1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
|
"""Generic interface for least-square minimization."""
from __future__ import division, print_function, absolute_import
from warnings import warn
import numpy as np
from numpy.linalg import norm
from scipy.sparse import issparse, csr_matrix
from scipy.sparse.linalg import LinearOperator
from scipy.optimize import _minpack, OptimizeResult
from scipy.optimize._numdiff import approx_derivative, group_columns
from scipy._lib.six import string_types
from .trf import trf
from .dogbox import dogbox
from .common import EPS, in_bounds, make_strictly_feasible
TERMINATION_MESSAGES = {
-1: "Improper input parameters status returned from `leastsq`",
0: "The maximum number of function evaluations is exceeded.",
1: "`gtol` termination condition is satisfied.",
2: "`ftol` termination condition is satisfied.",
3: "`xtol` termination condition is satisfied.",
4: "Both `ftol` and `xtol` termination conditions are satisfied."
}
FROM_MINPACK_TO_COMMON = {
0: -1, # Improper input parameters from MINPACK.
1: 2,
2: 3,
3: 4,
4: 1,
5: 0
# There are 6, 7, 8 for too small tolerance parameters,
# but we guard against it by checking ftol, xtol, gtol beforehand.
}
def call_minpack(fun, x0, jac, ftol, xtol, gtol, max_nfev, x_scale, diff_step):
n = x0.size
if diff_step is None:
epsfcn = EPS
else:
epsfcn = diff_step**2
# Compute MINPACK's `diag`, which is inverse of our `x_scale` and
# ``x_scale='jac'`` corresponds to ``diag=None``.
if isinstance(x_scale, string_types) and x_scale == 'jac':
diag = None
else:
diag = 1 / x_scale
full_output = True
col_deriv = False
factor = 100.0
if jac is None:
if max_nfev is None:
# n squared to account for Jacobian evaluations.
max_nfev = 100 * n * (n + 1)
x, info, status = _minpack._lmdif(
fun, x0, (), full_output, ftol, xtol, gtol,
max_nfev, epsfcn, factor, diag)
else:
if max_nfev is None:
max_nfev = 100 * n
x, info, status = _minpack._lmder(
fun, jac, x0, (), full_output, col_deriv,
ftol, xtol, gtol, max_nfev, factor, diag)
f = info['fvec']
if callable(jac):
J = jac(x)
else:
J = np.atleast_2d(approx_derivative(fun, x))
cost = 0.5 * np.dot(f, f)
g = J.T.dot(f)
g_norm = norm(g, ord=np.inf)
nfev = info['nfev']
njev = info.get('njev', None)
status = FROM_MINPACK_TO_COMMON[status]
active_mask = np.zeros_like(x0, dtype=int)
return OptimizeResult(
x=x, cost=cost, fun=f, jac=J, grad=g, optimality=g_norm,
active_mask=active_mask, nfev=nfev, njev=njev, status=status)
def prepare_bounds(bounds, n):
lb, ub = [np.asarray(b, dtype=float) for b in bounds]
if lb.ndim == 0:
lb = np.resize(lb, n)
if ub.ndim == 0:
ub = np.resize(ub, n)
return lb, ub
def check_tolerance(ftol, xtol, gtol):
message = "{} is too low, setting to machine epsilon {}."
if ftol < EPS:
warn(message.format("`ftol`", EPS))
ftol = EPS
if xtol < EPS:
warn(message.format("`xtol`", EPS))
xtol = EPS
if gtol < EPS:
warn(message.format("`gtol`", EPS))
gtol = EPS
return ftol, xtol, gtol
def check_x_scale(x_scale, x0):
if isinstance(x_scale, string_types) and x_scale == 'jac':
return x_scale
try:
x_scale = np.asarray(x_scale, dtype=float)
valid = np.all(np.isfinite(x_scale)) and np.all(x_scale > 0)
except (ValueError, TypeError):
valid = False
if not valid:
raise ValueError("`x_scale` must be 'jac' or array_like with "
"positive numbers.")
if x_scale.ndim == 0:
x_scale = np.resize(x_scale, x0.shape)
if x_scale.shape != x0.shape:
raise ValueError("Inconsistent shapes between `x_scale` and `x0`.")
