1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
|
c=========== L-BFGS-B (version 3.0. April 25, 2011 ===================
c
c This is a modified version of L-BFGS-B. Minor changes in the updated
c code appear preceded by a line comment as follows
c
c c-jlm-jn
c
c Major changes are described in the accompanying paper:
c
c Jorge Nocedal and Jose Luis Morales, Remark on "Algorithm 778:
c L-BFGS-B: Fortran Subroutines for Large-Scale Bound Constrained
c Optimization" (2011). To appear in ACM Transactions on
c Mathematical Software,
c
c The paper describes an improvement and a correction to Algorithm 778.
c It is shown that the performance of the algorithm can be improved
c significantly by making a relatively simple modication to the subspace
c minimization phase. The correction concerns an error caused by the use
c of routine dpmeps to estimate machine precision.
c
c The total work space **wa** required by the new version is
c
c 2*m*n + 11m*m + 5*n + 8*m
c
c the old version required
c
c 2*m*n + 12m*m + 4*n + 12*m
c
c
c J. Nocedal Department of Electrical Engineering and
c Computer Science.
c Northwestern University. Evanston, IL. USA
c
c
c J.L Morales Departamento de Matematicas,
c Instituto Tecnologico Autonomo de Mexico
c Mexico D.F. Mexico.
c
c March 2011
c
c=============================================================================
subroutine setulb(n, m, x, l, u, nbd, f, g, factr, pgtol, wa, iwa,
+ task, iprint, csave, lsave, isave, dsave, maxls)
character*60 task, csave
logical lsave(4)
integer n, m, iprint, maxls,
+ nbd(n), iwa(3*n), isave(44)
double precision f, factr, pgtol, x(n), l(n), u(n), g(n),
c
c-jlm-jn
+ wa(2*m*n + 5*n + 11*m*m + 8*m), dsave(29)
c ************
c
c Subroutine setulb
c
c This subroutine partitions the working arrays wa and iwa, and
c then uses the limited memory BFGS method to solve the bound
c constrained optimization problem by calling mainlb.
c (The direct method will be used in the subspace minimization.)
c
c n is an integer variable.
c On entry n is the dimension of the problem.
c On exit n is unchanged.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric corrections
c used to define the limited memory matrix.
c On exit m is unchanged.
c
c x is a double precision array of dimension n.
c On entry x is an approximation to the solution.
c On exit x is the current approximation.
c
c l is a double precision array of dimension n.
c On entry l is the lower bound on x.
c On exit l is unchanged.
c
c u is a double precision array of dimension n.
c On entry u is the upper bound on x.
c On exit u is unchanged.
c
c nbd is an integer array of dimension n.
c On entry nbd represents the type of bounds imposed on the
c variables, and must be specified as follows:
c nbd(i)=0 if x(i) is unbounded,
c 1 if x(i) has only a lower bound,
c 2 if x(i) has both lower and upper bounds, and
c 3 if x(i) has only an upper bound.
c On exit nbd is unchanged.
c
c f is a double precision variable.
c On first entry f is unspecified.
c On final exit f is the value of the function at x.
c
c g is a double precision array of dimension n.
c On first entry g is unspecified.
c On final exit g is the value of the gradient at x.
c
c factr is a double precision variable.
c On entry factr >= 0 is specified by the user. The iteration
c will stop when
c
c (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch
c
c where epsmch is the machine precision, which is automatically
c generated by the code. Typical values for factr: 1.d+12 for
c low accuracy; 1.d+7 for moderate accuracy; 1.d+1 for extremely
c high accuracy.
c On exit factr is unchanged.
c
c pgtol is a double precision variable.
c On entry pgtol >= 0 is specified by the user. The iteration
c will stop when
c
c max{|proj g_i | i = 1, ..., n} <= pgtol
c
c where pg_i is the ith component of the projected gradient.
c On exit pgtol is unchanged.
c
c wa is a double precision working array of length
c (2mmax + 5)nmax + 12mmax^2 + 12mmax.
c
c iwa is an integer working array of length 3nmax.
c
c task is a working string of characters of length 60 indicating
c the current job when entering and quitting this subroutine.
c
c iprint is an integer variable that must be set by the user.
c It controls the frequency and type of output generated:
c iprint<0 no output is generated;
c iprint=0 print only one line at the last iteration;
c 0<iprint<99 print also f and |proj g| every iprint iterations;
c iprint=99 print details of every iteration except n-vectors;
c iprint=100 print also the changes of active set and final x;
c iprint>100 print details of every iteration including x and g;
c
c
c csave is a working string of characters of length 60.
c
c lsave is a logical working array of dimension 4.
c On exit with 'task' = NEW_X, the following information is
c available:
c If lsave(1) = .true. then the initial X has been replaced by
c its projection in the feasible set;
c If lsave(2) = .true. then the problem is constrained;
c If lsave(3) = .true. then each variable has upper and lower
c bounds;
c
c isave is an integer working array of dimension 44.
c On exit with 'task' = NEW_X, the following information is
c available:
c isave(22) = the total number of intervals explored in the
c search of Cauchy points;
c isave(26) = the total number of skipped BFGS updates before
c the current iteration;
c isave(30) = the number of current iteration;
c isave(31) = the total number of BFGS updates prior the current
c iteration;
c isave(33) = the number of intervals explored in the search of
c Cauchy point in the current iteration;
c isave(34) = the total number of function and gradient
c evaluations;
c isave(36) = the number of function value or gradient
c evaluations in the current iteration;
c if isave(37) = 0 then the subspace argmin is within the box;
c if isave(37) = 1 then the subspace argmin is beyond the box;
c isave(38) = the number of free variables in the current
c iteration;
c isave(39) = the number of active constraints in the current
c iteration;
c n + 1 - isave(40) = the number of variables leaving the set of
c active constraints in the current iteration;
c isave(41) = the number of variables entering the set of active
c constraints in the current iteration.
c
c dsave is a double precision working array of dimension 29.
c On exit with 'task' = NEW_X, the following information is
c available:
c dsave(1) = current 'theta' in the BFGS matrix;
c dsave(2) = f(x) in the previous iteration;
c dsave(3) = factr*epsmch;
c dsave(4) = 2-norm of the line search direction vector;
c dsave(5) = the machine precision epsmch generated by the code;
c dsave(7) = the accumulated time spent on searching for
c Cauchy points;
c dsave(8) = the accumulated time spent on
c subspace minimization;
c dsave(9) = the accumulated time spent on line search;
c dsave(11) = the slope of the line search function at
c the current point of line search;
c dsave(12) = the maximum relative step length imposed in
c line search;
c dsave(13) = the infinity norm of the projected gradient;
c dsave(14) = the relative step length in the line search;
c dsave(15) = the slope of the line search function at
c the starting point of the line search;
c dsave(16) = the square of the 2-norm of the line search
c direction vector.
c
c Subprograms called:
c
c L-BFGS-B Library ... mainlb.
c
c
c References:
c
c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c memory algorithm for bound constrained optimization'',
c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: a
c limited memory FORTRAN code for solving bound constrained
c optimization problems'', Tech. Report, NAM-11, EECS Department,
c Northwestern University, 1994.
c
c (Postscript files of these papers are available via anonymous
c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
c-jlm-jn
integer lws,lr,lz,lt,ld,lxp,lwa,
+ lwy,lsy,lss,lwt,lwn,lsnd
if (task .eq. 'START') then
isave(1) = m*n
isave(2) = m**2
isave(3) = 4*m**2
isave(4) = 1 ! ws m*n
isave(5) = isave(4) + isave(1) ! wy m*n
isave(6) = isave(5) + isave(1) ! wsy m**2
isave(7) = isave(6) + isave(2) ! wss m**2
isave(8) = isave(7) + isave(2) ! wt m**2
isave(9) = isave(8) + isave(2) ! wn 4*m**2
isave(10) = isave(9) + isave(3) ! wsnd 4*m**2
isave(11) = isave(10) + isave(3) ! wz n
isave(12) = isave(11) + n ! wr n
isave(13) = isave(12) + n ! wd n
isave(14) = isave(13) + n ! wt n
isave(15) = isave(14) + n ! wxp n
isave(16) = isave(15) + n ! wa 8*m
endif
lws = isave(4)
lwy = isave(5)
lsy = isave(6)
lss = isave(7)
lwt = isave(8)
lwn = isave(9)
lsnd = isave(10)
lz = isave(11)
lr = isave(12)
ld = isave(13)
lt = isave(14)
lxp = isave(15)
lwa = isave(16)
call mainlb(n,m,x,l,u,nbd,f,g,factr,pgtol,
+ wa(lws),wa(lwy),wa(lsy),wa(lss), wa(lwt),
+ wa(lwn),wa(lsnd),wa(lz),wa(lr),wa(ld),wa(lt),wa(lxp),
+ wa(lwa),
+ iwa(1),iwa(n+1),iwa(2*n+1),task,iprint,
+ csave,lsave,isave(22),dsave, maxls)
return
end
c======================= The end of setulb =============================
subroutine mainlb(n, m, x, l, u, nbd, f, g, factr, pgtol, ws, wy,
+ sy, ss, wt, wn, snd, z, r, d, t, xp, wa,
+ index, iwhere, indx2, task,
+ iprint, csave, lsave, isave, dsave, maxls)
implicit none
character*60 task, csave
logical lsave(4)
integer n, m, iprint, nbd(n), index(n),
+ iwhere(n), indx2(n), isave(23),
+ maxls
double precision f, factr, pgtol,
+ x(n), l(n), u(n), g(n), z(n), r(n), d(n), t(n),
c-jlm-jn
+ xp(n),
+ wa(8*m),
+ ws(n, m), wy(n, m), sy(m, m), ss(m, m),
+ wt(m, m), wn(2*m, 2*m), snd(2*m, 2*m), dsave(29)
c ************
c
c Subroutine mainlb
c
c This subroutine solves bound constrained optimization problems by
c using the compact formula of the limited memory BFGS updates.
c
c n is an integer variable.
c On entry n is the number of variables.
c On exit n is unchanged.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric
c corrections allowed in the limited memory matrix.
c On exit m is unchanged.
c
c x is a double precision array of dimension n.
c On entry x is an approximation to the solution.
c On exit x is the current approximation.
c
c l is a double precision array of dimension n.
c On entry l is the lower bound of x.
c On exit l is unchanged.
c
c u is a double precision array of dimension n.
c On entry u is the upper bound of x.
c On exit u is unchanged.
c
c nbd is an integer array of dimension n.
c On entry nbd represents the type of bounds imposed on the
c variables, and must be specified as follows:
c nbd(i)=0 if x(i) is unbounded,
c 1 if x(i) has only a lower bound,
c 2 if x(i) has both lower and upper bounds,
c 3 if x(i) has only an upper bound.
c On exit nbd is unchanged.
c
c f is a double precision variable.
c On first entry f is unspecified.
c On final exit f is the value of the function at x.
c
c g is a double precision array of dimension n.
c On first entry g is unspecified.
c On final exit g is the value of the gradient at x.
c
c factr is a double precision variable.
c On entry factr >= 0 is specified by the user. The iteration
c will stop when
c
c (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch
c
c where epsmch is the machine precision, which is automatically
c generated by the code.
c On exit factr is unchanged.
c
c pgtol is a double precision variable.
c On entry pgtol >= 0 is specified by the user. The iteration
c will stop when
c
c max{|proj g_i | i = 1, ..., n} <= pgtol
c
c where pg_i is the ith component of the projected gradient.
c On exit pgtol is unchanged.
c
c ws, wy, sy, and wt are double precision working arrays used to
c store the following information defining the limited memory
c BFGS matrix:
c ws, of dimension n x m, stores S, the matrix of s-vectors;
c wy, of dimension n x m, stores Y, the matrix of y-vectors;
c sy, of dimension m x m, stores S'Y;
c ss, of dimension m x m, stores S'S;
c yy, of dimension m x m, stores Y'Y;
c wt, of dimension m x m, stores the Cholesky factorization
c of (theta*S'S+LD^(-1)L'); see eq.
c (2.26) in [3].
c
c wn is a double precision working array of dimension 2m x 2m
c used to store the LEL^T factorization of the indefinite matrix
c K = [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c
c where E = [-I 0]
c [ 0 I]
c
c snd is a double precision working array of dimension 2m x 2m
c used to store the lower triangular part of
c N = [Y' ZZ'Y L_a'+R_z']
c [L_a +R_z S'AA'S ]
c
c z(n),r(n),d(n),t(n), xp(n),wa(8*m) are double precision working arrays.
c z is used at different times to store the Cauchy point and
c the Newton point.
c xp is used to safeguard the projected Newton direction
c
c sg(m),sgo(m),yg(m),ygo(m) are double precision working arrays.
c
c index is an integer working array of dimension n.
c In subroutine freev, index is used to store the free and fixed
c variables at the Generalized Cauchy Point (GCP).
c
c iwhere is an integer working array of dimension n used to record
c the status of the vector x for GCP computation.
c iwhere(i)=0 or -3 if x(i) is free and has bounds,
c 1 if x(i) is fixed at l(i), and l(i) .ne. u(i)
c 2 if x(i) is fixed at u(i), and u(i) .ne. l(i)
c 3 if x(i) is always fixed, i.e., u(i)=x(i)=l(i)
c -1 if x(i) is always free, i.e., no bounds on it.
c
c indx2 is an integer working array of dimension n.
c Within subroutine cauchy, indx2 corresponds to the array iorder.
c In subroutine freev, a list of variables entering and leaving
c the free set is stored in indx2, and it is passed on to
c subroutine formk with this information.
c
c task is a working string of characters of length 60 indicating
c the current job when entering and leaving this subroutine.
