1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
C SUBROUTINE NNLS (A,MDA,M,N,B,X,RNORM,W,ZZ,INDEX,MODE)
C
C Algorithm NNLS: NONNEGATIVE LEAST SQUARES
C
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 15, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
c
C GIVEN AN M BY N MATRIX, A, AND AN M-VECTOR, B, COMPUTE AN
C N-VECTOR, X, THAT SOLVES THE LEAST SQUARES PROBLEM
C
C A * X = B SUBJECT TO X .GE. 0
C ------------------------------------------------------------------
c Subroutine Arguments
c
C A(),MDA,M,N MDA IS THE FIRST DIMENSIONING PARAMETER FOR THE
C ARRAY, A(). ON ENTRY A() CONTAINS THE M BY N
C MATRIX, A. ON EXIT A() CONTAINS
C THE PRODUCT MATRIX, Q*A , WHERE Q IS AN
C M BY M ORTHOGONAL MATRIX GENERATED IMPLICITLY BY
C THIS SUBROUTINE.
C B() ON ENTRY B() CONTAINS THE M-VECTOR, B. ON EXIT B() CON-
C TAINS Q*B.
C X() ON ENTRY X() NEED NOT BE INITIALIZED. ON EXIT X() WILL
C CONTAIN THE SOLUTION VECTOR.
C RNORM ON EXIT RNORM CONTAINS THE EUCLIDEAN NORM OF THE
C RESIDUAL VECTOR.
C W() AN N-ARRAY OF WORKING SPACE. ON EXIT W() WILL CONTAIN
C THE DUAL SOLUTION VECTOR. W WILL SATISFY W(I) = 0.
C FOR ALL I IN SET P AND W(I) .LE. 0. FOR ALL I IN SET Z
C ZZ() AN M-ARRAY OF WORKING SPACE.
C INDEX() AN INTEGER WORKING ARRAY OF LENGTH AT LEAST N.
C ON EXIT THE CONTENTS OF THIS ARRAY DEFINE THE SETS
C P AND Z AS FOLLOWS..
C
C INDEX(1) THRU INDEX(NSETP) = SET P.
C INDEX(IZ1) THRU INDEX(IZ2) = SET Z.
C IZ1 = NSETP + 1 = NPP1
C IZ2 = N
C MODE THIS IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING
C MEANINGS.
C 1 THE SOLUTION HAS BEEN COMPUTED SUCCESSFULLY.
C 2 THE DIMENSIONS OF THE PROBLEM ARE BAD.
C EITHER M .LE. 0 OR N .LE. 0.
C 3 ITERATION COUNT EXCEEDED. MORE THAN 3*N ITERATIONS.
C
C ------------------------------------------------------------------
SUBROUTINE NNLS (A,MDA,M,N,B,X,RNORM,W,ZZ,INDEX,MODE)
C ------------------------------------------------------------------
integer I, II, IP, ITER, ITMAX, IZ, IZ1, IZ2, IZMAX, J, JJ, JZ, L
integer M, MDA, MODE,N, NPP1, NSETP, RTNKEY
c integer INDEX(N)
c double precision A(MDA,N), B(M), W(N), X(N), ZZ(M)
integer INDEX(*)
double precision A(MDA,*), B(*), W(*), X(*), ZZ(*)
double precision ALPHA, ASAVE, CC, DIFF, DUMMY, FACTOR, RNORM
double precision SM, SS, T, TEMP, TWO, UNORM, UP, WMAX
double precision ZERO, ZTEST
parameter(FACTOR = 0.01d0)
parameter(TWO = 2.0d0, ZERO = 0.0d0)
C ------------------------------------------------------------------
MODE=1
IF (M .le. 0 .or. N .le. 0) then
MODE=2
RETURN
endif
ITER=0
ITMAX=3*N
C
C INITIALIZE THE ARRAYS INDEX() AND X().
C
DO 20 I=1,N
X(I)=ZERO
20 INDEX(I)=I
C
IZ2=N
IZ1=1
NSETP=0
NPP1=1
C ****** MAIN LOOP BEGINS HERE ******
30 CONTINUE
C QUIT IF ALL COEFFICIENTS ARE ALREADY IN THE SOLUTION.
C OR IF M COLS OF A HAVE BEEN TRIANGULARIZED.
C
IF (IZ1 .GT.IZ2.OR.NSETP.GE.M) GO TO 350
C
C COMPUTE COMPONENTS OF THE DUAL (NEGATIVE GRADIENT) VECTOR W().
C
DO 50 IZ=IZ1,IZ2
J=INDEX(IZ)
SM=ZERO
DO 40 L=NPP1,M
40 SM=SM+A(L,J)*B(L)
W(J)=SM
50 continue
C FIND LARGEST POSITIVE W(J).