return x_scale
def check_jac_sparsity(jac_sparsity, m, n):
if jac_sparsity is None:
return None
if not issparse(jac_sparsity):
jac_sparsity = np.atleast_2d(jac_sparsity)
if jac_sparsity.shape != (m, n):
raise ValueError("`jac_sparsity` has wrong shape.")
return jac_sparsity, group_columns(jac_sparsity)
# Loss functions.
def huber(z, rho, cost_only):
mask = z <= 1
rho[0, mask] = z[mask]
rho[0, ~mask] = 2 * z[~mask]**0.5 - 1
if cost_only:
return
rho[1, mask] = 1
rho[1, ~mask] = z[~mask]**-0.5
rho[2, mask] = 0
rho[2, ~mask] = -0.5 * z[~mask]**-1.5
def soft_l1(z, rho, cost_only):
t = 1 + z
rho[0] = 2 * (t**0.5 - 1)
if cost_only:
return
rho[1] = t**-0.5
rho[2] = -0.5 * t**-1.5
def cauchy(z, rho, cost_only):
rho[0] = np.log1p(z)
if cost_only:
return
t = 1 + z
rho[1] = 1 / t
rho[2] = -1 / t**2
def arctan(z, rho, cost_only):
rho[0] = np.arctan(z)
if cost_only:
return
t = 1 + z**2
rho[1] = 1 / t
rho[2] = -2 * z / t**2
IMPLEMENTED_LOSSES = dict(linear=None, huber=huber, soft_l1=soft_l1,
cauchy=cauchy, arctan=arctan)
def construct_loss_function(m, loss, f_scale):
if loss == 'linear':
return None
if not callable(loss):
loss = IMPLEMENTED_LOSSES[loss]
rho = np.empty((3, m))
def loss_function(f, cost_only=False):
z = (f / f_scale) ** 2
loss(z, rho, cost_only=cost_only)
if cost_only:
return 0.5 * f_scale ** 2 * np.sum(rho[0])
rho[0] *= f_scale ** 2
rho[2] /= f_scale ** 2
return rho
else:
def loss_function(f, cost_only=False):
z = (f / f_scale) ** 2
rho = loss(z)
if cost_only:
return 0.5 * f_scale ** 2 * np.sum(rho[0])
rho[0] *= f_scale ** 2
rho[2] /= f_scale ** 2
return rho
return loss_function
def least_squares(
fun, x0, jac='2-point', bounds=(-np.inf, np.inf), method='trf',
ftol=1e-8, xtol=1e-8, gtol=1e-8, x_scale=1.0, loss='linear',
f_scale=1.0, diff_step=None, tr_solver=None, tr_options={},
jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={}):
"""Solve a nonlinear least-squares problem with bounds on the variables.
Given the residuals f(x) (an m-dimensional function of n variables) and
the loss function rho(s) (a scalar function), `least_squares` finds a
local minimum of the cost function F(x)::
minimize F(x) = 0.5 * sum(rho(f_i(x)**2), i = 0, ..., m - 1)
subject to lb <= x <= ub
The purpose of the loss function rho(s) is to reduce the influence of
outliers on the solution.
Parameters
----------
fun : callable
Function which computes the vector of residuals, with the signature
``fun(x, *args, **kwargs)``, i.e., the minimization proceeds with
respect to its first argument. The argument ``x`` passed to this
function is an ndarray of shape (n,) (never a scalar, even for n=1).
It must return a 1-d array_like of shape (m,) or a scalar.
x0 : array_like with shape (n,) or float
Initial guess on independent variables. If float, it will be treated
as a 1-d array with one element.
jac : {'2-point', '3-point', 'cs', callable}, optional
Method of computing the Jacobian matrix (an m-by-n matrix, where
element (i, j) is the partial derivative of f[i] with respect to
x[j]). The keywords select a finite difference scheme for numerical
estimation. The scheme '3-point' is more accurate, but requires
twice as much operations compared to '2-point' (default). The
scheme 'cs' uses complex steps, and while potentially the most
accurate, it is applicable only when `fun` correctly handles
complex inputs and can be analytically continued to the complex
plane. Method 'lm' always uses the '2-point' scheme. If callable,
it is used as ``jac(x, *args, **kwargs)`` and should return a
good approximation (or the exact value) for the Jacobian as an
array_like (np.atleast_2d is applied), a sparse matrix or a
`scipy.sparse.linalg.LinearOperator`.
bounds : 2-tuple of array_like, optional
Lower and upper bounds on independent variables. Defaults to no bounds.
