File: hybrj.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (440 lines) | stat: -rw-r--r-- 14,077 bytes parent folder | download | duplicates (34)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
      subroutine hybrj(fcn,n,x,fvec,fjac,ldfjac,xtol,maxfev,diag,mode,
     *                 factor,nprint,info,nfev,njev,r,lr,qtf,wa1,wa2,
     *                 wa3,wa4)
      integer n,ldfjac,maxfev,mode,nprint,info,nfev,njev,lr
      double precision xtol,factor
      double precision x(n),fvec(n),fjac(ldfjac,n),diag(n),r(lr),
     *                 qtf(n),wa1(n),wa2(n),wa3(n),wa4(n)
c     **********
c
c     subroutine hybrj
c
c     the purpose of hybrj is to find a zero of a system of
c     n nonlinear functions in n variables by a modification
c     of the powell hybrid method. the user must provide a
c     subroutine which calculates the functions and the jacobian.
c
c     the subroutine statement is
c
c       subroutine hybrj(fcn,n,x,fvec,fjac,ldfjac,xtol,maxfev,diag,
c                        mode,factor,nprint,info,nfev,njev,r,lr,qtf,
c                        wa1,wa2,wa3,wa4)
c
c     where
c
c       fcn is the name of the user-supplied subroutine which
c         calculates the functions and the jacobian. fcn must
c         be declared in an external statement in the user
c         calling program, and should be written as follows.
c
c         subroutine fcn(n,x,fvec,fjac,ldfjac,iflag)
c         integer n,ldfjac,iflag
c         double precision x(n),fvec(n),fjac(ldfjac,n)
c         ----------
c         if iflag = 1 calculate the functions at x and
c         return this vector in fvec. do not alter fjac.
c         if iflag = 2 calculate the jacobian at x and
c         return this matrix in fjac. do not alter fvec.
c         ---------
c         return
c         end
c
c         the value of iflag should not be changed by fcn unless
c         the user wants to terminate execution of hybrj.
c         in this case set iflag to a negative integer.
c
c       n is a positive integer input variable set to the number
c         of functions and variables.
c
c       x is an array of length n. on input x must contain
c         an initial estimate of the solution vector. on output x
c         contains the final estimate of the solution vector.
c
c       fvec is an output array of length n which contains
c         the functions evaluated at the output x.
c
c       fjac is an output n by n array which contains the
c         orthogonal matrix q produced by the qr factorization
c         of the final approximate jacobian.
c
c       ldfjac is a positive integer input variable not less than n
c         which specifies the leading dimension of the array fjac.
c
c       xtol is a nonnegative input variable. termination
c         occurs when the relative error between two consecutive
c         iterates is at most xtol.
c
c       maxfev is a positive integer input variable. termination
c         occurs when the number of calls to fcn with iflag = 1
c         has reached maxfev.
c
c       diag is an array of length n. if mode = 1 (see
c         below), diag is internally set. if mode = 2, diag
c         must contain positive entries that serve as
c         multiplicative scale factors for the variables.
c
c       mode is an integer input variable. if mode = 1, the
c         variables will be scaled internally. if mode = 2,
c         the scaling is specified by the input diag. other
c         values of mode are equivalent to mode = 1.
c
c       factor is a positive input variable used in determining the
c         initial step bound. this bound is set to the product of
c         factor and the euclidean norm of diag*x if nonzero, or else
c         to factor itself. in most cases factor should lie in the
c         interval (.1,100.). 100. is a generally recommended value.
c
c       nprint is an integer input variable that enables controlled
c         printing of iterates if it is positive. in this case,
c         fcn is called with iflag = 0 at the beginning of the first
c         iteration and every nprint iterations thereafter and
c         immediately prior to return, with x and fvec available
c         for printing. fvec and fjac should not be altered.
c         if nprint is not positive, no special calls of fcn
c         with iflag = 0 are made.
c
c       info is an integer output variable. if the user has
c         terminated execution, info is set to the (negative)
c         value of iflag. see description of fcn. otherwise,
c         info is set as follows.
c
c         info = 0   improper input parameters.
c
c         info = 1   relative error between two consecutive iterates
c                    is at most xtol.
c
c         info = 2   number of calls to fcn with iflag = 1 has
c                    reached maxfev.
c
c         info = 3   xtol is too small. no further improvement in
c                    the approximate solution x is possible.
c
c         info = 4   iteration is not making good progress, as
c                    measured by the improvement from the last
c                    five jacobian evaluations.
c
c         info = 5   iteration is not making good progress, as
c                    measured by the improvement from the last
c                    ten iterations.
c
c       nfev is an integer output variable set to the number of
c         calls to fcn with iflag = 1.
c
c       njev is an integer output variable set to the number of
c         calls to fcn with iflag = 2.