c
c iprint is an INTEGER variable that must be set by the user.
c It controls the frequency and type of output generated:
c iprint<0 no output is generated;
c iprint=0 print only one line at the last iteration;
c 0<iprint<99 print also f and |proj g| every iprint iterations;
c iprint=99 print details of every iteration except n-vectors;
c iprint=100 print also the changes of active set and final x;
c iprint>100 print details of every iteration including x and g;
c
c
c csave is a working string of characters of length 60.
c
c lsave is a logical working array of dimension 4.
c
c isave is an integer working array of dimension 23.
c
c dsave is a double precision working array of dimension 29.
c
c
c Subprograms called
c
c L-BFGS-B Library ... cauchy, subsm, lnsrlb, formk,
c
c errclb, prn1lb, prn2lb, prn3lb, active, projgr,
c
c freev, cmprlb, matupd, formt.
c
c Minpack2 Library ... timer
c
c Linpack Library ... dcopy, ddot.
c
c
c References:
c
c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c memory algorithm for bound constrained optimization'',
c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN
c Subroutines for Large Scale Bound Constrained Optimization''
c Tech. Report, NAM-11, EECS Department, Northwestern University,
c 1994.
c
c [3] R. Byrd, J. Nocedal and R. Schnabel "Representations of
c Quasi-Newton Matrices and their use in Limited Memory Methods'',
c Mathematical Programming 63 (1994), no. 4, pp. 129-156.
c
c (Postscript files of these papers are available via anonymous
c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
logical prjctd,cnstnd,boxed,updatd,wrk
character*3 word
integer i,k,nintol,iback,nskip,
+ head,col,iter,itail,iupdat,
+ nseg,nfgv,info,ifun,
+ iword,nfree,nact,ileave,nenter
double precision theta,fold,ddot,dr,rr,tol,
+ xstep,sbgnrm,ddum,dnorm,dtd,epsmch,
+ cpu1,cpu2,cachyt,sbtime,lnscht,time1,time2,
+ gd,gdold,stp,stpmx,time
double precision one,zero
double precision dlamch
external dlamch
parameter (one=1.0d0,zero=0.0d0)
if (task .eq. 'START') then
epsmch = 2 * dlamch('e')
call timer(time1)
c Initialize counters and scalars when task='START'.
c for the limited memory BFGS matrices:
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
iback = 0
itail = 0
iword = 0
nact = 0
ileave = 0
nenter = 0
fold = zero
dnorm = zero
cpu1 = zero
gd = zero
stpmx = zero
sbgnrm = zero
stp = zero
gdold = zero
dtd = zero
c for operation counts:
iter = 0
nfgv = 0
nseg = 0
nintol = 0
nskip = 0
nfree = n
ifun = 0
c for stopping tolerance:
tol = factr*epsmch
c for measuring running time:
cachyt = 0
sbtime = 0
lnscht = 0
c 'word' records the status of subspace solutions.
word = '---'
c 'info' records the termination information.
info = 0
c Check the input arguments for errors.
call errclb(n,m,factr,l,u,nbd,task,info,k)
if (task(1:5) .eq. 'ERROR') then
call prn3lb(n,x,f,task,iprint,info,
+ iter,nfgv,nintol,nskip,nact,sbgnrm,
+ zero,nseg,word,iback,stp,xstep,k,
+ cachyt,sbtime,lnscht)
return
endif
call prn1lb(n,m,l,u,x,iprint,epsmch)
c Initialize iwhere & project x onto the feasible set.
call active(n,l,u,nbd,x,iwhere,iprint,prjctd,cnstnd,boxed)
c The end of the initialization.
else
c restore local variables.
prjctd = lsave(1)
cnstnd = lsave(2)
boxed = lsave(3)
updatd = lsave(4)
nintol = isave(1)
iback = isave(4)
nskip = isave(5)
head = isave(6)
col = isave(7)
itail = isave(8)
iter = isave(9)
iupdat = isave(10)
nseg = isave(12)
nfgv = isave(13)
info = isave(14)
ifun = isave(15)
iword = isave(16)
nfree = isave(17)
nact = isave(18)
ileave = isave(19)
nenter = isave(20)
theta = dsave(1)
fold = dsave(2)
tol = dsave(3)
dnorm = dsave(4)
epsmch = dsave(5)
cpu1 = dsave(6)
cachyt = dsave(7)
sbtime = dsave(8)
lnscht = dsave(9)
time1 = dsave(10)
gd = dsave(11)
stpmx = dsave(12)
sbgnrm = dsave(13)
stp = dsave(14)
gdold = dsave(15)
dtd = dsave(16)
c After returning from the driver go to the point where execution
c is to resume.
if (task(1:5) .eq. 'FG_LN') goto 666
if (task(1:5) .eq. 'NEW_X') goto 777
if (task(1:5) .eq. 'FG_ST') goto 111
if (task(1:4) .eq. 'STOP') then
if (task(7:9) .eq. 'CPU') then
c restore the previous iterate.
call dcopy(n,t,1,x,1)
call dcopy(n,r,1,g,1)
f = fold
endif
goto 999
endif
endif
c Compute f0 and g0.
task = 'FG_START'
c return to the driver to calculate f and g; reenter at 111.
goto 1000
111 continue
nfgv = 1
c Compute the infinity norm of the (-) projected gradient.
call projgr(n,l,u,nbd,x,g,sbgnrm)
if (iprint .ge. 1) then
write (6,1002) iter,f,sbgnrm
endif
if (sbgnrm .le. pgtol) then
c terminate the algorithm.
task = 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
goto 999
endif
c ----------------- the beginning of the loop --------------------------
222 continue
if (iprint .ge. 99) write (6,1001) iter + 1
iword = -1
c
if (.not. cnstnd .and. col .gt. 0) then
c skip the search for GCP.
call dcopy(n,x,1,z,1)
wrk = updatd
nseg = 0
goto 333
endif
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Compute the Generalized Cauchy Point (GCP).
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
call timer(cpu1)
call cauchy(n,x,l,u,nbd,g,indx2,iwhere,t,d,z,
+ m,wy,ws,sy,wt,theta,col,head,
+ wa(1),wa(2*m+1),wa(4*m+1),wa(6*m+1),nseg,
+ iprint, sbgnrm, info, epsmch)
if (info .ne. 0) then
c singular triangular system detected; refresh the lbfgs memory.
if(iprint .ge. 1) write (0, 1005)
info = 0
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
call timer(cpu2)
cachyt = cachyt + cpu2 - cpu1
goto 222
endif
call timer(cpu2)
cachyt = cachyt + cpu2 - cpu1
nintol = nintol + nseg
c Count the entering and leaving variables for iter > 0;
c find the index set of free and active variables at the GCP.
call freev(n,nfree,index,nenter,ileave,indx2,
+ iwhere,wrk,updatd,cnstnd,iprint,iter)
nact = n - nfree
333 continue
c If there are no free variables or B=theta*I, then
c skip the subspace minimization.
if (nfree .eq. 0 .or. col .eq. 0) goto 555
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Subspace minimization.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
call timer(cpu1)
c Form the LEL^T factorization of the indefinite
c matrix K = [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c where E = [-I 0]
c [ 0 I]
if (wrk) call formk(n,nfree,index,nenter,ileave,indx2,iupdat,
+ updatd,wn,snd,m,ws,wy,sy,theta,col,head,info)
if (info .ne. 0) then
c nonpositive definiteness in Cholesky factorization;
c refresh the lbfgs memory and restart the iteration.
if(iprint .ge. 1) write (0, 1006)
info = 0
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
call timer(cpu2)
sbtime = sbtime + cpu2 - cpu1
goto 222
endif
c compute r=-Z'B(xcp-xk)-Z'g (using wa(2m+1)=W'(xcp-x)
c from 'cauchy').
call cmprlb(n,m,x,g,ws,wy,sy,wt,z,r,wa,index,
+ theta,col,head,nfree,cnstnd,info)
if (info .ne. 0) goto 444
c-jlm-jn call the direct method.
call subsm( n, m, nfree, index, l, u, nbd, z, r, xp, ws, wy,
+ theta, x, g, col, head, iword, wa, wn, iprint, info)
444 continue
if (info .ne. 0) then
c singular triangular system detected;
c refresh the lbfgs memory and restart the iteration.
if(iprint .ge. 1) write (0, 1005)
info = 0
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
call timer(cpu2)
sbtime = sbtime + cpu2 - cpu1
goto 222
endif
call timer(cpu2)
sbtime = sbtime + cpu2 - cpu1
555 continue
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Line search and optimality tests.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Generate the search direction d:=z-x.
do 40 i = 1, n
d(i) = z(i) - x(i)
40 continue
call timer(cpu1)
666 continue
call lnsrlb(n,l,u,nbd,x,f,fold,gd,gdold,g,d,r,t,z,stp,dnorm,
+ dtd,xstep,stpmx,iter,ifun,iback,nfgv,info,task,
+ boxed,cnstnd,csave,isave(22),dsave(17), iprint)
if (info .ne. 0 .or. iback .ge. maxls) then
c restore the previous iterate.
call dcopy(n,t,1,x,1)
call dcopy(n,r,1,g,1)
f = fold
if (col .eq. 0) then
c abnormal termination.
if (info .eq. 0) then
info = -9
c restore the actual number of f and g evaluations etc.
nfgv = nfgv - 1
ifun = ifun - 1
iback = iback - 1
endif
task = 'ABNORMAL_TERMINATION_IN_LNSRCH'
iter = iter + 1
goto 999
else
c refresh the lbfgs memory and restart the iteration.
if(iprint .ge. 1) write (0, 1008)
if (info .eq. 0) nfgv = nfgv - 1
info = 0
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
task = 'RESTART_FROM_LNSRCH'
call timer(cpu2)
lnscht = lnscht + cpu2 - cpu1
goto 222
endif
else if (task(1:5) .eq. 'FG_LN') then
c return to the driver for calculating f and g; reenter at 666.
goto 1000
else
c calculate and print out the quantities related to the new X.
call timer(cpu2)
lnscht = lnscht + cpu2 - cpu1
iter = iter + 1
c Compute the infinity norm of the projected (-)gradient.
call projgr(n,l,u,nbd,x,g,sbgnrm)
c Print iteration information.
call prn2lb(n,x,f,g,iprint,iter,nfgv,nact,
+ sbgnrm,nseg,word,iword,iback,stp,xstep)
goto 1000
endif
777 continue
c Test for termination.
if (sbgnrm .le. pgtol) then
c terminate the algorithm.
task = 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
goto 999
endif
ddum = max(abs(fold), abs(f), one)
if ((fold - f) .le. tol*ddum) then
c terminate the algorithm.
task = 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
if (iback .ge. 10) info = -5
c i.e., to issue a warning if iback>10 in the line search.
goto 999
endif
c Compute d=newx-oldx, r=newg-oldg, rr=y'y and dr=y's.
do 42 i = 1, n
r(i) = g(i) - r(i)
42 continue
rr = ddot(n,r,1,r,1)
if (stp .eq. one) then
dr = gd - gdold
ddum = -gdold
else
dr = (gd - gdold)*stp
call dscal(n,stp,d,1)
ddum = -gdold*stp
endif
if (dr .le. epsmch*ddum) then
c skip the L-BFGS update.
nskip = nskip + 1
updatd = .false.
if (iprint .ge. 1) write (6,1004) dr, ddum
goto 888
endif
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Update the L-BFGS matrix.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
updatd = .true.
iupdat = iupdat + 1
c Update matrices WS and WY and form the middle matrix in B.
call matupd(n,m,ws,wy,sy,ss,d,r,itail,
+ iupdat,col,head,theta,rr,dr,stp,dtd)
c Form the upper half of the pds T = theta*SS + L*D^(-1)*L';
c Store T in the upper triangular of the array wt;
c Cholesky factorize T to J*J' with
c J' stored in the upper triangular of wt.
call formt(m,wt,sy,ss,col,theta,info)
if (info .ne. 0) then
c nonpositive definiteness in Cholesky factorization;
c refresh the lbfgs memory and restart the iteration.
if(iprint .ge. 1) write (0, 1007)
info = 0
col = 0
head = 1
theta = one
iupdat = 0
updatd = .false.
goto 222
endif
c Now the inverse of the middle matrix in B is
c [ D^(1/2) O ] [ -D^(1/2) D^(-1/2)*L' ]
c [ -L*D^(-1/2) J ] [ 0 J' ]
888 continue
c -------------------- the end of the loop -----------------------------
goto 222
999 continue
call timer(time2)
time = time2 - time1
call prn3lb(n,x,f,task,iprint,info,
+ iter,nfgv,nintol,nskip,nact,sbgnrm,
+ time,nseg,word,iback,stp,xstep,k,
+ cachyt,sbtime,lnscht)
1000 continue
c Save local variables.
lsave(1) = prjctd
lsave(2) = cnstnd
lsave(3) = boxed
lsave(4) = updatd
isave(1) = nintol
isave(4) = iback
isave(5) = nskip
isave(6) = head
isave(7) = col
isave(8) = itail
isave(9) = iter
isave(10) = iupdat
isave(12) = nseg
isave(13) = nfgv
isave(14) = info
isave(15) = ifun
isave(16) = iword
isave(17) = nfree
isave(18) = nact
isave(19) = ileave
isave(20) = nenter
dsave(1) = theta
dsave(2) = fold
dsave(3) = tol
dsave(4) = dnorm
dsave(5) = epsmch
dsave(6) = cpu1
dsave(7) = cachyt
dsave(8) = sbtime
dsave(9) = lnscht
dsave(10) = time1
dsave(11) = gd
dsave(12) = stpmx
dsave(13) = sbgnrm
dsave(14) = stp
dsave(15) = gdold
dsave(16) = dtd
1001 format (//,'ITERATION ',i5)
1002 format
+ (/,'At iterate',i5,4x,'f= ',1p,d12.5,4x,'|proj g|= ',1p,d12.5)
1003 format (2(1x,i4),5x,'-',5x,'-',3x,'-',5x,'-',5x,'-',8x,'-',3x,
+ 1p,2(1x,d10.3))
1004 format (' ys=',1p,e10.3,' -gs=',1p,e10.3,' BFGS update SKIPPED')
1005 format (/,
+' Singular triangular system detected;',/,
+' refresh the lbfgs memory and restart the iteration.')
