File: optimize.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (2993 lines) | stat: -rw-r--r-- 101,006 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
#__docformat__ = "restructuredtext en"
# ******NOTICE***************
# optimize.py module by Travis E. Oliphant
#
# You may copy and use this module as you see fit with no
# guarantee implied provided you keep this notice in all copies.
# *****END NOTICE************

# A collection of optimization algorithms.  Version 0.5
# CHANGES
#  Added fminbound (July 2001)
#  Added brute (Aug. 2002)
#  Finished line search satisfying strong Wolfe conditions (Mar. 2004)
#  Updated strong Wolfe conditions line search to use
#      cubic-interpolation (Mar. 2004)

from __future__ import division, print_function, absolute_import


# Minimization routines

__all__ = ['fmin', 'fmin_powell', 'fmin_bfgs', 'fmin_ncg', 'fmin_cg',
           'fminbound', 'brent', 'golden', 'bracket', 'rosen', 'rosen_der',
           'rosen_hess', 'rosen_hess_prod', 'brute', 'approx_fprime',
           'line_search', 'check_grad', 'OptimizeResult', 'show_options',
           'OptimizeWarning']

__docformat__ = "restructuredtext en"

import warnings
import sys
import numpy
from scipy._lib.six import callable
from numpy import (atleast_1d, eye, mgrid, argmin, zeros, shape, squeeze,
                   vectorize, asarray, sqrt, Inf, asfarray, isinf)
import numpy as np
from .linesearch import (line_search_wolfe1, line_search_wolfe2,
                         line_search_wolfe2 as line_search,
                         LineSearchWarning)
from scipy._lib._util import getargspec_no_self as _getargspec


# standard status messages of optimizers
_status_message = {'success': 'Optimization terminated successfully.',
                   'maxfev': 'Maximum number of function evaluations has '
                              'been exceeded.',
                   'maxiter': 'Maximum number of iterations has been '
                              'exceeded.',
                   'pr_loss': 'Desired error not necessarily achieved due '
                              'to precision loss.'}


class MemoizeJac(object):
    """ Decorator that caches the value gradient of function each time it
    is called. """
    def __init__(self, fun):
        self.fun = fun
        self.jac = None
        self.x = None

    def __call__(self, x, *args):
        self.x = numpy.asarray(x).copy()
        fg = self.fun(x, *args)
        self.jac = fg[1]
        return fg[0]

    def derivative(self, x, *args):
        if self.jac is not None and numpy.alltrue(x == self.x):
            return self.jac
        else:
            self(x, *args)
            return self.jac


class OptimizeResult(dict):
    """ Represents the optimization result.

    Attributes
    ----------
    x : ndarray
        The solution of the optimization.
    success : bool
        Whether or not the optimizer exited successfully.
    status : int
        Termination status of the optimizer. Its value depends on the
        underlying solver. Refer to `message` for details.
    message : str
        Description of the cause of the termination.
    fun, jac, hess: ndarray
        Values of objective function, its Jacobian and its Hessian (if
        available). The Hessians may be approximations, see the documentation
        of the function in question.
    hess_inv : object
        Inverse of the objective function's Hessian; may be an approximation.
        Not available for all solvers. The type of this attribute may be
        either np.ndarray or scipy.sparse.linalg.LinearOperator.
    nfev, njev, nhev : int
        Number of evaluations of the objective functions and of its
        Jacobian and Hessian.
    nit : int
        Number of iterations performed by the optimizer.
    maxcv : float
        The maximum constraint violation.

    Notes
    -----
    There may be additional attributes not listed above depending of the
    specific solver. Since this class is essentially a subclass of dict
    with attribute accessors, one can see which attributes are available
    using the `keys()` method.
    """
    def __getattr__(self, name):
        try:
            return self[name]
        except KeyError:
            raise AttributeError(name)

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

    def __repr__(self):
        if self.keys():
            m = max(map(len, list(self.keys()))) + 1
            return '\n'.join([k.rjust(m) + ': ' + repr(v)
                              for k, v in sorted(self.items())])
        else:
            return self.__class__.__name__ + "()"

    def __dir__(self):
        return list(self.keys())


class OptimizeWarning(UserWarning):
    pass


def _check_unknown_options(unknown_options):
    if unknown_options:
        msg = ", ".join(map(str, unknown_options.keys()))
        # Stack level 4: this is called from _minimize_*, which is
        # called from another function in Scipy. Level 4 is the first
        # level in user code.
        warnings.warn("Unknown solver options: %s" % msg, OptimizeWarning, 4)


def is_array_scalar(x):
    """Test whether `x` is either a scalar or an array scalar.