Each array must match the size of `x0` or be a scalar, in the latter
case a bound will be the same for all variables. Use ``np.inf`` with
an appropriate sign to disable bounds on all or some variables.
method : {'trf', 'dogbox', 'lm'}, optional
Algorithm to perform minimization.
* 'trf' : Trust Region Reflective algorithm, particularly suitable
for large sparse problems with bounds. Generally robust method.
* 'dogbox' : dogleg algorithm with rectangular trust regions,
typical use case is small problems with bounds. Not recommended
for problems with rank-deficient Jacobian.
* 'lm' : Levenberg-Marquardt algorithm as implemented in MINPACK.
Doesn't handle bounds and sparse Jacobians. Usually the most
efficient method for small unconstrained problems.
Default is 'trf'. See Notes for more information.
ftol : float, optional
Tolerance for termination by the change of the cost function. Default
is 1e-8. The optimization process is stopped when ``dF < ftol * F``,
and there was an adequate agreement between a local quadratic model and
the true model in the last step.
xtol : float, optional
Tolerance for termination by the change of the independent variables.
Default is 1e-8. The exact condition depends on the `method` used:
* For 'trf' and 'dogbox' : ``norm(dx) < xtol * (xtol + norm(x))``
* For 'lm' : ``Delta < xtol * norm(xs)``, where ``Delta`` is
a trust-region radius and ``xs`` is the value of ``x``
scaled according to `x_scale` parameter (see below).
gtol : float, optional
Tolerance for termination by the norm of the gradient. Default is 1e-8.
The exact condition depends on a `method` used:
* For 'trf' : ``norm(g_scaled, ord=np.inf) < gtol``, where
``g_scaled`` is the value of the gradient scaled to account for
the presence of the bounds [STIR]_.
* For 'dogbox' : ``norm(g_free, ord=np.inf) < gtol``, where
``g_free`` is the gradient with respect to the variables which
are not in the optimal state on the boundary.
* For 'lm' : the maximum absolute value of the cosine of angles
between columns of the Jacobian and the residual vector is less
than `gtol`, or the residual vector is zero.
x_scale : array_like or 'jac', optional
Characteristic scale of each variable. Setting `x_scale` is equivalent
to reformulating the problem in scaled variables ``xs = x / x_scale``.
An alternative view is that the size of a trust region along j-th
dimension is proportional to ``x_scale[j]``. Improved convergence may
be achieved by setting `x_scale` such that a step of a given size
along any of the scaled variables has a similar effect on the cost
function. If set to 'jac', the scale is iteratively updated using the
inverse norms of the columns of the Jacobian matrix (as described in
[JJMore]_).
loss : str or callable, optional
Determines the loss function. The following keyword values are allowed:
* 'linear' (default) : ``rho(z) = z``. Gives a standard
least-squares problem.
* 'soft_l1' : ``rho(z) = 2 * ((1 + z)**0.5 - 1)``. The smooth
approximation of l1 (absolute value) loss. Usually a good
choice for robust least squares.
* 'huber' : ``rho(z) = z if z <= 1 else 2*z**0.5 - 1``. Works
similarly to 'soft_l1'.
* 'cauchy' : ``rho(z) = ln(1 + z)``. Severely weakens outliers
influence, but may cause difficulties in optimization process.
* 'arctan' : ``rho(z) = arctan(z)``. Limits a maximum loss on
a single residual, has properties similar to 'cauchy'.
If callable, it must take a 1-d ndarray ``z=f**2`` and return an
array_like with shape (3, m) where row 0 contains function values,
row 1 contains first derivatives and row 2 contains second
derivatives. Method 'lm' supports only 'linear' loss.
f_scale : float, optional
Value of soft margin between inlier and outlier residuals, default
is 1.0. The loss function is evaluated as follows
``rho_(f**2) = C**2 * rho(f**2 / C**2)``, where ``C`` is `f_scale`,
and ``rho`` is determined by `loss` parameter. This parameter has
no effect with ``loss='linear'``, but for other `loss` values it is
of crucial importance.
max_nfev : None or int, optional
Maximum number of function evaluations before the termination.
