1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
integer m,n,lda,lipvt
integer ipvt(lipvt)
logical pivot
double precision a(lda,n),rdiag(n),acnorm(n),wa(n)
c **********
c
c subroutine qrfac
c
c this subroutine uses householder transformations with column
c pivoting (optional) to compute a qr factorization of the
c m by n matrix a. that is, qrfac determines an orthogonal
c matrix q, a permutation matrix p, and an upper trapezoidal
c matrix r with diagonal elements of nonincreasing magnitude,
c such that a*p = q*r. the householder transformation for
c column k, k = 1,2,...,min(m,n), is of the form
c
c t
c i - (1/u(k))*u*u
c
c where u has zeros in the first k-1 positions. the form of
c this transformation and the method of pivoting first
c appeared in the corresponding linpack subroutine.
c
c the subroutine statement is
c
c subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
c
c where
c
c m is a positive integer input variable set to the number
c of rows of a.
c
c n is a positive integer input variable set to the number
c of columns of a.
c
c a is an m by n array. on input a contains the matrix for
c which the qr factorization is to be computed. on output
c the strict upper trapezoidal part of a contains the strict
c upper trapezoidal part of r, and the lower trapezoidal
c part of a contains a factored form of q (the non-trivial
c elements of the u vectors described above).
c
c lda is a positive integer input variable not less than m
c which specifies the leading dimension of the array a.
c
c pivot is a logical input variable. if pivot is set true,
c then column pivoting is enforced. if pivot is set false,
c then no column pivoting is done.
c
c ipvt is an integer output array of length lipvt. ipvt
c defines the permutation matrix p such that a*p = q*r.
c column j of p is column ipvt(j) of the identity matrix.
c if pivot is false, ipvt is not referenced.
c
c lipvt is a positive integer input variable. if pivot is false,
c then lipvt may be as small as 1. if pivot is true, then
c lipvt must be at least n.
c
c rdiag is an output array of length n which contains the
c diagonal elements of r.
c
c acnorm is an output array of length n which contains the
c norms of the corresponding columns of the input matrix a.
c if this information is not needed, then acnorm can coincide
c with rdiag.
c
c wa is a work array of length n. if pivot is false, then wa
c can coincide with rdiag.
c
c subprograms called
c
c minpack-supplied ... dpmpar,enorm
c
c fortran-supplied ... dmax1,dsqrt,min0
c
c argonne national laboratory. minpack project. march 1980.
c burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c **********
integer i,j,jp1,k,kmax,minmn
double precision ajnorm,epsmch,one,p05,sum,temp,zero
double precision dpmpar,enorm
data one,p05,zero /1.0d0,5.0d-2,0.0d0/
c
c epsmch is the machine precision.
c
epsmch = dpmpar(1)
c
c compute the initial column norms and initialize several arrays.
c
do 10 j = 1, n
acnorm(j) = enorm(m,a(1,j))
rdiag(j) = acnorm(j)
wa(j) = rdiag(j)
if (pivot) ipvt(j) = j
10 continue
c
c reduce a to r with householder transformations.
c
minmn = min0(m,n)
do 110 j = 1, minmn
if (.not.pivot) go to 40
c
c bring the column of largest norm into the pivot position.
c
kmax = j
do 20 k = j, n
if (rdiag(k) .gt. rdiag(kmax)) kmax = k
20 continue
if (kmax .eq. j) go to 40
do 30 i = 1, m
temp = a(i,j)
a(i,j) = a(i,kmax)
a(i,kmax) = temp
30 continue
rdiag(kmax) = rdiag(j)
wa(kmax) = wa(j)
k = ipvt(j)
ipvt(j) = ipvt(kmax)
ipvt(kmax) = k
40 continue
c
c compute the householder transformation to reduce the
c j-th column of a to a multiple of the j-th unit vector.
c
ajnorm = enorm(m-j+1,a(j,j))
if (ajnorm .eq. zero) go to 100
if (a(j,j) .lt. zero) ajnorm = -ajnorm
do 50 i = j, m
a(i,j) = a(i,j)/ajnorm
50 continue
a(j,j) = a(j,j) + one
c
c apply the transformation to the remaining columns
c and update the norms.
c
jp1 = j + 1
if (n .lt. jp1) go to 100
do 90 k = jp1, n
sum = zero
do 60 i = j, m
sum = sum + a(i,j)*a(i,k)
60 continue
temp = sum/a(j,j)
do 70 i = j, m
a(i,k) = a(i,k) - temp*a(i,j)
70 continue
if (.not.pivot .or. rdiag(k) .eq. zero) go to 80
temp = a(j,k)/rdiag(k)
rdiag(k) = rdiag(k)*dsqrt(dmax1(zero,one-temp**2))
if (p05*(rdiag(k)/wa(k))**2 .gt. epsmch) go to 80
rdiag(k) = enorm(m-j,a(jp1,k))
wa(k) = rdiag(k)
80 continue
90 continue
100 continue
rdiag(j) = -ajnorm
110 continue
return
c
c last card of subroutine qrfac.
c
end
|