    """
    return np.size(x) == 1

_epsilon = sqrt(numpy.finfo(float).eps)


def vecnorm(x, ord=2):
    if ord == Inf:
        return numpy.amax(numpy.abs(x))
    elif ord == -Inf:
        return numpy.amin(numpy.abs(x))
    else:
        return numpy.sum(numpy.abs(x)**ord, axis=0)**(1.0 / ord)


def rosen(x):
    """
    The Rosenbrock function.

    The function computed is::

        sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)

    Parameters
    ----------
    x : array_like
        1-D array of points at which the Rosenbrock function is to be computed.

    Returns
    -------
    f : float
        The value of the Rosenbrock function.

    See Also
    --------
    rosen_der, rosen_hess, rosen_hess_prod

    """
    x = asarray(x)
    r = numpy.sum(100.0 * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0,
                  axis=0)
    return r


def rosen_der(x):
    """
    The derivative (i.e. gradient) of the Rosenbrock function.

    Parameters
    ----------
    x : array_like
        1-D array of points at which the derivative is to be computed.

    Returns
    -------
    rosen_der : (N,) ndarray
        The gradient of the Rosenbrock function at `x`.

    See Also
    --------
    rosen, rosen_hess, rosen_hess_prod

    """
    x = asarray(x)
    xm = x[1:-1]
    xm_m1 = x[:-2]
    xm_p1 = x[2:]
    der = numpy.zeros_like(x)
    der[1:-1] = (200 * (xm - xm_m1**2) -
                 400 * (xm_p1 - xm**2) * xm - 2 * (1 - xm))
    der[0] = -400 * x[0] * (x[1] - x[0]**2) - 2 * (1 - x[0])
    der[-1] = 200 * (x[-1] - x[-2]**2)
    return der


def rosen_hess(x):
    """
    The Hessian matrix of the Rosenbrock function.

    Parameters
    ----------
    x : array_like
        1-D array of points at which the Hessian matrix is to be computed.

    Returns
    -------
    rosen_hess : ndarray
        The Hessian matrix of the Rosenbrock function at `x`.

    See Also
    --------
    rosen, rosen_der, rosen_hess_prod

    """
    x = atleast_1d(x)
    H = numpy.diag(-400 * x[:-1], 1) - numpy.diag(400 * x[:-1], -1)
    diagonal = numpy.zeros(len(x), dtype=x.dtype)
    diagonal[0] = 1200 * x[0]**2 - 400 * x[1] + 2
    diagonal[-1] = 200
    diagonal[1:-1] = 202 + 1200 * x[1:-1]**2 - 400 * x[2:]
    H = H + numpy.diag(diagonal)
    return H


def rosen_hess_prod(x, p):
    """
    Product of the Hessian matrix of the Rosenbrock function with a vector.

    Parameters
    ----------
    x : array_like
        1-D array of points at which the Hessian matrix is to be computed.
    p : array_like
        1-D array, the vector to be multiplied by the Hessian matrix.

    Returns
    -------
    rosen_hess_prod : ndarray
        The Hessian matrix of the Rosenbrock function at `x` multiplied
        by the vector `p`.

    See Also
    --------
    rosen, rosen_der, rosen_hess

    """
    x = atleast_1d(x)
    Hp = numpy.zeros(len(x), dtype=x.dtype)
    Hp[0] = (1200 * x[0]**2 - 400 * x[1] + 2) * p[0] - 400 * x[0] * p[1]
    Hp[1:-1] = (-400 * x[:-2] * p[:-2] +
                (202 + 1200 * x[1:-1]**2 - 400 * x[2:]) * p[1:-1] -
                400 * x[1:-1] * p[2:])
    Hp[-1] = -400 * x[-2] * p[-2] + 200*p[-1]
    return Hp


def wrap_function(function, args):
    ncalls = [0]
    if function is None:
        return ncalls, None

    def function_wrapper(*wrapper_args):
        ncalls[0] += 1
        return function(*(wrapper_args + args))

    return ncalls, function_wrapper


def fmin(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None,
         full_output=0, disp=1, retall=0, callback=None, initial_simplex=None):
    """
    Minimize a function using the downhill simplex algorithm.

    This algorithm only uses function values, not derivatives or second
    derivatives.