If None (default), the value is chosen automatically:
* For 'trf' and 'dogbox' : 100 * n.
* For 'lm' : 100 * n if `jac` is callable and 100 * n * (n + 1)
otherwise (because 'lm' counts function calls in Jacobian
estimation).
diff_step : None or array_like, optional
Determines the relative step size for the finite difference
approximation of the Jacobian. The actual step is computed as
``x * diff_step``. If None (default), then `diff_step` is taken to be
a conventional "optimal" power of machine epsilon for the finite
difference scheme used [NR]_.
tr_solver : {None, 'exact', 'lsmr'}, optional
Method for solving trust-region subproblems, relevant only for 'trf'
and 'dogbox' methods.
* 'exact' is suitable for not very large problems with dense
Jacobian matrices. The computational complexity per iteration is
comparable to a singular value decomposition of the Jacobian
matrix.
* 'lsmr' is suitable for problems with sparse and large Jacobian
matrices. It uses the iterative procedure
`scipy.sparse.linalg.lsmr` for finding a solution of a linear
least-squares problem and only requires matrix-vector product
evaluations.
If None (default) the solver is chosen based on the type of Jacobian
returned on the first iteration.
tr_options : dict, optional
Keyword options passed to trust-region solver.
* ``tr_solver='exact'``: `tr_options` are ignored.
* ``tr_solver='lsmr'``: options for `scipy.sparse.linalg.lsmr`.
Additionally ``method='trf'`` supports 'regularize' option
(bool, default is True) which adds a regularization term to the
normal equation, which improves convergence if the Jacobian is
rank-deficient [Byrd]_ (eq. 3.4).
jac_sparsity : {None, array_like, sparse matrix}, optional
Defines the sparsity structure of the Jacobian matrix for finite
difference estimation, its shape must be (m, n). If the Jacobian has
only few non-zero elements in *each* row, providing the sparsity
structure will greatly speed up the computations [Curtis]_. A zero
entry means that a corresponding element in the Jacobian is identically
zero. If provided, forces the use of 'lsmr' trust-region solver.
If None (default) then dense differencing will be used. Has no effect
for 'lm' method.
verbose : {0, 1, 2}, optional
Level of algorithm's verbosity:
* 0 (default) : work silently.
* 1 : display a termination report.
* 2 : display progress during iterations (not supported by 'lm'
method).
args, kwargs : tuple and dict, optional
Additional arguments passed to `fun` and `jac`. Both empty by default.
The calling signature is ``fun(x, *args, **kwargs)`` and the same for
`jac`.
Returns
-------
`OptimizeResult` with the following fields defined:
x : ndarray, shape (n,)
Solution found.
cost : float
Value of the cost function at the solution.
fun : ndarray, shape (m,)
Vector of residuals at the solution.
jac : ndarray, sparse matrix or LinearOperator, shape (m, n)
Modified Jacobian matrix at the solution, in the sense that J^T J
is a Gauss-Newton approximation of the Hessian of the cost function.
The type is the same as the one used by the algorithm.
grad : ndarray, shape (m,)
Gradient of the cost function at the solution.
optimality : float
First-order optimality measure. In unconstrained problems, it is always
the uniform norm of the gradient. In constrained problems, it is the
quantity which was compared with `gtol` during iterations.
active_mask : ndarray of int, shape (n,)
Each component shows whether a corresponding constraint is active
(that is, whether a variable is at the bound):
* 0 : a constraint is not active.
* -1 : a lower bound is active.
* 1 : an upper bound is active.
Might be somewhat arbitrary for 'trf' method as it generates a sequence
of strictly feasible iterates and `active_mask` is determined within a
tolerance threshold.
nfev : int
Number of function evaluations done. Methods 'trf' and 'dogbox' do not
count function calls for numerical Jacobian approximation, as opposed
to 'lm' method.
njev : int or None
Number of Jacobian evaluations done. If numerical Jacobian
approximation is used in 'lm' method, it is set to None.
status : int
The reason for algorithm termination:
* -1 : improper input parameters status returned from MINPACK.
* 0 : the maximum number of function evaluations is exceeded.
* 1 : `gtol` termination condition is satisfied.