1006 format (/,
+' Nonpositive definiteness in Cholesky factorization in formk;',/,
+' refresh the lbfgs memory and restart the iteration.')
1007 format (/,
+' Nonpositive definiteness in Cholesky factorization in formt;',/,
+' refresh the lbfgs memory and restart the iteration.')
1008 format (/,
+' Bad direction in the line search;',/,
+' refresh the lbfgs memory and restart the iteration.')
return
end
c======================= The end of mainlb =============================
subroutine active(n, l, u, nbd, x, iwhere, iprint,
+ prjctd, cnstnd, boxed)
logical prjctd, cnstnd, boxed
integer n, iprint, nbd(n), iwhere(n)
double precision x(n), l(n), u(n)
c ************
c
c Subroutine active
c
c This subroutine initializes iwhere and projects the initial x to
c the feasible set if necessary.
c
c iwhere is an integer array of dimension n.
c On entry iwhere is unspecified.
c On exit iwhere(i)=-1 if x(i) has no bounds
c 3 if l(i)=u(i)
c 0 otherwise.
c In cauchy, iwhere is given finer gradations.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer nbdd,i
double precision zero
parameter (zero=0.0d0)
c Initialize nbdd, prjctd, cnstnd and boxed.
nbdd = 0
prjctd = .false.
cnstnd = .false.
boxed = .true.
c Project the initial x to the easible set if necessary.
do 10 i = 1, n
if (nbd(i) .gt. 0) then
if (nbd(i) .le. 2 .and. x(i) .le. l(i)) then
if (x(i) .lt. l(i)) then
prjctd = .true.
x(i) = l(i)
endif
nbdd = nbdd + 1
else if (nbd(i) .ge. 2 .and. x(i) .ge. u(i)) then
if (x(i) .gt. u(i)) then
prjctd = .true.
x(i) = u(i)
endif
nbdd = nbdd + 1
endif
endif
10 continue
c Initialize iwhere and assign values to cnstnd and boxed.
do 20 i = 1, n
if (nbd(i) .ne. 2) boxed = .false.
if (nbd(i) .eq. 0) then
c this variable is always free
iwhere(i) = -1
c otherwise set x(i)=mid(x(i), u(i), l(i)).
else
cnstnd = .true.
if (nbd(i) .eq. 2 .and. u(i) - l(i) .le. zero) then
c this variable is always fixed
iwhere(i) = 3
else
iwhere(i) = 0
endif
endif
20 continue
if (iprint .ge. 0) then
if (prjctd) write (0,*)
+ 'The initial X is infeasible. Restart with its projection.'
if (.not. cnstnd)
+ write (0,*) 'This problem is unconstrained.'
endif
if (iprint .gt. 0) write (6,1001) nbdd
1001 format (/,'At X0 ',i9,' variables are exactly at the bounds')
return
end
c======================= The end of active =============================
subroutine bmv(m, sy, wt, col, v, p, info)
integer m, col, info
double precision sy(m, m), wt(m, m), v(2*col), p(2*col)
c ************
c
c Subroutine bmv
c
c This subroutine computes the product of the 2m x 2m middle matrix
c in the compact L-BFGS formula of B and a 2m vector v;
c it returns the product in p.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric corrections
c used to define the limited memory matrix.
c On exit m is unchanged.
c
c sy is a double precision array of dimension m x m.
c On entry sy specifies the matrix S'Y.
c On exit sy is unchanged.
c
c wt is a double precision array of dimension m x m.
c On entry wt specifies the upper triangular matrix J' which is
c the Cholesky factor of (thetaS'S+LD^(-1)L').
c On exit wt is unchanged.
c
c col is an integer variable.
c On entry col specifies the number of s-vectors (or y-vectors)
c stored in the compact L-BFGS formula.
c On exit col is unchanged.
c
c v is a double precision array of dimension 2col.
c On entry v specifies vector v.
c On exit v is unchanged.
c
c p is a double precision array of dimension 2col.
c On entry p is unspecified.
c On exit p is the product Mv.
c
c info is an integer variable.
c On entry info is unspecified.
c On exit info = 0 for normal return,
c = nonzero for abnormal return when the system
c to be solved by dtrsl is singular.
c
c Subprograms called:
c
c Linpack ... dtrsl.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i,k,i2
double precision sum
if (col .eq. 0) return
c PART I: solve [ D^(1/2) O ] [ p1 ] = [ v1 ]
c [ -L*D^(-1/2) J ] [ p2 ] [ v2 ].
c solve Jp2=v2+LD^(-1)v1.
p(col + 1) = v(col + 1)
do 20 i = 2, col
i2 = col + i
sum = 0.0d0
do 10 k = 1, i - 1
sum = sum + sy(i,k)*v(k)/sy(k,k)
10 continue
p(i2) = v(i2) + sum
20 continue
c Solve the triangular system
call dtrsl(wt,m,col,p(col+1),11,info)
if (info .ne. 0) return
c solve D^(1/2)p1=v1.
do 30 i = 1, col
p(i) = v(i)/sqrt(sy(i,i))
30 continue
c PART II: solve [ -D^(1/2) D^(-1/2)*L' ] [ p1 ] = [ p1 ]
c [ 0 J' ] [ p2 ] [ p2 ].
c solve J^Tp2=p2.
call dtrsl(wt,m,col,p(col+1),01,info)
if (info .ne. 0) return
c compute p1=-D^(-1/2)(p1-D^(-1/2)L'p2)
c =-D^(-1/2)p1+D^(-1)L'p2.
do 40 i = 1, col
p(i) = -p(i)/sqrt(sy(i,i))
40 continue
do 60 i = 1, col
sum = 0.d0
do 50 k = i + 1, col
sum = sum + sy(k,i)*p(col+k)/sy(i,i)
50 continue
p(i) = p(i) + sum
60 continue
return
end
c======================== The end of bmv ===============================
subroutine cauchy(n, x, l, u, nbd, g, iorder, iwhere, t, d, xcp,
+ m, wy, ws, sy, wt, theta, col, head, p, c, wbp,
+ v, nseg, iprint, sbgnrm, info, epsmch)
implicit none
integer n, m, head, col, nseg, iprint, info,
+ nbd(n), iorder(n), iwhere(n)
double precision theta, epsmch,
+ x(n), l(n), u(n), g(n), t(n), d(n), xcp(n),
+ wy(n, col), ws(n, col), sy(m, m),
+ wt(m, m), p(2*m), c(2*m), wbp(2*m), v(2*m)
c ************
c
c Subroutine cauchy
c
c For given x, l, u, g (with sbgnrm > 0), and a limited memory
c BFGS matrix B defined in terms of matrices WY, WS, WT, and
c scalars head, col, and theta, this subroutine computes the
c generalized Cauchy point (GCP), defined as the first local
c minimizer of the quadratic
c
c Q(x + s) = g's + 1/2 s'Bs
c
c along the projected gradient direction P(x-tg,l,u).
c The routine returns the GCP in xcp.
c
c n is an integer variable.
c On entry n is the dimension of the problem.
c On exit n is unchanged.
c
c x is a double precision array of dimension n.
c On entry x is the starting point for the GCP computation.
c On exit x is unchanged.
c
c l is a double precision array of dimension n.
c On entry l is the lower bound of x.
c On exit l is unchanged.
c
c u is a double precision array of dimension n.
c On entry u is the upper bound of x.
c On exit u is unchanged.
c
c nbd is an integer array of dimension n.
c On entry nbd represents the type of bounds imposed on the
c variables, and must be specified as follows:
c nbd(i)=0 if x(i) is unbounded,
c 1 if x(i) has only a lower bound,
c 2 if x(i) has both lower and upper bounds, and
c 3 if x(i) has only an upper bound.
c On exit nbd is unchanged.
c
c g is a double precision array of dimension n.
c On entry g is the gradient of f(x). g must be a nonzero vector.
c On exit g is unchanged.
c
c iorder is an integer working array of dimension n.
c iorder will be used to store the breakpoints in the piecewise
c linear path and free variables encountered. On exit,
c iorder(1),...,iorder(nleft) are indices of breakpoints
c which have not been encountered;
c iorder(nleft+1),...,iorder(nbreak) are indices of
c encountered breakpoints; and
c iorder(nfree),...,iorder(n) are indices of variables which
c have no bound constraits along the search direction.
c
c iwhere is an integer array of dimension n.
c On entry iwhere indicates only the permanently fixed (iwhere=3)
c or free (iwhere= -1) components of x.
c On exit iwhere records the status of the current x variables.
c iwhere(i)=-3 if x(i) is free and has bounds, but is not moved
c 0 if x(i) is free and has bounds, and is moved
c 1 if x(i) is fixed at l(i), and l(i) .ne. u(i)
c 2 if x(i) is fixed at u(i), and u(i) .ne. l(i)
c 3 if x(i) is always fixed, i.e., u(i)=x(i)=l(i)
c -1 if x(i) is always free, i.e., it has no bounds.
c
c t is a double precision working array of dimension n.
c t will be used to store the break points.
c
c d is a double precision array of dimension n used to store
c the Cauchy direction P(x-tg)-x.
c
c xcp is a double precision array of dimension n used to return the
c GCP on exit.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric corrections
c used to define the limited memory matrix.
c On exit m is unchanged.
c
c ws, wy, sy, and wt are double precision arrays.
c On entry they store information that defines the
c limited memory BFGS matrix:
c ws(n,m) stores S, a set of s-vectors;
c wy(n,m) stores Y, a set of y-vectors;
c sy(m,m) stores S'Y;
c wt(m,m) stores the
c Cholesky factorization of (theta*S'S+LD^(-1)L').
c On exit these arrays are unchanged.
c
c theta is a double precision variable.
c On entry theta is the scaling factor specifying B_0 = theta I.
c On exit theta is unchanged.
c
c col is an integer variable.
c On entry col is the actual number of variable metric
c corrections stored so far.
c On exit col is unchanged.
c
c head is an integer variable.
c On entry head is the location of the first s-vector (or y-vector)
c in S (or Y).
c On exit col is unchanged.
c
c p is a double precision working array of dimension 2m.
c p will be used to store the vector p = W^(T)d.
c
c c is a double precision working array of dimension 2m.
c c will be used to store the vector c = W^(T)(xcp-x).
c
c wbp is a double precision working array of dimension 2m.
c wbp will be used to store the row of W corresponding
c to a breakpoint.
c
c v is a double precision working array of dimension 2m.
c
c nseg is an integer variable.
c On exit nseg records the number of quadratic segments explored
c in searching for the GCP.
c
c sg and yg are double precision arrays of dimension m.
c On entry sg and yg store S'g and Y'g correspondingly.
c On exit they are unchanged.
c
c iprint is an INTEGER variable that must be set by the user.
c It controls the frequency and type of output generated:
c iprint<0 no output is generated;
c iprint=0 print only one line at the last iteration;
c 0<iprint<99 print also f and |proj g| every iprint iterations;
c iprint=99 print details of every iteration except n-vectors;
c iprint=100 print also the changes of active set and final x;
c iprint>100 print details of every iteration including x and g;
c
c
c sbgnrm is a double precision variable.
c On entry sbgnrm is the norm of the projected gradient at x.
c On exit sbgnrm is unchanged.
c
c info is an integer variable.
c On entry info is 0.
c On exit info = 0 for normal return,
c = nonzero for abnormal return when the the system
c used in routine bmv is singular.
c
c Subprograms called:
c
c L-BFGS-B Library ... hpsolb, bmv.
c
c Linpack ... dscal dcopy, daxpy.
c
c
c References:
c
c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c memory algorithm for bound constrained optimization'',
c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN
c Subroutines for Large Scale Bound Constrained Optimization''
c Tech. Report, NAM-11, EECS Department, Northwestern University,
c 1994.
c
c (Postscript files of these papers are available via anonymous
c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
logical xlower,xupper,bnded
integer i,j,col2,nfree,nbreak,pointr,
+ ibp,nleft,ibkmin,iter
double precision f1,f2,dt,dtm,tsum,dibp,zibp,dibp2,bkmin,
+ tu,tl,wmc,wmp,wmw,ddot,tj,tj0,neggi,sbgnrm,
+ f2_org
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
c Check the status of the variables, reset iwhere(i) if necessary;
c compute the Cauchy direction d and the breakpoints t; initialize
c the derivative f1 and the vector p = W'd (for theta = 1).
if (sbgnrm .le. zero) then
if (iprint .ge. 0) write (6,*) 'Subgnorm = 0. GCP = X.'
call dcopy(n,x,1,xcp,1)
return
endif
bnded = .true.
nfree = n + 1
nbreak = 0
ibkmin = 0
bkmin = zero
col2 = 2*col
f1 = zero
if (iprint .ge. 99) write (6,3010)
c We set p to zero and build it up as we determine d.
do 20 i = 1, col2
p(i) = zero
20 continue
c In the following loop we determine for each variable its bound
c status and its breakpoint, and update p accordingly.
