1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa)
integer n,ldr
integer ipvt(n)
double precision r(ldr,n),diag(n),qtb(n),x(n),sdiag(n),wa(n)
c **********
c
c subroutine qrsolv
c
c given an m by n matrix a, an n by n diagonal matrix d,
c and an m-vector b, the problem is to determine an x which
c solves the system
c
c a*x = b , d*x = 0 ,
c
c in the least squares sense.
c
c this subroutine completes the solution of the problem
c if it is provided with the necessary information from the
c qr factorization, with column pivoting, of a. that is, if
c a*p = q*r, where p is a permutation matrix, q has orthogonal
c columns, and r is an upper triangular matrix with diagonal
c elements of nonincreasing magnitude, then qrsolv expects
c the full upper triangle of r, the permutation matrix p,
c and the first n components of (q transpose)*b. the system
c a*x = b, d*x = 0, is then equivalent to
c
c t t
c r*z = q *b , p *d*p*z = 0 ,
c
c where x = p*z. if this system does not have full rank,
c then a least squares solution is obtained. on output qrsolv
c also provides an upper triangular matrix s such that
c
c t t t
c p *(a *a + d*d)*p = s *s .
c
c s is computed within qrsolv and may be of separate interest.
c
c the subroutine statement is
c
c subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa)
c
c where
c
c n is a positive integer input variable set to the order of r.
c
c r is an n by n array. on input the full upper triangle
c must contain the full upper triangle of the matrix r.
c on output the full upper triangle is unaltered, and the
c strict lower triangle contains the strict upper triangle
c (transposed) of the upper triangular matrix s.
c
c ldr is a positive integer input variable not less than n
c which specifies the leading dimension of the array r.
c
c ipvt is an integer input array of length n which defines the
c permutation matrix p such that a*p = q*r. column j of p
c is column ipvt(j) of the identity matrix.
c
c diag is an input array of length n which must contain the
c diagonal elements of the matrix d.
c
c qtb is an input array of length n which must contain the first
c n elements of the vector (q transpose)*b.
c
c x is an output array of length n which contains the least
c squares solution of the system a*x = b, d*x = 0.
c
c sdiag is an output array of length n which contains the
c diagonal elements of the upper triangular matrix s.
c
c wa is a work array of length n.
c
c subprograms called
c
c fortran-supplied ... dabs,dsqrt
c
c argonne national laboratory. minpack project. march 1980.
c burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c **********
integer i,j,jp1,k,kp1,l,nsing
double precision cos,cotan,p5,p25,qtbpj,sin,sum,tan,temp,zero
data p5,p25,zero /5.0d-1,2.5d-1,0.0d0/
c
c copy r and (q transpose)*b to preserve input and initialize s.
c in particular, save the diagonal elements of r in x.
c
do 20 j = 1, n
do 10 i = j, n
r(i,j) = r(j,i)
10 continue
x(j) = r(j,j)
wa(j) = qtb(j)
20 continue
c
c eliminate the diagonal matrix d using a givens rotation.
c
do 100 j = 1, n
c
c prepare the row of d to be eliminated, locating the
c diagonal element using p from the qr factorization.
c
l = ipvt(j)
if (diag(l) .eq. zero) go to 90
do 30 k = j, n
sdiag(k) = zero
30 continue
sdiag(j) = diag(l)
c
c the transformations to eliminate the row of d
c modify only a single element of (q transpose)*b
c beyond the first n, which is initially zero.
c
qtbpj = zero
do 80 k = j, n
c
c determine a givens rotation which eliminates the
c appropriate element in the current row of d.
c
if (sdiag(k) .eq. zero) go to 70
if (dabs(r(k,k)) .ge. dabs(sdiag(k))) go to 40
cotan = r(k,k)/sdiag(k)
sin = p5/dsqrt(p25+p25*cotan**2)
cos = sin*cotan
go to 50
40 continue
tan = sdiag(k)/r(k,k)
cos = p5/dsqrt(p25+p25*tan**2)
sin = cos*tan
50 continue
c
c compute the modified diagonal element of r and
c the modified element of ((q transpose)*b,0).
c
r(k,k) = cos*r(k,k) + sin*sdiag(k)
temp = cos*wa(k) + sin*qtbpj
qtbpj = -sin*wa(k) + cos*qtbpj
wa(k) = temp
c
c accumulate the tranformation in the row of s.
c
kp1 = k + 1
if (n .lt. kp1) go to 70
do 60 i = kp1, n
temp = cos*r(i,k) + sin*sdiag(i)
sdiag(i) = -sin*r(i,k) + cos*sdiag(i)
r(i,k) = temp
60 continue
70 continue
80 continue
90 continue
c
c store the diagonal element of s and restore
c the corresponding diagonal element of r.
c
sdiag(j) = r(j,j)
r(j,j) = x(j)
100 continue
c
c solve the triangular system for z. if the system is
c singular, then obtain a least squares solution.
c
nsing = n
do 110 j = 1, n
if (sdiag(j) .eq. zero .and. nsing .eq. n) nsing = j - 1
if (nsing .lt. n) wa(j) = zero
110 continue
if (nsing .lt. 1) go to 150
do 140 k = 1, nsing
j = nsing - k + 1
sum = zero
jp1 = j + 1
if (nsing .lt. jp1) go to 130
do 120 i = jp1, nsing
sum = sum + r(i,j)*wa(i)
120 continue
130 continue
wa(j) = (wa(j) - sum)/sdiag(j)
140 continue
150 continue
c
c permute the components of z back to components of x.
c
do 160 j = 1, n
l = ipvt(j)
x(l) = wa(j)
160 continue
return
c
c last card of subroutine qrsolv.
c
end
|