* 2 : `ftol` termination condition is satisfied.
* 3 : `xtol` termination condition is satisfied.
* 4 : Both `ftol` and `xtol` termination conditions are satisfied.
message : str
Verbal description of the termination reason.
success : bool
True if one of the convergence criteria is satisfied (`status` > 0).
See Also
--------
leastsq : A legacy wrapper for the MINPACK implementation of the
Levenberg-Marquadt algorithm.
curve_fit : Least-squares minimization applied to a curve fitting problem.
Notes
-----
Method 'lm' (Levenberg-Marquardt) calls a wrapper over least-squares
algorithms implemented in MINPACK (lmder, lmdif). It runs the
Levenberg-Marquardt algorithm formulated as a trust-region type algorithm.
The implementation is based on paper [JJMore]_, it is very robust and
efficient with a lot of smart tricks. It should be your first choice
for unconstrained problems. Note that it doesn't support bounds. Also
it doesn't work when m < n.
Method 'trf' (Trust Region Reflective) is motivated by the process of
solving a system of equations, which constitute the first-order optimality
condition for a bound-constrained minimization problem as formulated in
[STIR]_. The algorithm iteratively solves trust-region subproblems
augmented by a special diagonal quadratic term and with trust-region shape
determined by the distance from the bounds and the direction of the
gradient. This enhancements help to avoid making steps directly into bounds
and efficiently explore the whole space of variables. To further improve
convergence, the algorithm considers search directions reflected from the
bounds. To obey theoretical requirements, the algorithm keeps iterates
strictly feasible. With dense Jacobians trust-region subproblems are
solved by an exact method very similar to the one described in [JJMore]_
(and implemented in MINPACK). The difference from the MINPACK
implementation is that a singular value decomposition of a Jacobian
matrix is done once per iteration, instead of a QR decomposition and series
of Givens rotation eliminations. For large sparse Jacobians a 2-d subspace
approach of solving trust-region subproblems is used [STIR]_, [Byrd]_.
The subspace is spanned by a scaled gradient and an approximate
Gauss-Newton solution delivered by `scipy.sparse.linalg.lsmr`. When no
constraints are imposed the algorithm is very similar to MINPACK and has
generally comparable performance. The algorithm works quite robust in
unbounded and bounded problems, thus it is chosen as a default algorithm.
Method 'dogbox' operates in a trust-region framework, but considers
rectangular trust regions as opposed to conventional ellipsoids [Voglis]_.
The intersection of a current trust region and initial bounds is again
rectangular, so on each iteration a quadratic minimization problem subject
to bound constraints is solved approximately by Powell's dogleg method
[NumOpt]_. The required Gauss-Newton step can be computed exactly for
dense Jacobians or approximately by `scipy.sparse.linalg.lsmr` for large
sparse Jacobians. The algorithm is likely to exhibit slow convergence when
the rank of Jacobian is less than the number of variables. The algorithm
often outperforms 'trf' in bounded problems with a small number of
variables.
Robust loss functions are implemented as described in [BA]_. The idea
is to modify a residual vector and a Jacobian matrix on each iteration
such that computed gradient and Gauss-Newton Hessian approximation match
the true gradient and Hessian approximation of the cost function. Then
the algorithm proceeds in a normal way, i.e. robust loss functions are
implemented as a simple wrapper over standard least-squares algorithms.
.. versionadded:: 0.17.0
References
----------
.. [STIR] M. A. Branch, T. F. Coleman, and Y. Li, "A Subspace, Interior,
and Conjugate Gradient Method for Large-Scale Bound-Constrained
Minimization Problems," SIAM Journal on Scientific Computing,
Vol. 21, Number 1, pp 1-23, 1999.
.. [NR] William H. Press et. al., "Numerical Recipes. The Art of Scientific
Computing. 3rd edition", Sec. 5.7.
.. [Byrd] R. H. Byrd, R. B. Schnabel and G. A. Shultz, "Approximate
solution of the trust region problem by minimization over
two-dimensional subspaces", Math. Programming, 40, pp. 247-263,
1988.
.. [Curtis] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
sparse Jacobian matrices", Journal of the Institute of
Mathematics and its Applications, 13, pp. 117-120, 1974.