c Smallest breakpoint is identified.
do 50 i = 1, n
neggi = -g(i)
if (iwhere(i) .ne. 3 .and. iwhere(i) .ne. -1) then
c if x(i) is not a constant and has bounds,
c compute the difference between x(i) and its bounds.
if (nbd(i) .le. 2) tl = x(i) - l(i)
if (nbd(i) .ge. 2) tu = u(i) - x(i)
c If a variable is close enough to a bound
c we treat it as at bound.
xlower = nbd(i) .le. 2 .and. tl .le. zero
xupper = nbd(i) .ge. 2 .and. tu .le. zero
c reset iwhere(i).
iwhere(i) = 0
if (xlower) then
if (neggi .le. zero) iwhere(i) = 1
else if (xupper) then
if (neggi .ge. zero) iwhere(i) = 2
else
if (abs(neggi) .le. zero) iwhere(i) = -3
endif
endif
pointr = head
if (iwhere(i) .ne. 0 .and. iwhere(i) .ne. -1) then
d(i) = zero
else
d(i) = neggi
f1 = f1 - neggi*neggi
c calculate p := p - W'e_i* (g_i).
do 40 j = 1, col
p(j) = p(j) + wy(i,pointr)* neggi
p(col + j) = p(col + j) + ws(i,pointr)*neggi
pointr = mod(pointr,m) + 1
40 continue
if (nbd(i) .le. 2 .and. nbd(i) .ne. 0
+ .and. neggi .lt. zero) then
c x(i) + d(i) is bounded; compute t(i).
nbreak = nbreak + 1
iorder(nbreak) = i
t(nbreak) = tl/(-neggi)
if (nbreak .eq. 1 .or. t(nbreak) .lt. bkmin) then
bkmin = t(nbreak)
ibkmin = nbreak
endif
else if (nbd(i) .ge. 2 .and. neggi .gt. zero) then
c x(i) + d(i) is bounded; compute t(i).
nbreak = nbreak + 1
iorder(nbreak) = i
t(nbreak) = tu/neggi
if (nbreak .eq. 1 .or. t(nbreak) .lt. bkmin) then
bkmin = t(nbreak)
ibkmin = nbreak
endif
else
c x(i) + d(i) is not bounded.
nfree = nfree - 1
iorder(nfree) = i
if (abs(neggi) .gt. zero) bnded = .false.
endif
endif
50 continue
c The indices of the nonzero components of d are now stored
c in iorder(1),...,iorder(nbreak) and iorder(nfree),...,iorder(n).
c The smallest of the nbreak breakpoints is in t(ibkmin)=bkmin.
if (theta .ne. one) then
c complete the initialization of p for theta not= one.
call dscal(col,theta,p(col+1),1)
endif
c Initialize GCP xcp = x.
call dcopy(n,x,1,xcp,1)
if (nbreak .eq. 0 .and. nfree .eq. n + 1) then
c is a zero vector, return with the initial xcp as GCP.
if (iprint .gt. 100) write (6,1010) (xcp(i), i = 1, n)
return
endif
c Initialize c = W'(xcp - x) = 0.
do 60 j = 1, col2
c(j) = zero
60 continue
c Initialize derivative f2.
f2 = -theta*f1
f2_org = f2
if (col .gt. 0) then
call bmv(m,sy,wt,col,p,v,info)
if (info .ne. 0) return
f2 = f2 - ddot(col2,v,1,p,1)
endif
dtm = -f1/f2
tsum = zero
nseg = 1
if (iprint .ge. 99)
+ write (6,*) 'There are ',nbreak,' breakpoints '
c If there are no breakpoints, locate the GCP and return.
if (nbreak .eq. 0) goto 888
nleft = nbreak
iter = 1
tj = zero
c------------------- the beginning of the loop -------------------------
777 continue
c Find the next smallest breakpoint;
c compute dt = t(nleft) - t(nleft + 1).
tj0 = tj
if (iter .eq. 1) then
c Since we already have the smallest breakpoint we need not do
c heapsort yet. Often only one breakpoint is used and the
c cost of heapsort is avoided.
tj = bkmin
ibp = iorder(ibkmin)
else
if (iter .eq. 2) then
c Replace the already used smallest breakpoint with the
c breakpoint numbered nbreak > nlast, before heapsort call.
if (ibkmin .ne. nbreak) then
t(ibkmin) = t(nbreak)
iorder(ibkmin) = iorder(nbreak)
endif
c Update heap structure of breakpoints
c (if iter=2, initialize heap).
endif
call hpsolb(nleft,t,iorder,iter-2)
tj = t(nleft)
ibp = iorder(nleft)
endif
dt = tj - tj0
if (dt .ne. zero .and. iprint .ge. 100) then
write (6,4011) nseg,f1,f2
write (6,5010) dt
write (6,6010) dtm
endif
c If a minimizer is within this interval, locate the GCP and return.
if (dtm .lt. dt) goto 888
c Otherwise fix one variable and
c reset the corresponding component of d to zero.
tsum = tsum + dt
nleft = nleft - 1
iter = iter + 1
dibp = d(ibp)
d(ibp) = zero
if (dibp .gt. zero) then
zibp = u(ibp) - x(ibp)
xcp(ibp) = u(ibp)
iwhere(ibp) = 2
else
zibp = l(ibp) - x(ibp)
xcp(ibp) = l(ibp)
iwhere(ibp) = 1
endif
if (iprint .ge. 100) write (6,*) 'Variable ',ibp,' is fixed.'
if (nleft .eq. 0 .and. nbreak .eq. n) then
c all n variables are fixed,
c return with xcp as GCP.
dtm = dt
goto 999
endif
c Update the derivative information.
nseg = nseg + 1
dibp2 = dibp**2
c Update f1 and f2.
c temporarily set f1 and f2 for col=0.
f1 = f1 + dt*f2 + dibp2 - theta*dibp*zibp
f2 = f2 - theta*dibp2
if (col .gt. 0) then
c update c = c + dt*p.
call daxpy(col2,dt,p,1,c,1)
c choose wbp,
c the row of W corresponding to the breakpoint encountered.
pointr = head
do 70 j = 1,col
wbp(j) = wy(ibp,pointr)
wbp(col + j) = theta*ws(ibp,pointr)
pointr = mod(pointr,m) + 1
70 continue
c compute (wbp)Mc, (wbp)Mp, and (wbp)M(wbp)'.
call bmv(m,sy,wt,col,wbp,v,info)
if (info .ne. 0) return
wmc = ddot(col2,c,1,v,1)
wmp = ddot(col2,p,1,v,1)
wmw = ddot(col2,wbp,1,v,1)
c update p = p - dibp*wbp.
call daxpy(col2,-dibp,wbp,1,p,1)
c complete updating f1 and f2 while col > 0.
f1 = f1 + dibp*wmc
f2 = f2 + 2.0d0*dibp*wmp - dibp2*wmw
endif
f2 = max(epsmch*f2_org,f2)
if (nleft .gt. 0) then
dtm = -f1/f2
goto 777
c to repeat the loop for unsearched intervals.
else if(bnded) then
f1 = zero
f2 = zero
dtm = zero
else
dtm = -f1/f2
endif
c------------------- the end of the loop -------------------------------
888 continue
if (iprint .ge. 99) then
write (6,*)
write (6,*) 'GCP found in this segment'
write (6,4010) nseg,f1,f2
write (6,6010) dtm
endif
if (dtm .le. zero) dtm = zero
tsum = tsum + dtm
c Move free variables (i.e., the ones w/o breakpoints) and
c the variables whose breakpoints haven't been reached.
call daxpy(n,tsum,d,1,xcp,1)
999 continue
c Update c = c + dtm*p = W'(x^c - x)
c which will be used in computing r = Z'(B(x^c - x) + g).
if (col .gt. 0) call daxpy(col2,dtm,p,1,c,1)
if (iprint .gt. 100) write (6,1010) (xcp(i),i = 1,n)
if (iprint .ge. 99) write (6,2010)
1010 format ('Cauchy X = ',/,(4x,1p,6(1x,d11.4)))
2010 format (/,'---------------- exit CAUCHY----------------------',/)
3010 format (/,'---------------- CAUCHY entered-------------------')
4010 format ('Piece ',i3,' --f1, f2 at start point ',1p,2(1x,d11.4))
4011 format (/,'Piece ',i3,' --f1, f2 at start point ',
+ 1p,2(1x,d11.4))
5010 format ('Distance to the next break point = ',1p,d11.4)
6010 format ('Distance to the stationary point = ',1p,d11.4)
return
end
c====================== The end of cauchy ==============================
subroutine cmprlb(n, m, x, g, ws, wy, sy, wt, z, r, wa, index,
+ theta, col, head, nfree, cnstnd, info)
logical cnstnd
integer n, m, col, head, nfree, info, index(n)
double precision theta,
+ x(n), g(n), z(n), r(n), wa(4*m),
+ ws(n, m), wy(n, m), sy(m, m), wt(m, m)
c ************
c
c Subroutine cmprlb
c
c This subroutine computes r=-Z'B(xcp-xk)-Z'g by using
c wa(2m+1)=W'(xcp-x) from subroutine cauchy.
c
c Subprograms called:
c
c L-BFGS-B Library ... bmv.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i,j,k,pointr
double precision a1,a2
if (.not. cnstnd .and. col .gt. 0) then
do 26 i = 1, n
r(i) = -g(i)
26 continue
else
do 30 i = 1, nfree
k = index(i)
r(i) = -theta*(z(k) - x(k)) - g(k)
30 continue
call bmv(m,sy,wt,col,wa(2*m+1),wa(1),info)
if (info .ne. 0) then
info = -8
return
endif
pointr = head
do 34 j = 1, col
a1 = wa(j)
a2 = theta*wa(col + j)
do 32 i = 1, nfree
k = index(i)
r(i) = r(i) + wy(k,pointr)*a1 + ws(k,pointr)*a2
32 continue
pointr = mod(pointr,m) + 1
34 continue
endif
return
end
c======================= The end of cmprlb =============================
subroutine errclb(n, m, factr, l, u, nbd, task, info, k)
character*60 task
integer n, m, info, k, nbd(n)
double precision factr, l(n), u(n)
c ************
c
c Subroutine errclb
c
c This subroutine checks the validity of the input data.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
c Check the input arguments for errors.
if (n .le. 0) task = 'ERROR: N .LE. 0'
if (m .le. 0) task = 'ERROR: M .LE. 0'
if (factr .lt. zero) task = 'ERROR: FACTR .LT. 0'
c Check the validity of the arrays nbd(i), u(i), and l(i).
do 10 i = 1, n
if (nbd(i) .lt. 0 .or. nbd(i) .gt. 3) then
c return
task = 'ERROR: INVALID NBD'
info = -6
k = i
endif
if (nbd(i) .eq. 2) then
if (l(i) .gt. u(i)) then
c return
task = 'ERROR: NO FEASIBLE SOLUTION'
info = -7
k = i
endif
endif
10 continue
return
end
c======================= The end of errclb =============================
subroutine formk(n, nsub, ind, nenter, ileave, indx2, iupdat,
+ updatd, wn, wn1, m, ws, wy, sy, theta, col,
+ head, info)
integer n, nsub, m, col, head, nenter, ileave, iupdat,
+ info, ind(n), indx2(n)
double precision theta, wn(2*m, 2*m), wn1(2*m, 2*m),
+ ws(n, m), wy(n, m), sy(m, m)
logical updatd
c ************
c
c Subroutine formk
c
c This subroutine forms the LEL^T factorization of the indefinite
c
c matrix K = [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c where E = [-I 0]
c [ 0 I]
c The matrix K can be shown to be equal to the matrix M^[-1]N
c occurring in section 5.1 of [1], as well as to the matrix
c Mbar^[-1] Nbar in section 5.3.
c
c n is an integer variable.
c On entry n is the dimension of the problem.
c On exit n is unchanged.
c
c nsub is an integer variable
c On entry nsub is the number of subspace variables in free set.
c On exit nsub is not changed.
c
c ind is an integer array of dimension nsub.
c On entry ind specifies the indices of subspace variables.
c On exit ind is unchanged.
c
c nenter is an integer variable.
c On entry nenter is the number of variables entering the
c free set.
c On exit nenter is unchanged.
c
c ileave is an integer variable.
c On entry indx2(ileave),...,indx2(n) are the variables leaving
c the free set.
c On exit ileave is unchanged.
c
c indx2 is an integer array of dimension n.
c On entry indx2(1),...,indx2(nenter) are the variables entering
c the free set, while indx2(ileave),...,indx2(n) are the
c variables leaving the free set.
c On exit indx2 is unchanged.
c
c iupdat is an integer variable.
c On entry iupdat is the total number of BFGS updates made so far.
c On exit iupdat is unchanged.
c
c updatd is a logical variable.
c On entry 'updatd' is true if the L-BFGS matrix is updatd.
c On exit 'updatd' is unchanged.
c
c wn is a double precision array of dimension 2m x 2m.
c On entry wn is unspecified.
c On exit the upper triangle of wn stores the LEL^T factorization
c of the 2*col x 2*col indefinite matrix
c [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c
c wn1 is a double precision array of dimension 2m x 2m.
c On entry wn1 stores the lower triangular part of
c [Y' ZZ'Y L_a'+R_z']
c [L_a+R_z S'AA'S ]
c in the previous iteration.
c On exit wn1 stores the corresponding updated matrices.
c The purpose of wn1 is just to store these inner products
c so they can be easily updated and inserted into wn.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric corrections
c used to define the limited memory matrix.
c On exit m is unchanged.