60 continue
WMAX=ZERO
DO 70 IZ=IZ1,IZ2
J=INDEX(IZ)
IF (W(J) .gt. WMAX) then
WMAX=W(J)
IZMAX=IZ
endif
70 CONTINUE
C
C IF WMAX .LE. 0. GO TO TERMINATION.
C THIS INDICATES SATISFACTION OF THE KUHN-TUCKER CONDITIONS.
C
IF (WMAX .le. ZERO) go to 350
IZ=IZMAX
J=INDEX(IZ)
C
C THE SIGN OF W(J) IS OK FOR J TO BE MOVED TO SET P.
C BEGIN THE TRANSFORMATION AND CHECK NEW DIAGONAL ELEMENT TO AVOID
C NEAR LINEAR DEPENDENCE.
C
ASAVE=A(NPP1,J)
CALL H12 (1,NPP1,NPP1+1,M,A(1,J),1,UP,DUMMY,1,1,0)
UNORM=ZERO
IF (NSETP .ne. 0) then
DO 90 L=1,NSETP
90 UNORM=UNORM+A(L,J)**2
endif
UNORM=sqrt(UNORM)
IF (DIFF(UNORM+ABS(A(NPP1,J))*FACTOR,UNORM) .gt. ZERO) then
C
C COL J IS SUFFICIENTLY INDEPENDENT. COPY B INTO ZZ, UPDATE ZZ
C AND SOLVE FOR ZTEST ( = PROPOSED NEW VALUE FOR X(J) ).
C
DO 120 L=1,M
120 ZZ(L)=B(L)
CALL H12 (2,NPP1,NPP1+1,M,A(1,J),1,UP,ZZ,1,1,1)
ZTEST=ZZ(NPP1)/A(NPP1,J)
C
C SEE IF ZTEST IS POSITIVE
C
IF (ZTEST .gt. ZERO) go to 140
endif
C
C REJECT J AS A CANDIDATE TO BE MOVED FROM SET Z TO SET P.
C RESTORE A(NPP1,J), SET W(J)=0., AND LOOP BACK TO TEST DUAL
C COEFFS AGAIN.
C
A(NPP1,J)=ASAVE
W(J)=ZERO
GO TO 60
C
C THE INDEX J=INDEX(IZ) HAS BEEN SELECTED TO BE MOVED FROM
C SET Z TO SET P. UPDATE B, UPDATE INDICES, APPLY HOUSEHOLDER
C TRANSFORMATIONS TO COLS IN NEW SET Z, ZERO SUBDIAGONAL ELTS IN
C COL J, SET W(J)=0.
C
140 continue
DO 150 L=1,M
150 B(L)=ZZ(L)
C
INDEX(IZ)=INDEX(IZ1)
INDEX(IZ1)=J
IZ1=IZ1+1
NSETP=NPP1
NPP1=NPP1+1
C
IF (IZ1 .le. IZ2) then
DO 160 JZ=IZ1,IZ2
JJ=INDEX(JZ)
CALL H12 (2,NSETP,NPP1,M,A(1,J),1,UP,A(1,JJ),1,MDA,1)
160 continue
endif
C
IF (NSETP .ne. M) then
DO 180 L=NPP1,M
180 A(L,J)=ZERO
endif
C
W(J)=ZERO
C SOLVE THE TRIANGULAR SYSTEM.
C STORE THE SOLUTION TEMPORARILY IN ZZ().
RTNKEY = 1
GO TO 400
200 CONTINUE
C
C ****** SECONDARY LOOP BEGINS HERE ******
C
C ITERATION COUNTER.
C
210 continue
ITER=ITER+1
IF (ITER .gt. ITMAX) then
MODE=3
write (*,'(/a)') ' NNLS quitting on iteration count.'
GO TO 350
endif
C
C SEE IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE.
C IF NOT COMPUTE ALPHA.
C
ALPHA=TWO
DO 240 IP=1,NSETP
L=INDEX(IP)
IF (ZZ(IP) .le. ZERO) then
T=-X(L)/(ZZ(IP)-X(L))
IF (ALPHA .gt. T) then
ALPHA=T
JJ=IP
endif
endif
240 CONTINUE
C
C IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE THEN ALPHA WILL
C STILL = 2. IF SO EXIT FROM SECONDARY LOOP TO MAIN LOOP.
C
IF (ALPHA.EQ.TWO) GO TO 330
C
C OTHERWISE USE ALPHA WHICH WILL BE BETWEEN 0. AND 1. TO
C INTERPOLATE BETWEEN THE OLD X AND THE NEW ZZ.