.. [JJMore] J. J. More, "The Levenberg-Marquardt Algorithm: Implementation
and Theory," Numerical Analysis, ed. G. A. Watson, Lecture
Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
.. [Voglis] C. Voglis and I. E. Lagaris, "A Rectangular Trust Region
Dogleg Approach for Unconstrained and Bound Constrained
Nonlinear Optimization", WSEAS International Conference on
Applied Mathematics, Corfu, Greece, 2004.
.. [NumOpt] J. Nocedal and S. J. Wright, "Numerical optimization,
2nd edition", Chapter 4.
.. [BA] B. Triggs et. al., "Bundle Adjustment - A Modern Synthesis",
Proceedings of the International Workshop on Vision Algorithms:
Theory and Practice, pp. 298-372, 1999.
Examples
--------
In this example we find a minimum of the Rosenbrock function without bounds
on independed variables.
>>> def fun_rosenbrock(x):
... return np.array([10 * (x[1] - x[0]**2), (1 - x[0])])
Notice that we only provide the vector of the residuals. The algorithm
constructs the cost function as a sum of squares of the residuals, which
gives the Rosenbrock function. The exact minimum is at ``x = [1.0, 1.0]``.
>>> from scipy.optimize import least_squares
>>> x0_rosenbrock = np.array([2, 2])
>>> res_1 = least_squares(fun_rosenbrock, x0_rosenbrock)
>>> res_1.x
array([ 1., 1.])
>>> res_1.cost
9.8669242910846867e-30
>>> res_1.optimality
8.8928864934219529e-14
We now constrain the variables, in such a way that the previous solution
becomes infeasible. Specifically, we require that ``x[1] >= 1.5``, and
``x[0]`` left unconstrained. To this end, we specify the `bounds` parameter
to `least_squares` in the form ``bounds=([-np.inf, 1.5], np.inf)``.
We also provide the analytic Jacobian:
>>> def jac_rosenbrock(x):
... return np.array([
... [-20 * x[0], 10],
... [-1, 0]])
Putting this all together, we see that the new solution lies on the bound:
>>> res_2 = least_squares(fun_rosenbrock, x0_rosenbrock, jac_rosenbrock,
... bounds=([-np.inf, 1.5], np.inf))
>>> res_2.x
array([ 1.22437075, 1.5 ])
>>> res_2.cost
0.025213093946805685
>>> res_2.optimality
1.5885401433157753e-07
Now we solve a system of equations (i.e., the cost function should be zero
at a minimum) for a Broyden tridiagonal vector-valued function of 100000
variables:
>>> def fun_broyden(x):
... f = (3 - x) * x + 1
... f[1:] -= x[:-1]
... f[:-1] -= 2 * x[1:]
... return f
The corresponding Jacobian matrix is sparse. We tell the algorithm to
estimate it by finite differences and provide the sparsity structure of
Jacobian to significantly speed up this process.
>>> from scipy.sparse import lil_matrix
>>> def sparsity_broyden(n):
... sparsity = lil_matrix((n, n), dtype=int)
... i = np.arange(n)
... sparsity[i, i] = 1
... i = np.arange(1, n)
... sparsity[i, i - 1] = 1
... i = np.arange(n - 1)
... sparsity[i, i + 1] = 1
... return sparsity
...
>>> n = 100000
>>> x0_broyden = -np.ones(n)
...
>>> res_3 = least_squares(fun_broyden, x0_broyden,
... jac_sparsity=sparsity_broyden(n))
>>> res_3.cost
4.5687069299604613e-23
>>> res_3.optimality
1.1650454296851518e-11
Let's also solve a curve fitting problem using robust loss function to
take care of outliers in the data. Define the model function as
``y = a + b * exp(c * t)``, where t is a predictor variable, y is an
observation and a, b, c are parameters to estimate.
First, define the function which generates the data with noise and
outliers, define the model parameters, and generate data:
>>> def gen_data(t, a, b, c, noise=0, n_outliers=0, random_state=0):
... y = a + b * np.exp(t * c)
...
... rnd = np.random.RandomState(random_state)
... error = noise * rnd.randn(t.size)
... outliers = rnd.randint(0, t.size, n_outliers)
... error[outliers] *= 10
...
... return y + error
...
