1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
"""
Interface to Constrained Optimization By Linear Approximation
Functions
---------
.. autosummary::
:toctree: generated/
fmin_cobyla
"""
from __future__ import division, print_function, absolute_import
import numpy as np
from scipy._lib.six import callable
from scipy.optimize import _cobyla
from .optimize import OptimizeResult, _check_unknown_options
try:
from itertools import izip
except ImportError:
izip = zip
__all__ = ['fmin_cobyla']
def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0,
rhoend=1e-4, iprint=1, maxfun=1000, disp=None, catol=2e-4):
"""
Minimize a function using the Constrained Optimization BY Linear
Approximation (COBYLA) method. This method wraps a FORTRAN
implementation of the algorithm.
Parameters
----------
func : callable
Function to minimize. In the form func(x, \\*args).
x0 : ndarray
Initial guess.
cons : sequence
Constraint functions; must all be ``>=0`` (a single function
if only 1 constraint). Each function takes the parameters `x`
as its first argument, and it can return either a single number or
an array or list of numbers.
args : tuple, optional
Extra arguments to pass to function.
consargs : tuple, optional
Extra arguments to pass to constraint functions (default of None means
use same extra arguments as those passed to func).
Use ``()`` for no extra arguments.
rhobeg : float, optional
Reasonable initial changes to the variables.
rhoend : float, optional
Final accuracy in the optimization (not precisely guaranteed). This
is a lower bound on the size of the trust region.
iprint : {0, 1, 2, 3}, optional
Controls the frequency of output; 0 implies no output. Deprecated.
disp : {0, 1, 2, 3}, optional
Over-rides the iprint interface. Preferred.
maxfun : int, optional
Maximum number of function evaluations.
catol : float, optional
Absolute tolerance for constraint violations.
Returns
-------
x : ndarray
The argument that minimises `f`.
See also
--------
minimize: Interface to minimization algorithms for multivariate
functions. See the 'COBYLA' `method` in particular.
Notes
-----
This algorithm is based on linear approximations to the objective
function and each constraint. We briefly describe the algorithm.
Suppose the function is being minimized over k variables. At the
jth iteration the algorithm has k+1 points v_1, ..., v_(k+1),
an approximate solution x_j, and a radius RHO_j.
(i.e. linear plus a constant) approximations to the objective
function and constraint functions such that their function values
agree with the linear approximation on the k+1 points v_1,.., v_(k+1).
This gives a linear program to solve (where the linear approximations
of the constraint functions are constrained to be non-negative).
However the linear approximations are likely only good
approximations near the current simplex, so the linear program is
given the further requirement that the solution, which
will become x_(j+1), must be within RHO_j from x_j. RHO_j only
decreases, never increases. The initial RHO_j is rhobeg and the
final RHO_j is rhoend. In this way COBYLA's iterations behave
like a trust region algorithm.
Additionally, the linear program may be inconsistent, or the
approximation may give poor improvement. For details about
how these issues are resolved, as well as how the points v_i are
updated, refer to the source code or the references below.
References
----------
Powell M.J.D. (1994), "A direct search optimization method that models
the objective and constraint functions by linear interpolation.", in
Advances in Optimization and Numerical Analysis, eds. S. Gomez and
J-P Hennart, Kluwer Academic (Dordrecht), pp. 51-67
Powell M.J.D. (1998), "Direct search algorithms for optimization
calculations", Acta Numerica 7, 287-336
Powell M.J.D. (2007), "A view of algorithms for optimization without
derivatives", Cambridge University Technical Report DAMTP 2007/NA03
Examples
--------
Minimize the objective function f(x,y) = x*y subject
to the constraints x**2 + y**2 < 1 and y > 0::
>>> def objective(x):
... return x[0]*x[1]
...
>>> def constr1(x):
... return 1 - (x[0]**2 + x[1]**2)
...
>>> def constr2(x):
... return x[1]
...
>>> from scipy.optimize import fmin_cobyla
>>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7)
array([-0.70710685, 0.70710671])
The exact solution is (-sqrt(2)/2, sqrt(2)/2).