c
c ws, wy, sy, and wtyy are double precision arrays;
c theta is a double precision variable;
c col is an integer variable;
c head is an integer variable.
c On entry they store the information defining the
c limited memory BFGS matrix:
c ws(n,m) stores S, a set of s-vectors;
c wy(n,m) stores Y, a set of y-vectors;
c sy(m,m) stores S'Y;
c wtyy(m,m) stores the Cholesky factorization
c of (theta*S'S+LD^(-1)L')
c theta is the scaling factor specifying B_0 = theta I;
c col is the number of variable metric corrections stored;
c head is the location of the 1st s- (or y-) vector in S (or Y).
c On exit they are unchanged.
c
c info is an integer variable.
c On entry info is unspecified.
c On exit info = 0 for normal return;
c = -1 when the 1st Cholesky factorization failed;
c = -2 when the 2st Cholesky factorization failed.
c
c Subprograms called:
c
c Linpack ... dcopy, dpofa, dtrsl.
c
c
c References:
c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c memory algorithm for bound constrained optimization'',
c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: a
c limited memory FORTRAN code for solving bound constrained
c optimization problems'', Tech. Report, NAM-11, EECS Department,
c Northwestern University, 1994.
c
c (Postscript files of these papers are available via anonymous
c ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer m2,ipntr,jpntr,iy,is,jy,js,is1,js1,k1,i,k,
+ col2,pbegin,pend,dbegin,dend,upcl
double precision ddot,temp1,temp2,temp3,temp4
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
c Form the lower triangular part of
c WN1 = [Y' ZZ'Y L_a'+R_z']
c [L_a+R_z S'AA'S ]
c where L_a is the strictly lower triangular part of S'AA'Y
c R_z is the upper triangular part of S'ZZ'Y.
if (updatd) then
if (iupdat .gt. m) then
c shift old part of WN1.
do 10 jy = 1, m - 1
js = m + jy
call dcopy(m-jy,wn1(jy+1,jy+1),1,wn1(jy,jy),1)
call dcopy(m-jy,wn1(js+1,js+1),1,wn1(js,js),1)
call dcopy(m-1,wn1(m+2,jy+1),1,wn1(m+1,jy),1)
10 continue
endif
c put new rows in blocks (1,1), (2,1) and (2,2).
pbegin = 1
pend = nsub
dbegin = nsub + 1
dend = n
iy = col
is = m + col
ipntr = head + col - 1
if (ipntr .gt. m) ipntr = ipntr - m
jpntr = head
do 20 jy = 1, col
js = m + jy
temp1 = zero
temp2 = zero
temp3 = zero
c compute element jy of row 'col' of Y'ZZ'Y
do 15 k = pbegin, pend
k1 = ind(k)
temp1 = temp1 + wy(k1,ipntr)*wy(k1,jpntr)
15 continue
c compute elements jy of row 'col' of L_a and S'AA'S
do 16 k = dbegin, dend
k1 = ind(k)
temp2 = temp2 + ws(k1,ipntr)*ws(k1,jpntr)
temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr)
16 continue
wn1(iy,jy) = temp1
wn1(is,js) = temp2
wn1(is,jy) = temp3
jpntr = mod(jpntr,m) + 1
20 continue
c put new column in block (2,1).
jy = col
jpntr = head + col - 1
if (jpntr .gt. m) jpntr = jpntr - m
ipntr = head
do 30 i = 1, col
is = m + i
temp3 = zero
c compute element i of column 'col' of R_z
do 25 k = pbegin, pend
k1 = ind(k)
temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr)
25 continue
ipntr = mod(ipntr,m) + 1
wn1(is,jy) = temp3
30 continue
upcl = col - 1
else
upcl = col
endif
c modify the old parts in blocks (1,1) and (2,2) due to changes
c in the set of free variables.
ipntr = head
do 45 iy = 1, upcl
is = m + iy
jpntr = head
do 40 jy = 1, iy
js = m + jy
temp1 = zero
temp2 = zero
temp3 = zero
temp4 = zero
do 35 k = 1, nenter
k1 = indx2(k)
temp1 = temp1 + wy(k1,ipntr)*wy(k1,jpntr)
temp2 = temp2 + ws(k1,ipntr)*ws(k1,jpntr)
35 continue
do 36 k = ileave, n
k1 = indx2(k)
temp3 = temp3 + wy(k1,ipntr)*wy(k1,jpntr)
temp4 = temp4 + ws(k1,ipntr)*ws(k1,jpntr)
36 continue
wn1(iy,jy) = wn1(iy,jy) + temp1 - temp3
wn1(is,js) = wn1(is,js) - temp2 + temp4
jpntr = mod(jpntr,m) + 1
40 continue
ipntr = mod(ipntr,m) + 1
45 continue
c modify the old parts in block (2,1).
ipntr = head
do 60 is = m + 1, m + upcl
jpntr = head
do 55 jy = 1, upcl
temp1 = zero
temp3 = zero
do 50 k = 1, nenter
k1 = indx2(k)
temp1 = temp1 + ws(k1,ipntr)*wy(k1,jpntr)
50 continue
do 51 k = ileave, n
k1 = indx2(k)
temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr)
51 continue
if (is .le. jy + m) then
wn1(is,jy) = wn1(is,jy) + temp1 - temp3
else
wn1(is,jy) = wn1(is,jy) - temp1 + temp3
endif
jpntr = mod(jpntr,m) + 1
55 continue
ipntr = mod(ipntr,m) + 1
60 continue
c Form the upper triangle of WN = [D+Y' ZZ'Y/theta -L_a'+R_z' ]
c [-L_a +R_z S'AA'S*theta]
m2 = 2*m
do 70 iy = 1, col
is = col + iy
is1 = m + iy
do 65 jy = 1, iy
js = col + jy
js1 = m + jy
wn(jy,iy) = wn1(iy,jy)/theta
wn(js,is) = wn1(is1,js1)*theta
65 continue
do 66 jy = 1, iy - 1
wn(jy,is) = -wn1(is1,jy)
66 continue
do 67 jy = iy, col
wn(jy,is) = wn1(is1,jy)
67 continue
wn(iy,iy) = wn(iy,iy) + sy(iy,iy)
70 continue
c Form the upper triangle of WN= [ LL' L^-1(-L_a'+R_z')]
c [(-L_a +R_z)L'^-1 S'AA'S*theta ]
c first Cholesky factor (1,1) block of wn to get LL'
c with L' stored in the upper triangle of wn.
call dpofa(wn,m2,col,info)
if (info .ne. 0) then
info = -1
return
endif
c then form L^-1(-L_a'+R_z') in the (1,2) block.
col2 = 2*col
do 71 js = col+1 ,col2
call dtrsl(wn,m2,col,wn(1,js),11,info)
71 continue
c Form S'AA'S*theta + (L^-1(-L_a'+R_z'))'L^-1(-L_a'+R_z') in the
c upper triangle of (2,2) block of wn.
do 72 is = col+1, col2
do 74 js = is, col2
wn(is,js) = wn(is,js) + ddot(col,wn(1,is),1,wn(1,js),1)
74 continue
72 continue
c Cholesky factorization of (2,2) block of wn.
call dpofa(wn(col+1,col+1),m2,col,info)
if (info .ne. 0) then
info = -2
return
endif
return
end
c======================= The end of formk ==============================
subroutine formt(m, wt, sy, ss, col, theta, info)
integer m, col, info
double precision theta, wt(m, m), sy(m, m), ss(m, m)
c ************
c
c Subroutine formt
c
c This subroutine forms the upper half of the pos. def. and symm.
c T = theta*SS + L*D^(-1)*L', stores T in the upper triangle
c of the array wt, and performs the Cholesky factorization of T
c to produce J*J', with J' stored in the upper triangle of wt.
c
c Subprograms called:
c
c Linpack ... dpofa.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i,j,k,k1
double precision ddum
double precision zero
parameter (zero=0.0d0)
c Form the upper half of T = theta*SS + L*D^(-1)*L',
c store T in the upper triangle of the array wt.
do 52 j = 1, col
wt(1,j) = theta*ss(1,j)
52 continue
do 55 i = 2, col
do 54 j = i, col
k1 = min(i,j) - 1
ddum = zero
do 53 k = 1, k1
ddum = ddum + sy(i,k)*sy(j,k)/sy(k,k)
53 continue
wt(i,j) = ddum + theta*ss(i,j)
54 continue
55 continue
c Cholesky factorize T to J*J' with
c J' stored in the upper triangle of wt.
call dpofa(wt,m,col,info)
if (info .ne. 0) then
info = -3
endif
return
end
c======================= The end of formt ==============================
subroutine freev(n, nfree, index, nenter, ileave, indx2,
+ iwhere, wrk, updatd, cnstnd, iprint, iter)
integer n, nfree, nenter, ileave, iprint, iter,
+ index(n), indx2(n), iwhere(n)
logical wrk, updatd, cnstnd
c ************
c
c Subroutine freev
c
c This subroutine counts the entering and leaving variables when
c iter > 0, and finds the index set of free and active variables
c at the GCP.
c
c cnstnd is a logical variable indicating whether bounds are present
c
c index is an integer array of dimension n
c for i=1,...,nfree, index(i) are the indices of free variables
c for i=nfree+1,...,n, index(i) are the indices of bound variables
c On entry after the first iteration, index gives
c the free variables at the previous iteration.
c On exit it gives the free variables based on the determination
c in cauchy using the array iwhere.
c
c indx2 is an integer array of dimension n
c On entry indx2 is unspecified.
c On exit with iter>0, indx2 indicates which variables
c have changed status since the previous iteration.
c For i= 1,...,nenter, indx2(i) have changed from bound to free.
c For i= ileave+1,...,n, indx2(i) have changed from free to bound.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer iact,i,k
nenter = 0
ileave = n + 1
if (iter .gt. 0 .and. cnstnd) then
c count the entering and leaving variables.
do 20 i = 1, nfree
k = index(i)
c write(6,*) ' k = index(i) ', k
c write(6,*) ' index = ', i
if (iwhere(k) .gt. 0) then
ileave = ileave - 1
indx2(ileave) = k
if (iprint .ge. 100) write (6,*)
+ 'Variable ',k,' leaves the set of free variables'
endif
20 continue
do 22 i = 1 + nfree, n
k = index(i)
if (iwhere(k) .le. 0) then
nenter = nenter + 1
indx2(nenter) = k
if (iprint .ge. 100) write (6,*)
+ 'Variable ',k,' enters the set of free variables'
endif
22 continue
if (iprint .ge. 99) write (6,*)
+ n+1-ileave,' variables leave; ',nenter,' variables enter'
endif
wrk = (ileave .lt. n+1) .or. (nenter .gt. 0) .or. updatd
c Find the index set of free and active variables at the GCP.
nfree = 0
iact = n + 1
do 24 i = 1, n
if (iwhere(i) .le. 0) then
nfree = nfree + 1
index(nfree) = i
else
iact = iact - 1
index(iact) = i
endif
24 continue
if (iprint .ge. 99) write (6,*)
+ nfree,' variables are free at GCP ',iter + 1
return
end
c======================= The end of freev ==============================
subroutine hpsolb(n, t, iorder, iheap)
integer iheap, n, iorder(n)
double precision t(n)
c ************
c
c Subroutine hpsolb
c
c This subroutine sorts out the least element of t, and puts the
c remaining elements of t in a heap.
c
c n is an integer variable.
c On entry n is the dimension of the arrays t and iorder.
c On exit n is unchanged.
c
c t is a double precision array of dimension n.
c On entry t stores the elements to be sorted,
c On exit t(n) stores the least elements of t, and t(1) to t(n-1)
c stores the remaining elements in the form of a heap.
c
c iorder is an integer array of dimension n.
c On entry iorder(i) is the index of t(i).
c On exit iorder(i) is still the index of t(i), but iorder may be
c permuted in accordance with t.
c
c iheap is an integer variable specifying the task.
c On entry iheap should be set as follows:
c iheap .eq. 0 if t(1) to t(n) is not in the form of a heap,
c iheap .ne. 0 if otherwise.
c On exit iheap is unchanged.
c
c
c References:
c Algorithm 232 of CACM (J. W. J. Williams): HEAPSORT.