    Parameters
    ----------
    func : callable func(x,*args)
        The objective function to be minimized.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to func, i.e. ``f(x,*args)``.
    xtol : float, optional
        Absolute error in xopt between iterations that is acceptable for
        convergence.
    ftol : number, optional
        Absolute error in func(xopt) between iterations that is acceptable for
        convergence.
    maxiter : int, optional
        Maximum number of iterations to perform.
    maxfun : number, optional
        Maximum number of function evaluations to make.
    full_output : bool, optional
        Set to True if fopt and warnflag outputs are desired.
    disp : bool, optional
        Set to True to print convergence messages.
    retall : bool, optional
        Set to True to return list of solutions at each iteration.
    callback : callable, optional
        Called after each iteration, as callback(xk), where xk is the
        current parameter vector.
    initial_simplex : array_like of shape (N + 1, N), optional
        Initial simplex. If given, overrides `x0`.
        ``initial_simplex[j,:]`` should contain the coordinates of
        the j-th vertex of the ``N+1`` vertices in the simplex, where
        ``N`` is the dimension.

    Returns
    -------
    xopt : ndarray
        Parameter that minimizes function.
    fopt : float
        Value of function at minimum: ``fopt = func(xopt)``.
    iter : int
        Number of iterations performed.
    funcalls : int
        Number of function calls made.
    warnflag : int
        1 : Maximum number of function evaluations made.
        2 : Maximum number of iterations reached.
    allvecs : list
        Solution at each iteration.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'Nelder-Mead' `method` in particular.

    Notes
    -----
    Uses a Nelder-Mead simplex algorithm to find the minimum of function of
    one or more variables.

    This algorithm has a long history of successful use in applications.
    But it will usually be slower than an algorithm that uses first or
    second derivative information. In practice it can have poor
    performance in high-dimensional problems and is not robust to
    minimizing complicated functions. Additionally, there currently is no
    complete theory describing when the algorithm will successfully
    converge to the minimum, or how fast it will if it does. Both the ftol and
    xtol criteria must be met for convergence.

    References
    ----------
    .. [1] Nelder, J.A. and Mead, R. (1965), "A simplex method for function
           minimization", The Computer Journal, 7, pp. 308-313

    .. [2] Wright, M.H. (1996), "Direct Search Methods: Once Scorned, Now
           Respectable", in Numerical Analysis 1995, Proceedings of the
           1995 Dundee Biennial Conference in Numerical Analysis, D.F.
           Griffiths and G.A. Watson (Eds.), Addison Wesley Longman,
           Harlow, UK, pp. 191-208.

    """
    opts = {'xatol': xtol,
            'fatol': ftol,
            'maxiter': maxiter,
            'maxfev': maxfun,
            'disp': disp,
            'return_all': retall,
            'initial_simplex': initial_simplex}

    res = _minimize_neldermead(func, x0, args, callback=callback, **opts)
    if full_output:
        retlist = res['x'], res['fun'], res['nit'], res['nfev'], res['status']
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_neldermead(func, x0, args=(), callback=None,
                         maxiter=None, maxfev=None, disp=False,
                         return_all=False, initial_simplex=None,
                         xatol=1e-4, fatol=1e-4, **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    Nelder-Mead algorithm.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    maxiter, maxfev : int
        Maximum allowed number of iterations and function evaluations.
        Will default to ``N*200``, where ``N`` is the number of
        variables, if neither `maxiter` or `maxfev` is set. If both
        `maxiter` and `maxfev` are set, minimization will stop at the
        first reached.
    initial_simplex : array_like of shape (N + 1, N)
        Initial simplex. If given, overrides `x0`.
        ``initial_simplex[j,:]`` should contain the coordinates of
        the j-th vertex of the ``N+1`` vertices in the simplex, where
        ``N`` is the dimension.
    xatol : float, optional
        Absolute error in xopt between iterations that is acceptable for
        convergence.
    fatol : number, optional
        Absolute error in func(xopt) between iterations that is acceptable for
        convergence.

    """
    if 'ftol' in unknown_options:
        warnings.warn("ftol is deprecated for Nelder-Mead,"
                      " use fatol instead. If you specified both, only"
                      " fatol is used.",
                      DeprecationWarning)
        if (np.isclose(fatol, 1e-4) and
                not np.isclose(unknown_options['ftol'], 1e-4)):
            # only ftol was probably specified, use it.
            fatol = unknown_options['ftol']
        unknown_options.pop('ftol')
    if 'xtol' in unknown_options:
        warnings.warn("xtol is deprecated for Nelder-Mead,"
                      " use xatol instead. If you specified both, only"
                      " xatol is used.",
                      DeprecationWarning)
        if (np.isclose(xatol, 1e-4) and
                not np.isclose(unknown_options['xtol'], 1e-4)):
            # only xtol was probably specified, use it.
            xatol = unknown_options['xtol']
        unknown_options.pop('xtol')

