kwargs))

        elif isinstance(J0, LinearOperator):
            def jac_wrapped(x, _=None):
                return jac(x, *args, **kwargs)

        else:
            J0 = np.atleast_2d(J0)

            def jac_wrapped(x, _=None):
                return np.atleast_2d(jac(x, *args, **kwargs))

    else:  # Estimate Jacobian by finite differences.
        if method == 'lm':
            if jac_sparsity is not None:
                raise ValueError("method='lm' does not support "
                                 "`jac_sparsity`.")

            if jac != '2-point':
                warn("jac='{0}' works equivalently to '2-point' "
                     "for method='lm'.".format(jac))

            J0 = jac_wrapped = None
        else:
            if jac_sparsity is not None and tr_solver == 'exact':
                raise ValueError("tr_solver='exact' is incompatible "
                                 "with `jac_sparsity`.")

            jac_sparsity = check_jac_sparsity(jac_sparsity, m, n)

            def jac_wrapped(x, f):
                J = approx_derivative(fun, x, rel_step=diff_step, method=jac,
                                      f0=f, bounds=bounds, args=args,
                                      kwargs=kwargs, sparsity=jac_sparsity)
                if J.ndim != 2:  # J is guaranteed not sparse.
                    J = np.atleast_2d(J)

                return J

            J0 = jac_wrapped(x0, f0)

    if J0 is not None:
        if J0.shape != (m, n):
            raise ValueError(
                "The return value of `jac` has wrong shape: expected {0}, "
                "actual {1}.".format((m, n), J0.shape))

        if not isinstance(J0, np.ndarray):
            if method == 'lm':
                raise ValueError("method='lm' works only with dense "
                                 "Jacobian matrices.")

            if tr_solver == 'exact':
                raise ValueError(
                    "tr_solver='exact' works only with dense "
                    "Jacobian matrices.")

        jac_scale = isinstance(x_scale, string_types) and x_scale == 'jac'
        if isinstance(J0, LinearOperator) and jac_scale:
            raise ValueError("x_scale='jac' can't be used when `jac` "
                             "returns LinearOperator.")

        if tr_solver is None:
            if isinstance(J0, np.ndarray):
                tr_solver = 'exact'
            else:
                tr_solver = 'lsmr'

    if method == 'lm':
        result = call_minpack(fun_wrapped, x0, jac_wrapped, ftol, xtol, gtol,
                              max_nfev, x_scale, diff_step)

    elif method == 'trf':
        result = trf(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, xtol,
                     gtol, max_nfev, x_scale, loss_function, tr_solver,
                     tr_options.copy(), verbose)

    elif method == 'dogbox':
        if tr_solver == 'lsmr' and 'regularize' in tr_options:
            warn("The keyword 'regularize' in `tr_options` is not relevant "
                 "for 'dogbox' method.")
            tr_options = tr_options.copy()
            del tr_options['regularize']

        result = dogbox(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol,
                        xtol, gtol, max_nfev, x_scale, loss_function,
                        tr_solver, tr_options, verbose)

    result.message = TERMINATION_MESSAGES[result.status]
    result.success = result.status > 0

    if verbose >= 1:
        print(result.message)
        print("Function evaluations {0}, initial cost {1:.4e}, final cost "
              "{2:.4e}, first-order optimality {3:.2e}."
              .format(result.nfev, initial_cost, result.cost,
                      result.optimality))

    return result