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c ************
integer i,j,k,indxin,indxou
double precision ddum,out
if (iheap .eq. 0) then
c Rearrange the elements t(1) to t(n) to form a heap.
do 20 k = 2, n
ddum = t(k)
indxin = iorder(k)
c Add ddum to the heap.
i = k
10 continue
if (i.gt.1) then
j = i/2
if (ddum .lt. t(j)) then
t(i) = t(j)
iorder(i) = iorder(j)
i = j
goto 10
endif
endif
t(i) = ddum
iorder(i) = indxin
20 continue
endif
c Assign to 'out' the value of t(1), the least member of the heap,
c and rearrange the remaining members to form a heap as
c elements 1 to n-1 of t.
if (n .gt. 1) then
i = 1
out = t(1)
indxou = iorder(1)
ddum = t(n)
indxin = iorder(n)
c Restore the heap
30 continue
j = i+i
if (j .le. n-1) then
if (t(j+1) .lt. t(j)) j = j+1
if (t(j) .lt. ddum ) then
t(i) = t(j)
iorder(i) = iorder(j)
i = j
goto 30
endif
endif
t(i) = ddum
iorder(i) = indxin
c Put the least member in t(n).
t(n) = out
iorder(n) = indxou
endif
return
end
c====================== The end of hpsolb ==============================
subroutine lnsrlb(n, l, u, nbd, x, f, fold, gd, gdold, g, d, r, t,
+ z, stp, dnorm, dtd, xstep, stpmx, iter, ifun,
+ iback, nfgv, info, task, boxed, cnstnd, csave,
+ isave, dsave, iprint)
character*60 task, csave
logical boxed, cnstnd
integer n, iter, ifun, iback, nfgv, info,
+ nbd(n), isave(2), iprint
double precision f, fold, gd, gdold, stp, dnorm, dtd, xstep,
+ stpmx, x(n), l(n), u(n), g(n), d(n), r(n), t(n),
+ z(n), dsave(13)
c **********
c
c Subroutine lnsrlb
c
c This subroutine calls subroutine dcsrch from the Minpack2 library
c to perform the line search. Subroutine dscrch is safeguarded so
c that all trial points lie within the feasible region.
c
c Subprograms called:
c
c Minpack2 Library ... dcsrch.
c
c Linpack ... dtrsl, ddot.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c **********
integer i
double precision ddot,a1,a2
double precision one,zero,big
parameter (one=1.0d0,zero=0.0d0,big=1.0d+10)
double precision ftol,gtol,xtol
parameter (ftol=1.0d-3,gtol=0.9d0,xtol=0.1d0)
if (task(1:5) .eq. 'FG_LN') goto 556
dtd = ddot(n,d,1,d,1)
dnorm = sqrt(dtd)
c Determine the maximum step length.
stpmx = big
if (cnstnd) then
if (iter .eq. 0) then
stpmx = one
else
do 43 i = 1, n
a1 = d(i)
if (nbd(i) .ne. 0) then
if (a1 .lt. zero .and. nbd(i) .le. 2) then
a2 = l(i) - x(i)
if (a2 .ge. zero) then
stpmx = zero
else if (a1*stpmx .lt. a2) then
stpmx = a2/a1
endif
else if (a1 .gt. zero .and. nbd(i) .ge. 2) then
a2 = u(i) - x(i)
if (a2 .le. zero) then
stpmx = zero
else if (a1*stpmx .gt. a2) then
stpmx = a2/a1
endif
endif
endif
43 continue
endif
endif
if (iter .eq. 0 .and. .not. boxed) then
stp = min(one/dnorm, stpmx)
else
stp = one
endif
call dcopy(n,x,1,t,1)
call dcopy(n,g,1,r,1)
fold = f
ifun = 0
iback = 0
csave = 'START'
556 continue
gd = ddot(n,g,1,d,1)
if (ifun .eq. 0) then
gdold=gd
if (gd .ge. zero) then
c the directional derivative >=0.
c Line search is impossible.
if (iprint .ge. 0) then
write(0,*)' ascent direction in projection gd = ', gd
endif
info = -4
return
endif
endif
call dcsrch(f,gd,stp,ftol,gtol,xtol,zero,stpmx,csave,isave,dsave)
xstep = stp*dnorm
if (csave(1:4) .ne. 'CONV' .and. csave(1:4) .ne. 'WARN') then
task = 'FG_LNSRCH'
ifun = ifun + 1
nfgv = nfgv + 1
iback = ifun - 1
if (stp .eq. one) then
call dcopy(n,z,1,x,1)
else
do 41 i = 1, n
x(i) = stp*d(i) + t(i)
41 continue
endif
else
task = 'NEW_X'
endif
return
end
c======================= The end of lnsrlb =============================
subroutine matupd(n, m, ws, wy, sy, ss, d, r, itail,
+ iupdat, col, head, theta, rr, dr, stp, dtd)
integer n, m, itail, iupdat, col, head
double precision theta, rr, dr, stp, dtd, d(n), r(n),
+ ws(n, m), wy(n, m), sy(m, m), ss(m, m)
c ************
c
c Subroutine matupd
c
c This subroutine updates matrices WS and WY, and forms the
c middle matrix in B.
c
c Subprograms called:
c
c Linpack ... dcopy, ddot.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer j,pointr
double precision ddot
double precision one
parameter (one=1.0d0)
c Set pointers for matrices WS and WY.
if (iupdat .le. m) then
col = iupdat
itail = mod(head+iupdat-2,m) + 1
else
itail = mod(itail,m) + 1
head = mod(head,m) + 1
endif
c Update matrices WS and WY.
call dcopy(n,d,1,ws(1,itail),1)
call dcopy(n,r,1,wy(1,itail),1)
c Set theta=yy/ys.
theta = rr/dr
c Form the middle matrix in B.
c update the upper triangle of SS,
c and the lower triangle of SY:
if (iupdat .gt. m) then
c move old information
do 50 j = 1, col - 1
call dcopy(j,ss(2,j+1),1,ss(1,j),1)
call dcopy(col-j,sy(j+1,j+1),1,sy(j,j),1)
50 continue
endif
c add new information: the last row of SY
c and the last column of SS:
pointr = head
do 51 j = 1, col - 1
sy(col,j) = ddot(n,d,1,wy(1,pointr),1)
ss(j,col) = ddot(n,ws(1,pointr),1,d,1)
pointr = mod(pointr,m) + 1
51 continue
if (stp .eq. one) then
ss(col,col) = dtd
else
ss(col,col) = stp*stp*dtd
endif
sy(col,col) = dr
return
end
c======================= The end of matupd =============================
subroutine prn1lb(n, m, l, u, x, iprint, epsmch)
integer n, m, iprint
double precision epsmch, x(n), l(n), u(n)
c ************
c
c Subroutine prn1lb
c
c This subroutine prints the input data, initial point, upper and
c lower bounds of each variable, machine precision, as well as
c the headings of the output.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i
if (iprint .ge. 0) then
write (6,7001) epsmch
write (6,*) 'N = ',n,' M = ',m
if (iprint .ge. 1) then
if (iprint .gt. 100) then
write (6,1004) 'L =',(l(i),i = 1,n)
write (6,1004) 'X0 =',(x(i),i = 1,n)
write (6,1004) 'U =',(u(i),i = 1,n)
endif
endif
endif
1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4)))
2001 format ('RUNNING THE L-BFGS-B CODE',/,/,
+ 'it = iteration number',/,
+ 'nf = number of function evaluations',/,
+ 'nseg = number of segments explored during the Cauchy search',/,
+ 'nact = number of active bounds at the generalized Cauchy point'
+ ,/,
+ 'sub = manner in which the subspace minimization terminated:'
+ ,/,' con = converged, bnd = a bound was reached',/,
+ 'itls = number of iterations performed in the line search',/,
+ 'stepl = step length used',/,
+ 'tstep = norm of the displacement (total step)',/,
+ 'projg = norm of the projected gradient',/,
+ 'f = function value',/,/,
+ ' * * *',/,/,
+ 'Machine precision =',1p,d10.3)
7001 format ('RUNNING THE L-BFGS-B CODE',/,/,
+ ' * * *',/,/,
+ 'Machine precision =',1p,d10.3)
9001 format (/,3x,'it',3x,'nf',2x,'nseg',2x,'nact',2x,'sub',2x,'itls',
+ 2x,'stepl',4x,'tstep',5x,'projg',8x,'f')
return
end
c======================= The end of prn1lb =============================
subroutine prn2lb(n, x, f, g, iprint, iter, nfgv, nact,
+ sbgnrm, nseg, word, iword, iback, stp, xstep)
character*3 word
integer n, iprint, iter, nfgv, nact, nseg,
+ iword, iback
double precision f, sbgnrm, stp, xstep, x(n), g(n)
c ************
c
c Subroutine prn2lb
c
c This subroutine prints out new information after a successful
c line search.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i,imod
c 'word' records the status of subspace solutions.
if (iword .eq. 0) then
c the subspace minimization converged.
word = 'con'
else if (iword .eq. 1) then
c the subspace minimization stopped at a bound.
word = 'bnd'
else if (iword .eq. 5) then
c the truncated Newton step has been used.
word = 'TNT'
else
word = '---'
endif
if (iprint .ge. 99) then
write (6,*) 'LINE SEARCH',iback,' times; norm of step = ',xstep
write (6,2001) iter,f,sbgnrm
if (iprint .gt. 100) then
write (6,1004) 'X =',(x(i), i = 1, n)
write (6,1004) 'G =',(g(i), i = 1, n)
endif
else if (iprint .gt. 0) then
imod = mod(iter,iprint)
if (imod .eq. 0) write (6,2001) iter,f,sbgnrm
endif
1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4)))
2001 format
+ (/,'At iterate',i5,4x,'f= ',1p,d12.5,4x,'|proj g|= ',1p,d12.5)
3001 format(2(1x,i4),2(1x,i5),2x,a3,1x,i4,1p,2(2x,d7.1),1p,2(1x,d10.3))
return
end
c======================= The end of prn2lb =============================
subroutine prn3lb(n, x, f, task, iprint, info,
+ iter, nfgv, nintol, nskip, nact, sbgnrm,
+ time, nseg, word, iback, stp, xstep, k,
+ cachyt, sbtime, lnscht)
character*60 task
character*3 word
integer n, iprint, info, iter, nfgv, nintol,
+ nskip, nact, nseg, iback, k
double precision f, sbgnrm, time, stp, xstep, cachyt, sbtime,
+ lnscht, x(n)
c ************
c
c Subroutine prn3lb
c
c This subroutine prints out information when either a built-in
c convergence test is satisfied or when an error message is
c generated.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i
if (task(1:5) .eq. 'ERROR') goto 999
if (iprint .ge. 0) then
write (6,3003)
write (6,3004)
write(6,3005) n,iter,nfgv,nintol,nskip,nact,sbgnrm,f
if (iprint .ge. 100) then
write (6,1004) 'X =',(x(i),i = 1,n)
endif
if (iprint .ge. 1) write (6,*) ' F =',f
endif
999 continue
if (iprint .ge. 0) then
write (6,3009) task
if (info .ne. 0) then
if (info .eq. -1) write (0,9011)
if (info .eq. -2) write (0,9012)
if (info .eq. -3) write (0,9013)
if (info .eq. -4) write (0,9014)
if (info .eq. -5) write (0,9015)
if (info .eq. -6) write (0,*)' Input nbd(',k,') is invalid.'
if (info .eq. -7)
+ write (6,*)' l(',k,') > u(',k,'). No feasible solution.'
if (info .eq. -8) write (0,9018)
if (info .eq. -9) write (0,9019)
endif
if (iprint .ge. 1) write (6,3007) cachyt,sbtime,lnscht
write (6,3008) time
endif
1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4)))
3002 format(2(1x,i4),2(1x,i5),2x,a3,1x,i4,1p,2(2x,d7.1),6x,'-',10x,'-')
3003 format (/,
+ ' * * *',/,/,
+ 'Tit = total number of iterations',/,
+ 'Tnf = total number of function evaluations',/,
+ 'Tnint = total number of segments explored during',
+ ' Cauchy searches',/,
+ 'Skip = number of BFGS updates skipped',/,
+ 'Nact = number of active bounds at final generalized',
+ ' Cauchy point',/,
+ 'Projg = norm of the final projected gradient',/,
+ 'F = final function value',/,/,
+ ' * * *')
3004 format (/,3x,'N',4x,'Tit',5x,'Tnf',2x,'Tnint',2x,
+ 'Skip',2x,'Nact',5x,'Projg',8x,'F')
3005 format (i5,2(1x,i6),(1x,i6),(2x,i4),(1x,i5),1p,2(2x,d10.3))
3007 format (/,' Cauchy time',1p,e10.3,' seconds.',/
+ ' Subspace minimization time',1p,e10.3,' seconds.',/
+ ' Line search time',1p,e10.3,' seconds.')
3008 format (/,' Total User time',1p,e10.3,' seconds.',/)
3009 format (/,a60)
9011 format (/,
+' Matrix in 1st Cholesky factorization in formk is not Pos. Def.')
9012 format (/,
+' Matrix in 2st Cholesky factorization in formk is not Pos. Def.')
9013 format (/,
+' Matrix in the Cholesky factorization in formt is not Pos. Def.')
9014 format (/,
+' Derivative >= 0, backtracking line search impossible.',/,
+' Previous x, f and g restored.',/,
+' Possible causes: 1 error in function or gradient evaluation;',/,
+' 2 rounding errors dominate computation.')
9015 format (/,
+' Warning: more than 10 function and gradient',/,
+' evaluations in the last line search. Termination',/,
+' may possibly be caused by a bad search direction.')
9018 format (/,' The triangular system is singular.')
9019 format (/,
+' Line search cannot locate an adequate point after 20 function',/
+,' and gradient evaluations. Previous x, f and g restored.',/,
+' Possible causes: 1 error in function or gradient evaluation;',/,
+' 2 rounding error dominate computation.')
return
end
c======================= The end of prn3lb =============================
subroutine projgr(n, l, u, nbd, x, g, sbgnrm)
integer n, nbd(n)
double precision sbgnrm, x(n), l(n), u(n), g(n)
c ************
c
c Subroutine projgr
c
c This subroutine computes the infinity norm of the projected
c gradient.
