1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
subroutine r1updt(m,n,s,ls,u,v,w,sing)
integer m,n,ls
logical sing
double precision s(ls),u(m),v(n),w(m)
c **********
c
c subroutine r1updt
c
c given an m by n lower trapezoidal matrix s, an m-vector u,
c and an n-vector v, the problem is to determine an
c orthogonal matrix q such that
c
c t
c (s + u*v )*q
c
c is again lower trapezoidal.
c
c this subroutine determines q as the product of 2*(n - 1)
c transformations
c
c gv(n-1)*...*gv(1)*gw(1)*...*gw(n-1)
c
c where gv(i), gw(i) are givens rotations in the (i,n) plane
c which eliminate elements in the i-th and n-th planes,
c respectively. q itself is not accumulated, rather the
c information to recover the gv, gw rotations is returned.
c
c the subroutine statement is
c
c subroutine r1updt(m,n,s,ls,u,v,w,sing)
c
c where
c
c m is a positive integer input variable set to the number
c of rows of s.
c
c n is a positive integer input variable set to the number
c of columns of s. n must not exceed m.
c
c s is an array of length ls. on input s must contain the lower
c trapezoidal matrix s stored by columns. on output s contains
c the lower trapezoidal matrix produced as described above.
c
c ls is a positive integer input variable not less than
c (n*(2*m-n+1))/2.
c
c u is an input array of length m which must contain the
c vector u.
c
c v is an array of length n. on input v must contain the vector
c v. on output v(i) contains the information necessary to
c recover the givens rotation gv(i) described above.
c
c w is an output array of length m. w(i) contains information
c necessary to recover the givens rotation gw(i) described
c above.
c
c sing is a logical output variable. sing is set true if any
c of the diagonal elements of the output s are zero. otherwise
c sing is set false.
c
c subprograms called
c
c minpack-supplied ... dpmpar
c
c fortran-supplied ... dabs,dsqrt
c
c argonne national laboratory. minpack project. march 1980.
c burton s. garbow, kenneth e. hillstrom, jorge j. more,
c john l. nazareth
c
c **********
integer i,j,jj,l,nmj,nm1
double precision cos,cotan,giant,one,p5,p25,sin,tan,tau,temp,
* zero
double precision dpmpar
data one,p5,p25,zero /1.0d0,5.0d-1,2.5d-1,0.0d0/
c
c giant is the largest magnitude.
c
giant = dpmpar(3)
c
c initialize the diagonal element pointer.
c
jj = (n*(2*m - n + 1))/2 - (m - n)
c
c move the nontrivial part of the last column of s into w.
c
l = jj
do 10 i = n, m
w(i) = s(l)
l = l + 1
10 continue
c
c rotate the vector v into a multiple of the n-th unit vector
c in such a way that a spike is introduced into w.
c
nm1 = n - 1
if (nm1 .lt. 1) go to 70
do 60 nmj = 1, nm1
j = n - nmj
jj = jj - (m - j + 1)
w(j) = zero
if (v(j) .eq. zero) go to 50
c
c determine a givens rotation which eliminates the
c j-th element of v.
c
if (dabs(v(n)) .ge. dabs(v(j))) go to 20
cotan = v(n)/v(j)
sin = p5/dsqrt(p25+p25*cotan**2)
cos = sin*cotan
tau = one
if (dabs(cos)*giant .gt. one) tau = one/cos
go to 30
20 continue
tan = v(j)/v(n)
cos = p5/dsqrt(p25+p25*tan**2)
sin = cos*tan
tau = sin
30 continue
c
c apply the transformation to v and store the information
c necessary to recover the givens rotation.
c
v(n) = sin*v(j) + cos*v(n)
v(j) = tau
c
c apply the transformation to s and extend the spike in w.
c
l = jj
do 40 i = j, m
temp = cos*s(l) - sin*w(i)
w(i) = sin*s(l) + cos*w(i)
s(l) = temp
l = l + 1
40 continue
50 continue
60 continue
70 continue
c
c add the spike from the rank 1 update to w.
c
do 80 i = 1, m
w(i) = w(i) + v(n)*u(i)
80 continue
c
c eliminate the spike.
c
sing = .false.
if (nm1 .lt. 1) go to 140
do 130 j = 1, nm1
if (w(j) .eq. zero) go to 120
c
c determine a givens rotation which eliminates the
c j-th element of the spike.
c
if (dabs(s(jj)) .ge. dabs(w(j))) go to 90
cotan = s(jj)/w(j)
sin = p5/dsqrt(p25+p25*cotan**2)
cos = sin*cotan
tau = one
if (dabs(cos)*giant .gt. one) tau = one/cos
go to 100
90 continue
tan = w(j)/s(jj)
cos = p5/dsqrt(p25+p25*tan**2)
sin = cos*tan
tau = sin
100 continue
c
c apply the transformation to s and reduce the spike in w.
c
l = jj
do 110 i = j, m
temp = cos*s(l) + sin*w(i)
w(i) = -sin*s(l) + cos*w(i)
s(l) = temp
l = l + 1
110 continue
c
c store the information necessary to recover the
c givens rotation.
c
w(j) = tau
120 continue
c
c test for zero diagonal elements in the output s.
c
if (s(jj) .eq. zero) sing = .true.
jj = jj + (m - j + 1)
130 continue
140 continue
c
c move w back into the last column of the output s.
c
l = jj
do 150 i = n, m
s(l) = w(i)
l = l + 1
150 continue
if (s(jj) .eq. zero) sing = .true.
return
c
c last card of subroutine r1updt.
c
end
|