c
c       r is an output array of length lr which contains the
c         upper triangular matrix produced by the qr factorization
c         of the final approximate jacobian, stored rowwise.
c
c       lr is a positive integer input variable not less than
c         (n*(n+1))/2.
c
c       qtf is an output array of length n which contains
c         the vector (q transpose)*fvec.
c
c       wa1, wa2, wa3, and wa4 are work arrays of length n.
c
c     subprograms called
c
c       user-supplied ...... fcn
c
c       minpack-supplied ... dogleg,dpmpar,enorm,
c                            qform,qrfac,r1mpyq,r1updt
c
c       fortran-supplied ... dabs,dmax1,dmin1,mod
c
c     argonne national laboratory. minpack project. march 1980.
c     burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c     **********
      integer i,iflag,iter,j,jm1,l,ncfail,ncsuc,nslow1,nslow2
      integer iwa(1)
      logical jeval,sing
      double precision actred,delta,epsmch,fnorm,fnorm1,one,pnorm,
     *                 prered,p1,p5,p001,p0001,ratio,sum,temp,xnorm,
     *                 zero
      double precision dpmpar,enorm
      data one,p1,p5,p001,p0001,zero
     *     /1.0d0,1.0d-1,5.0d-1,1.0d-3,1.0d-4,0.0d0/
c
c     epsmch is the machine precision.
c
      epsmch = dpmpar(1)
c
      info = 0
      iflag = 0
      nfev = 0
      njev = 0
c
c     check the input parameters for errors.
c
      if (n .le. 0 .or. ldfjac .lt. n .or. xtol .lt. zero
     *    .or. maxfev .le. 0 .or. factor .le. zero
     *    .or. lr .lt. (n*(n + 1))/2) go to 300
      if (mode .ne. 2) go to 20
      do 10 j = 1, n
         if (diag(j) .le. zero) go to 300
   10    continue
   20 continue
c
c     evaluate the function at the starting point
c     and calculate its norm.
c
      iflag = 1
      call fcn(n,x,fvec,fjac,ldfjac,iflag)
      nfev = 1
      if (iflag .lt. 0) go to 300
      fnorm = enorm(n,fvec)
c
c     initialize iteration counter and monitors.
c
      iter = 1
      ncsuc = 0
      ncfail = 0
      nslow1 = 0
      nslow2 = 0
c
c     beginning of the outer loop.
c
   30 continue
         jeval = .true.
c
c        calculate the jacobian matrix.
c
         iflag = 2
         call fcn(n,x,fvec,fjac,ldfjac,iflag)
         njev = njev + 1
         if (iflag .lt. 0) go to 300
c
c        compute the qr factorization of the jacobian.
c
         call qrfac(n,n,fjac,ldfjac,.false.,iwa,1,wa1,wa2,wa3)
c
c        on the first iteration and if mode is 1, scale according
c        to the norms of the columns of the initial jacobian.
c
         if (iter .ne. 1) go to 70
         if (mode .eq. 2) go to 50
         do 40 j = 1, n
            diag(j) = wa2(j)
            if (wa2(j) .eq. zero) diag(j) = one
   40       continue
   50    continue
c
c        on the first iteration, calculate the norm of the scaled x
c        and initialize the step bound delta.
c
         do 60 j = 1, n
            wa3(j) = diag(j)*x(j)
   60       continue
         xnorm = enorm(n,wa3)
         delta = factor*xnorm
         if (delta .eq. zero) delta = factor
   70    continue
c
c        form (q transpose)*fvec and store in qtf.
c
         do 80 i = 1, n
            qtf(i) = fvec(i)
   80       continue
         do 120 j = 1, n
            if (fjac(j,j) .eq. zero) go to 110
            sum = zero
            do 90 i = j, n
               sum = sum + fjac(i,j)*qtf(i)
   90          continue
            temp = -sum/fjac(j,j)
            do 100 i = j, n
               qtf(i) = qtf(i) + fjac(i,j)*temp
  100          continue
  110       continue
  120       continue
c
c        copy the triangular factor of the qr factorization into r.
c
         sing = .false.
         do 150 j = 1, n
            l = j
            jm1 = j - 1
            if (jm1 .lt. 1) go to 140
            do 130 i = 1, jm1
               r(l) = fjac(i,j)
               l = l + n - i
  130          continue
  140       continue
            r(l) = wa1(j)
            if (wa1(j) .eq. zero) sing = .true.