    _check_unknown_options(unknown_options)
    maxfun = maxfev
    retall = return_all

    fcalls, func = wrap_function(func, args)

    rho = 1
    chi = 2
    psi = 0.5
    sigma = 0.5
    nonzdelt = 0.05
    zdelt = 0.00025

    x0 = asfarray(x0).flatten()

    if initial_simplex is None:
        N = len(x0)

        sim = numpy.zeros((N + 1, N), dtype=x0.dtype)
        sim[0] = x0
        for k in range(N):
            y = numpy.array(x0, copy=True)
            if y[k] != 0:
                y[k] = (1 + nonzdelt)*y[k]
            else:
                y[k] = zdelt
            sim[k + 1] = y
    else:
        sim = np.asfarray(initial_simplex).copy()
        if sim.ndim != 2 or sim.shape[0] != sim.shape[1] + 1:
            raise ValueError("`initial_simplex` should be an array of shape (N+1,N)")
        if len(x0) != sim.shape[1]:
            raise ValueError("Size of `initial_simplex` is not consistent with `x0`")
        N = sim.shape[1]

    if retall:
        allvecs = [sim[0]]

    # If neither are set, then set both to default
    if maxiter is None and maxfun is None:
        maxiter = N * 200
        maxfun = N * 200
    elif maxiter is None:
        # Convert remaining Nones, to np.inf, unless the other is np.inf, in
        # which case use the default to avoid unbounded iteration
        if maxfun == np.inf:
            maxiter = N * 200
        else:
            maxiter = np.inf
    elif maxfun is None:
        if maxiter == np.inf:
            maxfun = N * 200
        else:
            maxfun = np.inf

    one2np1 = list(range(1, N + 1))
    fsim = numpy.zeros((N + 1,), float)

    for k in range(N + 1):
        fsim[k] = func(sim[k])

    ind = numpy.argsort(fsim)
    fsim = numpy.take(fsim, ind, 0)
    # sort so sim[0,:] has the lowest function value
    sim = numpy.take(sim, ind, 0)

    iterations = 1

    while (fcalls[0] < maxfun and iterations < maxiter):
        if (numpy.max(numpy.ravel(numpy.abs(sim[1:] - sim[0]))) <= xatol and
                numpy.max(numpy.abs(fsim[0] - fsim[1:])) <= fatol):
            break

        xbar = numpy.add.reduce(sim[:-1], 0) / N
        xr = (1 + rho) * xbar - rho * sim[-1]
        fxr = func(xr)
        doshrink = 0

        if fxr < fsim[0]:
            xe = (1 + rho * chi) * xbar - rho * chi * sim[-1]
            fxe = func(xe)

            if fxe < fxr:
                sim[-1] = xe
                fsim[-1] = fxe
            else:
                sim[-1] = xr
                fsim[-1] = fxr
        else:  # fsim[0] <= fxr
            if fxr < fsim[-2]:
                sim[-1] = xr
                fsim[-1] = fxr
            else:  # fxr >= fsim[-2]
                # Perform contraction
                if fxr < fsim[-1]:
                    xc = (1 + psi * rho) * xbar - psi * rho * sim[-1]
                    fxc = func(xc)

                    if fxc <= fxr:
                        sim[-1] = xc
                        fsim[-1] = fxc
                    else:
                        doshrink = 1
                else:
                    # Perform an inside contraction
                    xcc = (1 - psi) * xbar + psi * sim[-1]
                    fxcc = func(xcc)

                    if fxcc < fsim[-1]:
                        sim[-1] = xcc
                        fsim[-1] = fxcc
                    else:
                        doshrink = 1

                if doshrink:
                    for j in one2np1:
                        sim[j] = sim[0] + sigma * (sim[j] - sim[0])
                        fsim[j] = func(sim[j])

        ind = numpy.argsort(fsim)
        sim = numpy.take(sim, ind, 0)
        fsim = numpy.take(fsim, ind, 0)
        if callback is not None:
            callback(sim[0])
        iterations += 1
        if retall:
            allvecs.append(sim[0])

    x = sim[0]
    fval = numpy.min(fsim)
    warnflag = 0

    if fcalls[0] >= maxfun:
        warnflag = 1
        msg = _status_message['maxfev']
        if disp:
            print('Warning: ' + msg)
    elif iterations >= maxiter:
        warnflag = 2
        msg = _status_message['maxiter']
        if disp:
            print('Warning: ' + msg)
    else:
        msg = _status_message['success']
        if disp:
            print(msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % iterations)
            print("         Function evaluations: %d" % fcalls[0])

    result = OptimizeResult(fun=fval, nit=iterations, nfev=fcalls[0],
                            status=warnflag, success=(warnflag == 0),
                            message=msg, x=x, final_simplex=(sim, fsim))
    if retall:
        result['allvecs'] = allvecs
    return result


def _approx_fprime_helper(xk, f, epsilon, args=(), f0=None):
    """
    See ``approx_fprime``.  An optional initial function value arg is added.