>>> a = 0.5
>>> b = 2.0
>>> c = -1
>>> t_min = 0
>>> t_max = 10
>>> n_points = 15
...
>>> t_train = np.linspace(t_min, t_max, n_points)
>>> y_train = gen_data(t_train, a, b, c, noise=0.1, n_outliers=3)
Define function for computing residuals and initial estimate of
parameters.
>>> def fun(x, t, y):
... return x[0] + x[1] * np.exp(x[2] * t) - y
...
>>> x0 = np.array([1.0, 1.0, 0.0])
Compute a standard least-squares solution:
>>> res_lsq = least_squares(fun, x0, args=(t_train, y_train))
Now compute two solutions with two different robust loss functions. The
parameter `f_scale` is set to 0.1, meaning that inlier residuals should
not significantly exceed 0.1 (the noise level used).
>>> res_soft_l1 = least_squares(fun, x0, loss='soft_l1', f_scale=0.1,
... args=(t_train, y_train))
>>> res_log = least_squares(fun, x0, loss='cauchy', f_scale=0.1,
... args=(t_train, y_train))
And finally plot all the curves. We see that by selecting an appropriate
`loss` we can get estimates close to optimal even in the presence of
strong outliers. But keep in mind that generally it is recommended to try
'soft_l1' or 'huber' losses first (if at all necessary) as the other two
options may cause difficulties in optimization process.
>>> t_test = np.linspace(t_min, t_max, n_points * 10)
>>> y_true = gen_data(t_test, a, b, c)
>>> y_lsq = gen_data(t_test, *res_lsq.x)
>>> y_soft_l1 = gen_data(t_test, *res_soft_l1.x)
>>> y_log = gen_data(t_test, *res_log.x)
...
>>> import matplotlib.pyplot as plt
>>> plt.plot(t_train, y_train, 'o')
>>> plt.plot(t_test, y_true, 'k', linewidth=2, label='true')
>>> plt.plot(t_test, y_lsq, label='linear loss')
>>> plt.plot(t_test, y_soft_l1, label='soft_l1 loss')
>>> plt.plot(t_test, y_log, label='cauchy loss')
>>> plt.xlabel("t")
>>> plt.ylabel("y")
>>> plt.legend()
>>> plt.show()
"""
if method not in ['trf', 'dogbox', 'lm']:
raise ValueError("`method` must be 'trf', 'dogbox' or 'lm'.")
if jac not in ['2-point', '3-point', 'cs'] and not callable(jac):
raise ValueError("`jac` must be '2-point', '3-point', 'cs' or "
"callable.")
if tr_solver not in [None, 'exact', 'lsmr']:
raise ValueError("`tr_solver` must be None, 'exact' or 'lsmr'.")
if loss not in IMPLEMENTED_LOSSES and not callable(loss):
raise ValueError("`loss` must be one of {0} or a callable."
.format(IMPLEMENTED_LOSSES.keys()))
if method == 'lm' and loss != 'linear':
raise ValueError("method='lm' supports only 'linear' loss function.")
if verbose not in [0, 1, 2]:
raise ValueError("`verbose` must be in [0, 1, 2].")
if len(bounds) != 2:
raise ValueError("`bounds` must contain 2 elements.")
if max_nfev is not None and max_nfev <= 0:
raise ValueError("`max_nfev` must be None or positive integer.")
x0 = np.atleast_1d(x0).astype(float)
if x0.ndim > 1:
raise ValueError("`x0` must have at most 1 dimension.")
lb, ub = prepare_bounds(bounds, x0.shape[0])
if method == 'lm' and not np.all((lb == -np.inf) & (ub == np.inf)):
raise ValueError("Method 'lm' doesn't support bounds.")
if lb.shape != x0.shape or ub.shape != x0.shape:
raise ValueError("Inconsistent shapes between bounds and `x0`.")
if np.any(lb >= ub):
raise ValueError("Each lower bound must be strictly less than each "
"upper bound.")
if not in_bounds(x0, lb, ub):
raise ValueError("`x0` is infeasible.")
x_scale = check_x_scale(x_scale, x0)
ftol, xtol, gtol = check_tolerance(ftol, xtol, gtol)
def fun_wrapped(x):
return np.atleast_1d(fun(x, *args, **kwargs))
if method == 'trf':
x0 = make_strictly_feasible(x0, lb, ub)
f0 = fun_wrapped(x0)
if f0.ndim != 1:
raise ValueError("`fun` must return at most 1-d array_like.")