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer i
double precision gi
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
sbgnrm = zero
do 15 i = 1, n
gi = g(i)
if (nbd(i) .ne. 0) then
if (gi .lt. zero) then
if (nbd(i) .ge. 2) gi = max((x(i)-u(i)),gi)
else
if (nbd(i) .le. 2) gi = min((x(i)-l(i)),gi)
endif
endif
sbgnrm = max(sbgnrm,abs(gi))
15 continue
return
end
c======================= The end of projgr =============================
subroutine subsm ( n, m, nsub, ind, l, u, nbd, x, d, xp, ws, wy,
+ theta, xx, gg,
+ col, head, iword, wv, wn, iprint, info )
implicit none
integer n, m, nsub, col, head, iword, iprint, info,
+ ind(nsub), nbd(n)
double precision theta,
+ l(n), u(n), x(n), d(n), xp(n), xx(n), gg(n),
+ ws(n, m), wy(n, m),
+ wv(2*m), wn(2*m, 2*m)
c **********************************************************************
c
c This routine contains the major changes in the updated version.
c The changes are described in the accompanying paper
c
c Jose Luis Morales, Jorge Nocedal
c "Remark On Algorithm 788: L-BFGS-B: Fortran Subroutines for Large-Scale
c Bound Constrained Optimization". Decemmber 27, 2010.
c
c J.L. Morales Departamento de Matematicas,
c Instituto Tecnologico Autonomo de Mexico
c Mexico D.F.
c
c J, Nocedal Department of Electrical Engineering and
c Computer Science.
c Northwestern University. Evanston, IL. USA
c
c January 17, 2011
c
c **********************************************************************
c
c
c Subroutine subsm
c
c Given xcp, l, u, r, an index set that specifies
c the active set at xcp, and an l-BFGS matrix B
c (in terms of WY, WS, SY, WT, head, col, and theta),
c this subroutine computes an approximate solution
c of the subspace problem
c
c (P) min Q(x) = r'(x-xcp) + 1/2 (x-xcp)' B (x-xcp)
c
c subject to l<=x<=u
c x_i=xcp_i for all i in A(xcp)
c
c along the subspace unconstrained Newton direction
c
c d = -(Z'BZ)^(-1) r.
c
c The formula for the Newton direction, given the L-BFGS matrix
c and the Sherman-Morrison formula, is
c
c d = (1/theta)r + (1/theta*2) Z'WK^(-1)W'Z r.
c
c where
c K = [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c
c Note that this procedure for computing d differs
c from that described in [1]. One can show that the matrix K is
c equal to the matrix M^[-1]N in that paper.
c
c n is an integer variable.
c On entry n is the dimension of the problem.
c On exit n is unchanged.
c
c m is an integer variable.
c On entry m is the maximum number of variable metric corrections
c used to define the limited memory matrix.
c On exit m is unchanged.
c
c nsub is an integer variable.
c On entry nsub is the number of free variables.
c On exit nsub is unchanged.
c
c ind is an integer array of dimension nsub.
c On entry ind specifies the coordinate indices of free variables.
c On exit ind is unchanged.
c
c l is a double precision array of dimension n.
c On entry l is the lower bound of x.
c On exit l is unchanged.
c
c u is a double precision array of dimension n.
c On entry u is the upper bound of x.
c On exit u is unchanged.
c
c nbd is a integer array of dimension n.
c On entry nbd represents the type of bounds imposed on the
c variables, and must be specified as follows:
c nbd(i)=0 if x(i) is unbounded,
c 1 if x(i) has only a lower bound,
c 2 if x(i) has both lower and upper bounds, and
c 3 if x(i) has only an upper bound.
c On exit nbd is unchanged.
c
c x is a double precision array of dimension n.
c On entry x specifies the Cauchy point xcp.
c On exit x(i) is the minimizer of Q over the subspace of
c free variables.
c
c d is a double precision array of dimension n.
c On entry d is the reduced gradient of Q at xcp.
c On exit d is the Newton direction of Q.
c
c xp is a double precision array of dimension n.
c used to safeguard the projected Newton direction
c
c xx is a double precision array of dimension n
c On entry it holds the current iterate
c On output it is unchanged
c gg is a double precision array of dimension n
c On entry it holds the gradient at the current iterate
c On output it is unchanged
c
c ws and wy are double precision arrays;
c theta is a double precision variable;
c col is an integer variable;
c head is an integer variable.
c On entry they store the information defining the
c limited memory BFGS matrix:
c ws(n,m) stores S, a set of s-vectors;
c wy(n,m) stores Y, a set of y-vectors;
c theta is the scaling factor specifying B_0 = theta I;
c col is the number of variable metric corrections stored;
c head is the location of the 1st s- (or y-) vector in S (or Y).
c On exit they are unchanged.
c
c iword is an integer variable.
c On entry iword is unspecified.
c On exit iword specifies the status of the subspace solution.
c iword = 0 if the solution is in the box,
c 1 if some bound is encountered.
c
c wv is a double precision working array of dimension 2m.
c
c wn is a double precision array of dimension 2m x 2m.
c On entry the upper triangle of wn stores the LEL^T factorization
c of the indefinite matrix
c
c K = [-D -Y'ZZ'Y/theta L_a'-R_z' ]
c [L_a -R_z theta*S'AA'S ]
c where E = [-I 0]
c [ 0 I]
c On exit wn is unchanged.
c
c iprint is an INTEGER variable that must be set by the user.
c It controls the frequency and type of output generated:
c iprint<0 no output is generated;
c iprint=0 print only one line at the last iteration;
c 0<iprint<99 print also f and |proj g| every iprint iterations;
c iprint=99 print details of every iteration except n-vectors;
c iprint=100 print also the changes of active set and final x;
c iprint>100 print details of every iteration including x and g;
c
c
c info is an integer variable.
c On entry info is unspecified.
c On exit info = 0 for normal return,
c = nonzero for abnormal return
c when the matrix K is ill-conditioned.
c
c Subprograms called:
c
c Linpack dtrsl.
c
c
c References:
c
c [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c memory algorithm for bound constrained optimization'',
c SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c
c
c * * *
c
c NEOS, November 1994. (Latest revision June 1996.)
c Optimization Technology Center.
c Argonne National Laboratory and Northwestern University.
c Written by
c Ciyou Zhu
c in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c ************
integer pointr,m2,col2,ibd,jy,js,i,j,k
double precision alpha, xk, dk, temp1, temp2
double precision one,zero
parameter (one=1.0d0,zero=0.0d0)
c
double precision dd_p
if (nsub .le. 0) return
if (iprint .ge. 99) write (6,1001)
c Compute wv = W'Zd.
pointr = head
do 20 i = 1, col
temp1 = zero
temp2 = zero
do 10 j = 1, nsub
k = ind(j)
temp1 = temp1 + wy(k,pointr)*d(j)
temp2 = temp2 + ws(k,pointr)*d(j)
10 continue
wv(i) = temp1
wv(col + i) = theta*temp2
pointr = mod(pointr,m) + 1
20 continue
c Compute wv:=K^(-1)wv.
m2 = 2*m
col2 = 2*col
call dtrsl(wn,m2,col2,wv,11,info)
if (info .ne. 0) return
do 25 i = 1, col
wv(i) = -wv(i)
25 continue
call dtrsl(wn,m2,col2,wv,01,info)
if (info .ne. 0) return
c Compute d = (1/theta)d + (1/theta**2)Z'W wv.
pointr = head
do 40 jy = 1, col
js = col + jy
do 30 i = 1, nsub
k = ind(i)
d(i) = d(i) + wy(k,pointr)*wv(jy)/theta
+ + ws(k,pointr)*wv(js)
30 continue
pointr = mod(pointr,m) + 1
40 continue
call dscal( nsub, one/theta, d, 1 )
c
c-----------------------------------------------------------------
c Let us try the projection, d is the Newton direction
iword = 0
call dcopy ( n, x, 1, xp, 1 )
c
do 50 i=1, nsub
k = ind(i)
dk = d(i)
xk = x(k)
if ( nbd(k) .ne. 0 ) then
c
if ( nbd(k).eq.1 ) then ! lower bounds only
x(k) = max( l(k), xk + dk )
if ( x(k).eq.l(k) ) iword = 1
else
c
if ( nbd(k).eq.2 ) then ! upper and lower bounds
xk = max( l(k), xk + dk )
x(k) = min( u(k), xk )
if ( x(k).eq.l(k) .or. x(k).eq.u(k) ) iword = 1
else
c
if ( nbd(k).eq.3 ) then ! upper bounds only
x(k) = min( u(k), xk + dk )
if ( x(k).eq.u(k) ) iword = 1
end if
end if
end if
c
else ! free variables
x(k) = xk + dk
end if
50 continue
c
if ( iword.eq.0 ) then
go to 911
end if
c
c check sign of the directional derivative
c
dd_p = zero
do 55 i=1, n
dd_p = dd_p + (x(i) - xx(i))*gg(i)
55 continue
if ( dd_p .gt.zero ) then
call dcopy( n, xp, 1, x, 1 )
if (iprint .ge. 0) then
write(6,*) ' Positive dir derivative in projection '
write(6,*) ' Using the backtracking step '
endif
else
go to 911
endif
c
c-----------------------------------------------------------------
c
alpha = one
temp1 = alpha
ibd = 0
do 60 i = 1, nsub
k = ind(i)
dk = d(i)
if (nbd(k) .ne. 0) then
if (dk .lt. zero .and. nbd(k) .le. 2) then
temp2 = l(k) - x(k)
if (temp2 .ge. zero) then
temp1 = zero
else if (dk*alpha .lt. temp2) then
temp1 = temp2/dk
endif
else if (dk .gt. zero .and. nbd(k) .ge. 2) then
temp2 = u(k) - x(k)
if (temp2 .le. zero) then
temp1 = zero
else if (dk*alpha .gt. temp2) then
temp1 = temp2/dk
endif
endif
if (temp1 .lt. alpha) then
alpha = temp1
ibd = i
endif
endif
60 continue
if (alpha .lt. one) then
dk = d(ibd)
k = ind(ibd)
if (dk .gt. zero) then
x(k) = u(k)
d(ibd) = zero
else if (dk .lt. zero) then
x(k) = l(k)
d(ibd) = zero
endif
endif
do 70 i = 1, nsub
k = ind(i)
x(k) = x(k) + alpha*d(i)
70 continue
cccccc
911 continue
if (iprint .ge. 99) write (6,1004)
1001 format (/,'----------------SUBSM entered-----------------',/)
1004 format (/,'----------------exit SUBSM --------------------',/)
return
end
c====================== The end of subsm ===============================
subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax,
+ task,isave,dsave)
character*(*) task
integer isave(2)
double precision f,g,stp,ftol,gtol,xtol,stpmin,stpmax
double precision dsave(13)
c **********
c
c Subroutine dcsrch
c
c This subroutine finds a step that satisfies a sufficient
c decrease condition and a curvature condition.
c
c Each call of the subroutine updates an interval with
c endpoints stx and sty. The interval is initially chosen
c so that it contains a minimizer of the modified function
c
c psi(stp) = f(stp) - f(0) - ftol*stp*f'(0).
c
c If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
c interval is chosen so that it contains a minimizer of f.
c
c The algorithm is designed to find a step that satisfies
c the sufficient decrease condition
c
c f(stp) <= f(0) + ftol*stp*f'(0),
c
c and the curvature condition
c
c abs(f'(stp)) <= gtol*abs(f'(0)).
c
c If ftol is less than gtol and if, for example, the function
c is bounded below, then there is always a step which satisfies
c both conditions.
c
c If no step can be found that satisfies both conditions, then
c the algorithm stops with a warning. In this case stp only
c satisfies the sufficient decrease condition.
c
c A typical invocation of dcsrch has the following outline:
c
c task = 'START'
c 10 continue
c call dcsrch( ... )
c if (task .eq. 'FG') then
c Evaluate the function and the gradient at stp
c goto 10
c end if
c
c NOTE: The user must no alter work arrays between calls.
c
c The subroutine statement is
c
c subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax,
c task,isave,dsave)
c where
c
c f is a double precision variable.
c On initial entry f is the value of the function at 0.
c On subsequent entries f is the value of the
c function at stp.
c On exit f is the value of the function at stp.
c
c g is a double precision variable.
c On initial entry g is the derivative of the function at 0.
c On subsequent entries g is the derivative of the
c function at stp.
c On exit g is the derivative of the function at stp.
c
c stp is a double precision variable.
c On entry stp is the current estimate of a satisfactory
c step. On initial entry, a positive initial estimate
c must be provided.
c On exit stp is the current estimate of a satisfactory step
c if task = 'FG'. If task = 'CONV' then stp satisfies
c the sufficient decrease and curvature condition.
c
c ftol is a double precision variable.
c On entry ftol specifies a nonnegative tolerance for the
c sufficient decrease condition.
c On exit ftol is unchanged.
c
c gtol is a double precision variable.
c On entry gtol specifies a nonnegative tolerance for the
c curvature condition.
c On exit gtol is unchanged.
c
c xtol is a double precision variable.
c On entry xtol specifies a nonnegative relative tolerance
c for an acceptable step. The subroutine exits with a
c warning if the relative difference between sty and stx
c is less than xtol.
c On exit xtol is unchanged.
c
c stpmin is a double precision variable.
c On entry stpmin is a nonnegative lower bound for the step.
c On exit stpmin is unchanged.
c
c stpmax is a double precision variable.
c On entry stpmax is a nonnegative upper bound for the step.
c On exit stpmax is unchanged.
c
c task is a character variable of length at least 60.
c On initial entry task must be set to 'START'.
c On exit task indicates the required action:
c
c If task(1:2) = 'FG' then evaluate the function and
c derivative at stp and call dcsrch again.
c
c If task(1:4) = 'CONV' then the search is successful.
c
c If task(1:4) = 'WARN' then the subroutine is not able
c to satisfy the convergence conditions. The exit value of
c stp contains the best point found during the search.
c
c If task(1:5) = 'ERROR' then there is an error in the
c input arguments.
c
c On exit with convergence, a warning or an error, the
c variable task contains additional information.
c
c isave is an integer work array of dimension 2.
c
c dsave is a double precision work array of dimension 13.
c
c Subprograms called
c
c MINPACK-2 ... dcstep
c
c MINPACK-1 Project. June 1983.
c Argonne National Laboratory.
c Jorge J. More' and David J. Thuente.
c
c MINPACK-2 Project. October 1993.