"""
err = "cons must be a sequence of callable functions or a single"\
" callable function."
try:
len(cons)
except TypeError:
if callable(cons):
cons = [cons]
else:
raise TypeError(err)
else:
for thisfunc in cons:
if not callable(thisfunc):
raise TypeError(err)
if consargs is None:
consargs = args
# build constraints
con = tuple({'type': 'ineq', 'fun': c, 'args': consargs} for c in cons)
# options
if disp is not None:
iprint = disp
opts = {'rhobeg': rhobeg,
'tol': rhoend,
'iprint': iprint,
'disp': iprint != 0,
'maxiter': maxfun,
'catol': catol}
sol = _minimize_cobyla(func, x0, args, constraints=con,
**opts)
if iprint > 0 and not sol['success']:
print("COBYLA failed to find a solution: %s" % (sol.message,))
return sol['x']
def _minimize_cobyla(fun, x0, args=(), constraints=(),
rhobeg=1.0, tol=1e-4, iprint=1, maxiter=1000,
disp=False, catol=2e-4, **unknown_options):
"""
Minimize a scalar function of one or more variables using the
Constrained Optimization BY Linear Approximation (COBYLA) algorithm.
Options
-------
rhobeg : float
Reasonable initial changes to the variables.
tol : float
Final accuracy in the optimization (not precisely guaranteed).
This is a lower bound on the size of the trust region.
disp : bool
Set to True to print convergence messages. If False,
`verbosity` is ignored as set to 0.
maxiter : int
Maximum number of function evaluations.
catol : float
Tolerance (absolute) for constraint violations
"""
_check_unknown_options(unknown_options)
maxfun = maxiter
rhoend = tol
if not disp:
iprint = 0
# check constraints
if isinstance(constraints, dict):
constraints = (constraints, )
for ic, con in enumerate(constraints):
# check type
try:
ctype = con['type'].lower()
except KeyError:
raise KeyError('Constraint %d has no type defined.' % ic)
except TypeError:
raise TypeError('Constraints must be defined using a '
'dictionary.')
except AttributeError:
raise TypeError("Constraint's type must be a string.")
else:
if ctype != 'ineq':
raise ValueError("Constraints of type '%s' not handled by "
"COBYLA." % con['type'])
# check function
if 'fun' not in con:
raise KeyError('Constraint %d has no function defined.' % ic)
# check extra arguments
if 'args' not in con:
con['args'] = ()
# m is the total number of constraint values
# it takes into account that some constraints may be vector-valued
cons_lengths = []
for c in constraints:
f = c['fun'](x0, *c['args'])
try:
cons_length = len(f)
except TypeError:
cons_length = 1
cons_lengths.append(cons_length)
m = sum(cons_lengths)
def calcfc(x, con):
f = fun(x, *args)
i = 0
for size, c in izip(cons_lengths, constraints):
con[i: i + size] = c['fun'](x, *c['args'])
i += size
return f
info = np.zeros(4, np.float64)
xopt, info = _cobyla.minimize(calcfc, m=m, x=np.copy(x0), rhobeg=rhobeg,
rhoend=rhoend, iprint=iprint, maxfun=maxfun,
dinfo=info)
if info[3] > catol:
# Check constraint violation
info[0] = 4
return OptimizeResult(x=xopt,
status=int(info[0]),
success=info[0] == 1,
message={1: 'Optimization terminated successfully.',
2: 'Maximum number of function evaluations has '
'been exceeded.',
3: 'Rounding errors are becoming damaging in '
'COBYLA subroutine.',
4: 'Did not converge to a solution satisfying '
'the constraints. See `maxcv` for magnitude '
'of violation.'
}.get(info[0], 'Unknown exit status.'),
nfev=int(info[1]),
fun=info[2],
maxcv=info[3])
if __name__ == '__main__':
from math import sqrt
def fun(x):
return x[0] * x[1]
def cons(x):
return 1 - x[0]**2 - x[1]**2
x = fmin_cobyla(fun, [1., 1.], cons, iprint=3, disp=1)
print('\nTheoretical solution: %e, %e' % (1. / sqrt(2.), -1. / sqrt(2.)))
|