if not np.all(np.isfinite(f0)):
raise ValueError("Residuals are not finite in the initial point.")
n = x0.size
m = f0.size
if method == 'lm' and m < n:
raise ValueError("Method 'lm' doesn't work when the number of "
"residuals is less than the number of variables.")
loss_function = construct_loss_function(m, loss, f_scale)
if callable(loss):
rho = loss_function(f0)
if rho.shape != (3, m):
raise ValueError("The return value of `loss` callable has wrong "
"shape.")
initial_cost = 0.5 * np.sum(rho[0])
elif loss_function is not None:
initial_cost = loss_function(f0, cost_only=True)
else:
initial_cost = 0.5 * np.dot(f0, f0)
if callable(jac):
J0 = jac(x0, *args, **kwargs)
if issparse(J0):
J0 = csr_matrix(J0)
def jac_wrapped(x, _=None):
return csr_matrix(jac(x, *args, **kwargs))
elif isinstance(J0, LinearOperator):
def jac_wrapped(x, _=None):
return jac(x, *args, **kwargs)
else:
J0 = np.atleast_2d(J0)
def jac_wrapped(x, _=None):
return np.atleast_2d(jac(x, *args, **kwargs))
else: # Estimate Jacobian by finite differences.
if method == 'lm':
if jac_sparsity is not None:
raise ValueError("method='lm' does not support "
"`jac_sparsity`.")
if jac != '2-point':
warn("jac='{0}' works equivalently to '2-point' "
"for method='lm'.".format(jac))
J0 = jac_wrapped = None
else:
if jac_sparsity is not None and tr_solver == 'exact':
raise ValueError("tr_solver='exact' is incompatible "
"with `jac_sparsity`.")
jac_sparsity = check_jac_sparsity(jac_sparsity, m, n)
def jac_wrapped(x, f):
J = approx_derivative(fun, x, rel_step=diff_step, method=jac,
f0=f, bounds=bounds, args=args,
kwargs=kwargs, sparsity=jac_sparsity)
if J.ndim != 2: # J is guaranteed not sparse.
J = np.atleast_2d(J)
return J
J0 = jac_wrapped(x0, f0)
if J0 is not None:
if J0.shape != (m, n):
raise ValueError(
"The return value of `jac` has wrong shape: expected {0}, "
"actual {1}.".format((m, n), J0.shape))
if not isinstance(J0, np.ndarray):
if method == 'lm':
raise ValueError("method='lm' works only with dense "
"Jacobian matrices.")
if tr_solver == 'exact':
raise ValueError(
"tr_solver='exact' works only with dense "
"Jacobian matrices.")
jac_scale = isinstance(x_scale, string_types) and x_scale == 'jac'
if isinstance(J0, LinearOperator) and jac_scale:
raise ValueError("x_scale='jac' can't be used when `jac` "
"returns LinearOperator.")
if tr_solver is None:
if isinstance(J0, np.ndarray):
tr_solver = 'exact'
else:
tr_solver = 'lsmr'
if method == 'lm':
result = call_minpack(fun_wrapped, x0, jac_wrapped, ftol, xtol, gtol,
max_nfev, x_scale, diff_step)
elif method == 'trf':
result = trf(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, xtol,
gtol, max_nfev, x_scale, loss_function, tr_solver,
tr_options.copy(), verbose)
elif method == 'dogbox':
if tr_solver == 'lsmr' and 'regularize' in tr_options:
warn("The keyword 'regularize' in `tr_options` is not relevant "
"for 'dogbox' method.")
tr_options = tr_options.copy()
del tr_options['regularize']
result = dogbox(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol,
xtol, gtol, max_nfev, x_scale, loss_function,
tr_solver, tr_options, verbose)
result.message = TERMINATION_MESSAGES[result.status]
result.success = result.status > 0
if verbose >= 1:
print(result.message)
print("Function evaluations {0}, initial cost {1:.4e}, final cost "
"{2:.4e}, first-order optimality {3:.2e}."
.format(result.nfev, initial_cost, result.cost,
result.optimality))
return result
|