c Argonne National Laboratory and University of Minnesota.
c Brett M. Averick, Richard G. Carter, and Jorge J. More'.
c
c **********
double precision zero,p5,p66
parameter(zero=0.0d0,p5=0.5d0,p66=0.66d0)
double precision xtrapl,xtrapu
parameter(xtrapl=1.1d0,xtrapu=4.0d0)
logical brackt
integer stage
double precision finit,ftest,fm,fx,fxm,fy,fym,ginit,gtest,
+ gm,gx,gxm,gy,gym,stx,sty,stmin,stmax,width,width1
c Initialization block.
if (task(1:5) .eq. 'START') then
c Check the input arguments for errors.
if (stp .lt. stpmin) task = 'ERROR: STP .LT. STPMIN'
if (stp .gt. stpmax) task = 'ERROR: STP .GT. STPMAX'
if (g .ge. zero) task = 'ERROR: INITIAL G .GE. ZERO'
if (ftol .lt. zero) task = 'ERROR: FTOL .LT. ZERO'
if (gtol .lt. zero) task = 'ERROR: GTOL .LT. ZERO'
if (xtol .lt. zero) task = 'ERROR: XTOL .LT. ZERO'
if (stpmin .lt. zero) task = 'ERROR: STPMIN .LT. ZERO'
if (stpmax .lt. stpmin) task = 'ERROR: STPMAX .LT. STPMIN'
c Exit if there are errors on input.
if (task(1:5) .eq. 'ERROR') return
c Initialize local variables.
brackt = .false.
stage = 1
finit = f
ginit = g
gtest = ftol*ginit
width = stpmax - stpmin
width1 = width/p5
c The variables stx, fx, gx contain the values of the step,
c function, and derivative at the best step.
c The variables sty, fy, gy contain the value of the step,
c function, and derivative at sty.
c The variables stp, f, g contain the values of the step,
c function, and derivative at stp.
stx = zero
fx = finit
gx = ginit
sty = zero
fy = finit
gy = ginit
stmin = zero
stmax = stp + xtrapu*stp
task = 'FG'
goto 1000
else
c Restore local variables.
if (isave(1) .eq. 1) then
brackt = .true.
else
brackt = .false.
endif
stage = isave(2)
ginit = dsave(1)
gtest = dsave(2)
gx = dsave(3)
gy = dsave(4)
finit = dsave(5)
fx = dsave(6)
fy = dsave(7)
stx = dsave(8)
sty = dsave(9)
stmin = dsave(10)
stmax = dsave(11)
width = dsave(12)
width1 = dsave(13)
endif
c If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
c algorithm enters the second stage.
ftest = finit + stp*gtest
if (stage .eq. 1 .and. f .le. ftest .and. g .ge. zero)
+ stage = 2
c Test for warnings.
if (brackt .and. (stp .le. stmin .or. stp .ge. stmax))
+ task = 'WARNING: ROUNDING ERRORS PREVENT PROGRESS'
if (brackt .and. stmax - stmin .le. xtol*stmax)
+ task = 'WARNING: XTOL TEST SATISFIED'
if (stp .eq. stpmax .and. f .le. ftest .and. g .le. gtest)
+ task = 'WARNING: STP = STPMAX'
if (stp .eq. stpmin .and. (f .gt. ftest .or. g .ge. gtest))
+ task = 'WARNING: STP = STPMIN'
c Test for convergence.
if (f .le. ftest .and. abs(g) .le. gtol*(-ginit))
+ task = 'CONVERGENCE'
c Test for termination.
if (task(1:4) .eq. 'WARN' .or. task(1:4) .eq. 'CONV') goto 1000
c A modified function is used to predict the step during the
c first stage if a lower function value has been obtained but
c the decrease is not sufficient.
if (stage .eq. 1 .and. f .le. fx .and. f .gt. ftest) then
c Define the modified function and derivative values.
fm = f - stp*gtest
fxm = fx - stx*gtest
fym = fy - sty*gtest
gm = g - gtest
gxm = gx - gtest
gym = gy - gtest
c Call dcstep to update stx, sty, and to compute the new step.
call dcstep(stx,fxm,gxm,sty,fym,gym,stp,fm,gm,
+ brackt,stmin,stmax)
c Reset the function and derivative values for f.
fx = fxm + stx*gtest
fy = fym + sty*gtest
gx = gxm + gtest
gy = gym + gtest
else
c Call dcstep to update stx, sty, and to compute the new step.
call dcstep(stx,fx,gx,sty,fy,gy,stp,f,g,
+ brackt,stmin,stmax)
endif
c Decide if a bisection step is needed.
if (brackt) then
if (abs(sty-stx) .ge. p66*width1) stp = stx + p5*(sty - stx)
width1 = width
width = abs(sty-stx)
endif
c Set the minimum and maximum steps allowed for stp.
if (brackt) then
stmin = min(stx,sty)
stmax = max(stx,sty)
else
stmin = stp + xtrapl*(stp - stx)
stmax = stp + xtrapu*(stp - stx)
endif
c Force the step to be within the bounds stpmax and stpmin.
stp = max(stp,stpmin)
stp = min(stp,stpmax)
c If further progress is not possible, let stp be the best
c point obtained during the search.
if (brackt .and. (stp .le. stmin .or. stp .ge. stmax)
+ .or. (brackt .and. stmax-stmin .le. xtol*stmax)) stp = stx
c Obtain another function and derivative.
task = 'FG'
1000 continue
c Save local variables.
if (brackt) then
isave(1) = 1
else
isave(1) = 0
endif
isave(2) = stage
dsave(1) = ginit
dsave(2) = gtest
dsave(3) = gx
dsave(4) = gy
dsave(5) = finit
dsave(6) = fx
dsave(7) = fy
dsave(8) = stx
dsave(9) = sty
dsave(10) = stmin
dsave(11) = stmax
dsave(12) = width
dsave(13) = width1
return
end
c====================== The end of dcsrch ==============================
subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,
+ stpmin,stpmax)
logical brackt
double precision stx,fx,dx,sty,fy,dy,stp,fp,dp,stpmin,stpmax
c **********
c
c Subroutine dcstep
c
c This subroutine computes a safeguarded step for a search
c procedure and updates an interval that contains a step that
c satisfies a sufficient decrease and a curvature condition.
c
c The parameter stx contains the step with the least function
c value. If brackt is set to .true. then a minimizer has
c been bracketed in an interval with endpoints stx and sty.
c The parameter stp contains the current step.
c The subroutine assumes that if brackt is set to .true. then
c
c min(stx,sty) < stp < max(stx,sty),
c
c and that the derivative at stx is negative in the direction
c of the step.
c
c The subroutine statement is
c
c subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,
c stpmin,stpmax)
c
c where
c
c stx is a double precision variable.
c On entry stx is the best step obtained so far and is an
c endpoint of the interval that contains the minimizer.
c On exit stx is the updated best step.
c
c fx is a double precision variable.
c On entry fx is the function at stx.
c On exit fx is the function at stx.
c
c dx is a double precision variable.
c On entry dx is the derivative of the function at
c stx. The derivative must be negative in the direction of
c the step, that is, dx and stp - stx must have opposite
c signs.
c On exit dx is the derivative of the function at stx.
c
c sty is a double precision variable.
c On entry sty is the second endpoint of the interval that
c contains the minimizer.
c On exit sty is the updated endpoint of the interval that
c contains the minimizer.
c
c fy is a double precision variable.
c On entry fy is the function at sty.
c On exit fy is the function at sty.
c
c dy is a double precision variable.
c On entry dy is the derivative of the function at sty.
c On exit dy is the derivative of the function at the exit sty.
c
c stp is a double precision variable.
c On entry stp is the current step. If brackt is set to .true.
c then on input stp must be between stx and sty.
c On exit stp is a new trial step.
c
c fp is a double precision variable.
c On entry fp is the function at stp
c On exit fp is unchanged.
c
c dp is a double precision variable.
c On entry dp is the the derivative of the function at stp.
c On exit dp is unchanged.
c
c brackt is an logical variable.
c On entry brackt specifies if a minimizer has been bracketed.
c Initially brackt must be set to .false.
c On exit brackt specifies if a minimizer has been bracketed.
c When a minimizer is bracketed brackt is set to .true.
c
c stpmin is a double precision variable.
c On entry stpmin is a lower bound for the step.
c On exit stpmin is unchanged.
c
c stpmax is a double precision variable.
c On entry stpmax is an upper bound for the step.
c On exit stpmax is unchanged.
c
c MINPACK-1 Project. June 1983
c Argonne National Laboratory.
c Jorge J. More' and David J. Thuente.
c
c MINPACK-2 Project. October 1993.
c Argonne National Laboratory and University of Minnesota.
c Brett M. Averick and Jorge J. More'.
c
c **********
double precision zero,p66,two,three
parameter(zero=0.0d0,p66=0.66d0,two=2.0d0,three=3.0d0)
double precision gamma,p,q,r,s,sgnd,stpc,stpf,stpq,theta
sgnd = dp*(dx/abs(dx))
c First case: A higher function value. The minimum is bracketed.
c If the cubic step is closer to stx than the quadratic step, the
c cubic step is taken, otherwise the average of the cubic and
c quadratic steps is taken.
if (fp .gt. fx) then
theta = three*(fx - fp)/(stp - stx) + dx + dp
s = max(abs(theta),abs(dx),abs(dp))
gamma = s*sqrt((theta/s)**2 - (dx/s)*(dp/s))
if (stp .lt. stx) gamma = -gamma
p = (gamma - dx) + theta
q = ((gamma - dx) + gamma) + dp
r = p/q
stpc = stx + r*(stp - stx)
stpq = stx + ((dx/((fx - fp)/(stp - stx) + dx))/two)*
+ (stp - stx)
if (abs(stpc-stx) .lt. abs(stpq-stx)) then
stpf = stpc
else
stpf = stpc + (stpq - stpc)/two
endif
brackt = .true.
c Second case: A lower function value and derivatives of opposite
c sign. The minimum is bracketed. If the cubic step is farther from
c stp than the secant step, the cubic step is taken, otherwise the
c secant step is taken.
else if (sgnd .lt. zero) then
theta = three*(fx - fp)/(stp - stx) + dx + dp
s = max(abs(theta),abs(dx),abs(dp))
gamma = s*sqrt((theta/s)**2 - (dx/s)*(dp/s))
if (stp .gt. stx) gamma = -gamma
p = (gamma - dp) + theta
q = ((gamma - dp) + gamma) + dx
r = p/q
stpc = stp + r*(stx - stp)
stpq = stp + (dp/(dp - dx))*(stx - stp)
if (abs(stpc-stp) .gt. abs(stpq-stp)) then
stpf = stpc
else
stpf = stpq
endif
brackt = .true.
c Third case: A lower function value, derivatives of the same sign,
c and the magnitude of the derivative decreases.
else if (abs(dp) .lt. abs(dx)) then
c The cubic step is computed only if the cubic tends to infinity
c in the direction of the step or if the minimum of the cubic
c is beyond stp. Otherwise the cubic step is defined to be the
c secant step.
theta = three*(fx - fp)/(stp - stx) + dx + dp
s = max(abs(theta),abs(dx),abs(dp))
c The case gamma = 0 only arises if the cubic does not tend
c to infinity in the direction of the step.
gamma = s*sqrt(max(zero,(theta/s)**2-(dx/s)*(dp/s)))
if (stp .gt. stx) gamma = -gamma
p = (gamma - dp) + theta
q = (gamma + (dx - dp)) + gamma
r = p/q
if (r .lt. zero .and. gamma .ne. zero) then
stpc = stp + r*(stx - stp)
else if (stp .gt. stx) then
stpc = stpmax
else
stpc = stpmin
endif
stpq = stp + (dp/(dp - dx))*(stx - stp)
if (brackt) then
c A minimizer has been bracketed. If the cubic step is
c closer to stp than the secant step, the cubic step is
c taken, otherwise the secant step is taken.
if (abs(stpc-stp) .lt. abs(stpq-stp)) then
stpf = stpc
else
stpf = stpq
endif
if (stp .gt. stx) then
stpf = min(stp+p66*(sty-stp),stpf)
else
stpf = max(stp+p66*(sty-stp),stpf)
endif
else
c A minimizer has not been bracketed. If the cubic step is
c farther from stp than the secant step, the cubic step is
c taken, otherwise the secant step is taken.
if (abs(stpc-stp) .gt. abs(stpq-stp)) then
stpf = stpc
else
stpf = stpq
endif
stpf = min(stpmax,stpf)
stpf = max(stpmin,stpf)
endif
c Fourth case: A lower function value, derivatives of the same sign,
c and the magnitude of the derivative does not decrease. If the
c minimum is not bracketed, the step is either stpmin or stpmax,
c otherwise the cubic step is taken.
else
if (brackt) then
theta = three*(fp - fy)/(sty - stp) + dy + dp
s = max(abs(theta),abs(dy),abs(dp))
gamma = s*sqrt((theta/s)**2 - (dy/s)*(dp/s))
if (stp .gt. sty) gamma = -gamma
p = (gamma - dp) + theta
q = ((gamma - dp) + gamma) + dy
r = p/q
stpc = stp + r*(sty - stp)
stpf = stpc
else if (stp .gt. stx) then
stpf = stpmax
else
stpf = stpmin
endif
endif
c Update the interval which contains a minimizer.
if (fp .gt. fx) then
sty = stp
fy = fp
dy = dp
else
if (sgnd .lt. zero) then
sty = stx
fy = fx
dy = dx
endif
stx = stp
fx = fp
dx = dp
endif
c Compute the new step.
stp = stpf
return
end
|