C
DO 250 IP=1,NSETP
L=INDEX(IP)
X(L)=X(L)+ALPHA*(ZZ(IP)-X(L))
250 continue
C
C MODIFY A AND B AND THE INDEX ARRAYS TO MOVE COEFFICIENT I
C FROM SET P TO SET Z.
C
I=INDEX(JJ)
260 continue
X(I)=ZERO
C
IF (JJ .ne. NSETP) then
JJ=JJ+1
DO 280 J=JJ,NSETP
II=INDEX(J)
INDEX(J-1)=II
CALL G1 (A(J-1,II),A(J,II),CC,SS,A(J-1,II))
A(J,II)=ZERO
DO 270 L=1,N
IF (L.NE.II) then
c
c Apply procedure G2 (CC,SS,A(J-1,L),A(J,L))
c
TEMP = A(J-1,L)
A(J-1,L) = CC*TEMP + SS*A(J,L)
A(J,L) =-SS*TEMP + CC*A(J,L)
endif
270 CONTINUE
c
c Apply procedure G2 (CC,SS,B(J-1),B(J))
c
TEMP = B(J-1)
B(J-1) = CC*TEMP + SS*B(J)
B(J) =-SS*TEMP + CC*B(J)
280 continue
endif
c
NPP1=NSETP
NSETP=NSETP-1
IZ1=IZ1-1
INDEX(IZ1)=I
C
C SEE IF THE REMAINING COEFFS IN SET P ARE FEASIBLE. THEY SHOULD
C BE BECAUSE OF THE WAY ALPHA WAS DETERMINED.
C IF ANY ARE INFEASIBLE IT IS DUE TO ROUND-OFF ERROR. ANY
C THAT ARE NONPOSITIVE WILL BE SET TO ZERO
C AND MOVED FROM SET P TO SET Z.
C
DO 300 JJ=1,NSETP
I=INDEX(JJ)
IF (X(I) .le. ZERO) go to 260
300 CONTINUE
C
C COPY B( ) INTO ZZ( ). THEN SOLVE AGAIN AND LOOP BACK.
C
DO 310 I=1,M
310 ZZ(I)=B(I)
RTNKEY = 2
GO TO 400
320 CONTINUE
GO TO 210
C ****** END OF SECONDARY LOOP ******
C
330 continue
DO 340 IP=1,NSETP
I=INDEX(IP)
340 X(I)=ZZ(IP)
C ALL NEW COEFFS ARE POSITIVE. LOOP BACK TO BEGINNING.
GO TO 30
C
C ****** END OF MAIN LOOP ******
C
C COME TO HERE FOR TERMINATION.
C COMPUTE THE NORM OF THE FINAL RESIDUAL VECTOR.
C
350 continue
SM=ZERO
IF (NPP1 .le. M) then
DO 360 I=NPP1,M
360 SM=SM+B(I)**2
else
DO 380 J=1,N
380 W(J)=ZERO
endif
RNORM=sqrt(SM)
RETURN
C
C THE FOLLOWING BLOCK OF CODE IS USED AS AN INTERNAL SUBROUTINE
C TO SOLVE THE TRIANGULAR SYSTEM, PUTTING THE SOLUTION IN ZZ().
C
400 continue
DO 430 L=1,NSETP
IP=NSETP+1-L
IF (L .ne. 1) then
DO 410 II=1,IP
ZZ(II)=ZZ(II)-A(II,JJ)*ZZ(IP+1)
410 continue
endif
JJ=INDEX(IP)
ZZ(IP)=ZZ(IP)/A(IP,JJ)
430 continue
go to (200, 320), RTNKEY
END
double precision FUNCTION DIFF(X,Y)
c
c Function used in tests that depend on machine precision.
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 7, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C
double precision X, Y
DIFF=X-Y
RETURN
END
C SUBROUTINE H12 (MODE,LPIVOT,L1,M,U,IUE,UP,C,ICE,ICV,NCV)
C
C CONSTRUCTION AND/OR APPLICATION OF A SINGLE
C HOUSEHOLDER TRANSFORMATION.. Q = I + U*(U**T)/B
C
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 12, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C ------------------------------------------------------------------
c Subroutine Arguments
c
C MODE = 1 OR 2 Selects Algorithm H1 to construct and apply a
c Householder transformation, or Algorithm H2 to apply a
c previously constructed transformation.
C LPIVOT IS THE INDEX OF THE PIVOT ELEMENT.
C L1,M IF L1 .LE. M THE TRANSFORMATION WILL BE CONSTRUCTED TO
C ZERO ELEMENTS INDEXED FROM L1 THROUGH M. IF L1 GT. M
C THE SUBROUTINE DOES AN IDENTITY TRANSFORMATION.