  150       continue
c
c        accumulate the orthogonal factor in fjac.
c
         call qform(n,n,fjac,ldfjac,wa1)
c
c        rescale if necessary.
c
         if (mode .eq. 2) go to 170
         do 160 j = 1, n
            diag(j) = dmax1(diag(j),wa2(j))
  160       continue
  170    continue
c
c        beginning of the inner loop.
c
  180    continue
c
c           if requested, call fcn to enable printing of iterates.
c
            if (nprint .le. 0) go to 190
            iflag = 0
            if (mod(iter-1,nprint) .eq. 0)
     *         call fcn(n,x,fvec,fjac,ldfjac,iflag)
            if (iflag .lt. 0) go to 300
  190       continue
c
c           determine the direction p.
c
            call dogleg(n,r,lr,diag,qtf,delta,wa1,wa2,wa3)
c
c           store the direction p and x + p. calculate the norm of p.
c
            do 200 j = 1, n
               wa1(j) = -wa1(j)
               wa2(j) = x(j) + wa1(j)
               wa3(j) = diag(j)*wa1(j)
  200          continue
            pnorm = enorm(n,wa3)
c
c           on the first iteration, adjust the initial step bound.
c
            if (iter .eq. 1) delta = dmin1(delta,pnorm)
c
c           evaluate the function at x + p and calculate its norm.
c
            iflag = 1
            call fcn(n,wa2,wa4,fjac,ldfjac,iflag)
            nfev = nfev + 1
            if (iflag .lt. 0) go to 300
            fnorm1 = enorm(n,wa4)
c
c           compute the scaled actual reduction.
c
            actred = -one
            if (fnorm1 .lt. fnorm) actred = one - (fnorm1/fnorm)**2
c
c           compute the scaled predicted reduction.
c
            l = 1
            do 220 i = 1, n
               sum = zero
               do 210 j = i, n
                  sum = sum + r(l)*wa1(j)
                  l = l + 1
  210             continue
               wa3(i) = qtf(i) + sum
  220          continue
            temp = enorm(n,wa3)
            prered = zero
            if (temp .lt. fnorm) prered = one - (temp/fnorm)**2
c
c           compute the ratio of the actual to the predicted
c           reduction.
c
            ratio = zero
            if (prered .gt. zero) ratio = actred/prered
c
c           update the step bound.
c
            if (ratio .ge. p1) go to 230
               ncsuc = 0
               ncfail = ncfail + 1
               delta = p5*delta
               go to 240
  230       continue
               ncfail = 0
               ncsuc = ncsuc + 1
               if (ratio .ge. p5 .or. ncsuc .gt. 1)
     *            delta = dmax1(delta,pnorm/p5)
               if (dabs(ratio-one) .le. p1) delta = pnorm/p5
  240       continue
c
c           test for successful iteration.
c
            if (ratio .lt. p0001) go to 260
c
c           successful iteration. update x, fvec, and their norms.
c
            do 250 j = 1, n
               x(j) = wa2(j)
               wa2(j) = diag(j)*x(j)
               fvec(j) = wa4(j)
  250          continue
            xnorm = enorm(n,wa2)
            fnorm = fnorm1
            iter = iter + 1
  260       continue
c
c           determine the progress of the iteration.
c
            nslow1 = nslow1 + 1
            if (actred .ge. p001) nslow1 = 0
            if (jeval) nslow2 = nslow2 + 1
            if (actred .ge. p1) nslow2 = 0
c
c           test for convergence.
c
            if (delta .le. xtol*xnorm .or. fnorm .eq. zero) info = 1
            if (info .ne. 0) go to 300
c
c           tests for termination and stringent tolerances.
c
            if (nfev .ge. maxfev) info = 2
            if (p1*dmax1(p1*delta,pnorm) .le. epsmch*xnorm) info = 3
            if (nslow2 .eq. 5) info = 4
            if (nslow1 .eq. 10) info = 5
            if (info .ne. 0) go to 300
c
c           criterion for recalculating jacobian.
c
            if (ncfail .eq. 2) go to 290
c
c           calculate the rank one modification to the jacobian
c           and update qtf if necessary.
c
            do 280 j = 1, n
               sum = zero
               do 270 i = 1, n
                  sum = sum + fjac(i,j)*wa4(i)
  270             continue
               wa2(j) = (sum - wa3(j))/pnorm
               wa1(j) = diag(j)*((diag(j)*wa1(j))/pnorm)
               if (ratio .ge. p0001) qtf(j) = sum
  280          continue
c
c           compute the qr factorization of the updated jacobian.
c
            call r1updt(n,n,r,lr,wa1,wa2,wa3,sing)
            call r1mpyq(n,n,fjac,ldfjac,wa2,wa3)
            call r1mpyq(1,n,qtf,1,wa2,wa3)
c
c           end of the inner loop.
c
            jeval = .false.
            go to 180
  290    continue
c
c        end of the outer loop.
c
         go to 30
  300 continue
c
c     termination, either normal or user imposed.
c
      if (iflag .lt. 0) info = iflag
      iflag = 0
      if (nprint .gt. 0) call fcn(n,x,fvec,fjac,ldfjac,iflag)
      return
c
c     last card of subroutine hybrj.
c
      end