C U(),IUE,UP On entry with MODE = 1, U() contains the pivot
c vector. IUE is the storage increment between elements.
c On exit when MODE = 1, U() and UP contain quantities
c defining the vector U of the Householder transformation.
c on entry with MODE = 2, U() and UP should contain
c quantities previously computed with MODE = 1. These will
c not be modified during the entry with MODE = 2.
C C() ON ENTRY with MODE = 1 or 2, C() CONTAINS A MATRIX WHICH
c WILL BE REGARDED AS A SET OF VECTORS TO WHICH THE
c HOUSEHOLDER TRANSFORMATION IS TO BE APPLIED.
c ON EXIT C() CONTAINS THE SET OF TRANSFORMED VECTORS.
C ICE STORAGE INCREMENT BETWEEN ELEMENTS OF VECTORS IN C().
C ICV STORAGE INCREMENT BETWEEN VECTORS IN C().
C NCV NUMBER OF VECTORS IN C() TO BE TRANSFORMED. IF NCV .LE. 0
C NO OPERATIONS WILL BE DONE ON C().
C ------------------------------------------------------------------
SUBROUTINE H12 (MODE,LPIVOT,L1,M,U,IUE,UP,C,ICE,ICV,NCV)
C ------------------------------------------------------------------
integer I, I2, I3, I4, ICE, ICV, INCR, IUE, J
integer L1, LPIVOT, M, MODE, NCV
double precision B, C(*), CL, CLINV, ONE, SM
c double precision U(IUE,M)
double precision U(IUE,*)
double precision UP
parameter(ONE = 1.0d0)
C ------------------------------------------------------------------
IF (0.GE.LPIVOT.OR.LPIVOT.GE.L1.OR.L1.GT.M) RETURN
CL=abs(U(1,LPIVOT))
IF (MODE.EQ.2) GO TO 60
C ****** CONSTRUCT THE TRANSFORMATION. ******
DO 10 J=L1,M
10 CL=MAX(abs(U(1,J)),CL)
IF (CL) 130,130,20
20 CLINV=ONE/CL
SM=(U(1,LPIVOT)*CLINV)**2
DO 30 J=L1,M
30 SM=SM+(U(1,J)*CLINV)**2
CL=CL*SQRT(SM)
IF (U(1,LPIVOT)) 50,50,40
40 CL=-CL
50 UP=U(1,LPIVOT)-CL
U(1,LPIVOT)=CL
GO TO 70
C ****** APPLY THE TRANSFORMATION I+U*(U**T)/B TO C. ******
C
60 IF (CL) 130,130,70
70 IF (NCV.LE.0) RETURN
B= UP*U(1,LPIVOT)
C B MUST BE NONPOSITIVE HERE. IF B = 0., RETURN.
C
IF (B) 80,130,130
80 B=ONE/B
I2=1-ICV+ICE*(LPIVOT-1)
INCR=ICE*(L1-LPIVOT)
DO 120 J=1,NCV
I2=I2+ICV
I3=I2+INCR
I4=I3
SM=C(I2)*UP
DO 90 I=L1,M
SM=SM+C(I3)*U(1,I)
90 I3=I3+ICE
IF (SM) 100,120,100
100 SM=SM*B
C(I2)=C(I2)+SM*UP
DO 110 I=L1,M
C(I4)=C(I4)+SM*U(1,I)
110 I4=I4+ICE
120 CONTINUE
130 RETURN
END
SUBROUTINE G1 (A,B,CTERM,STERM,SIG)
c
C COMPUTE ORTHOGONAL ROTATION MATRIX..
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 12, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C
C COMPUTE.. MATRIX (C, S) SO THAT (C, S)(A) = (SQRT(A**2+B**2))
C (-S,C) (-S,C)(B) ( 0 )
C COMPUTE SIG = SQRT(A**2+B**2)
C SIG IS COMPUTED LAST TO ALLOW FOR THE POSSIBILITY THAT
C SIG MAY BE IN THE SAME LOCATION AS A OR B .
C ------------------------------------------------------------------
double precision A, B, CTERM, ONE, SIG, STERM, XR, YR, ZERO
parameter(ONE = 1.0d0, ZERO = 0.0d0)
C ------------------------------------------------------------------
if (abs(A) .gt. abs(B)) then
XR=B/A
YR=sqrt(ONE+XR**2)
CTERM=sign(ONE/YR,A)
STERM=CTERM*XR
SIG=abs(A)*YR
RETURN
endif
if (B .ne. ZERO) then
XR=A/B
YR=sqrt(ONE+XR**2)
STERM=sign(ONE/YR,B)
CTERM=STERM*XR
SIG=abs(B)*YR
RETURN
endif
SIG=ZERO
CTERM=ZERO
STERM=ONE
RETURN
END
|