    """
    if f0 is None:
        f0 = f(*((xk,) + args))
    grad = numpy.zeros((len(xk),), float)
    ei = numpy.zeros((len(xk),), float)
    for k in range(len(xk)):
        ei[k] = 1.0
        d = epsilon * ei
        grad[k] = (f(*((xk + d,) + args)) - f0) / d[k]
        ei[k] = 0.0
    return grad


def approx_fprime(xk, f, epsilon, *args):
    """Finite-difference approximation of the gradient of a scalar function.

    Parameters
    ----------
    xk : array_like
        The coordinate vector at which to determine the gradient of `f`.
    f : callable
        The function of which to determine the gradient (partial derivatives).
        Should take `xk` as first argument, other arguments to `f` can be
        supplied in ``*args``.  Should return a scalar, the value of the
        function at `xk`.
    epsilon : array_like
        Increment to `xk` to use for determining the function gradient.
        If a scalar, uses the same finite difference delta for all partial
        derivatives.  If an array, should contain one value per element of
        `xk`.
    \*args : args, optional
        Any other arguments that are to be passed to `f`.

    Returns
    -------
    grad : ndarray
        The partial derivatives of `f` to `xk`.

    See Also
    --------
    check_grad : Check correctness of gradient function against approx_fprime.

    Notes
    -----
    The function gradient is determined by the forward finite difference
    formula::

                 f(xk[i] + epsilon[i]) - f(xk[i])
        f'[i] = ---------------------------------
                            epsilon[i]

    The main use of `approx_fprime` is in scalar function optimizers like
    `fmin_bfgs`, to determine numerically the Jacobian of a function.

    Examples
    --------
    >>> from scipy import optimize
    >>> def func(x, c0, c1):
    ...     "Coordinate vector `x` should be an array of size two."
    ...     return c0 * x[0]**2 + c1*x[1]**2

    >>> x = np.ones(2)
    >>> c0, c1 = (1, 200)
    >>> eps = np.sqrt(np.finfo(float).eps)
    >>> optimize.approx_fprime(x, func, [eps, np.sqrt(200) * eps], c0, c1)
    array([   2.        ,  400.00004198])

    """
    return _approx_fprime_helper(xk, f, epsilon, args=args)


def check_grad(func, grad, x0, *args, **kwargs):
    """Check the correctness of a gradient function by comparing it against a
    (forward) finite-difference approximation of the gradient.

    Parameters
    ----------
    func : callable ``func(x0, *args)``
        Function whose derivative is to be checked.
    grad : callable ``grad(x0, *args)``
        Gradient of `func`.
    x0 : ndarray
        Points to check `grad` against forward difference approximation of grad
        using `func`.
    args : \*args, optional
        Extra arguments passed to `func` and `grad`.
    epsilon : float, optional
        Step size used for the finite difference approximation. It defaults to
        ``sqrt(numpy.finfo(float).eps)``, which is approximately 1.49e-08.

    Returns
    -------
    err : float
        The square root of the sum of squares (i.e. the 2-norm) of the
        difference between ``grad(x0, *args)`` and the finite difference
        approximation of `grad` using func at the points `x0`.

    See Also
    --------
    approx_fprime

    Examples
    --------
    >>> def func(x):
    ...     return x[0]**2 - 0.5 * x[1]**3
    >>> def grad(x):
    ...     return [2 * x[0], -1.5 * x[1]**2]
    >>> from scipy.optimize import check_grad
    >>> check_grad(func, grad, [1.5, -1.5])
    2.9802322387695312e-08

    """
    step = kwargs.pop('epsilon', _epsilon)
    if kwargs:
        raise ValueError("Unknown keyword arguments: %r" %
                         (list(kwargs.keys()),))
    return sqrt(sum((grad(x0, *args) -
                     approx_fprime(x0, func, step, *args))**2))


def approx_fhess_p(x0, p, fprime, epsilon, *args):
    f2 = fprime(*((x0 + epsilon*p,) + args))
    f1 = fprime(*((x0,) + args))
    return (f2 - f1) / epsilon


class _LineSearchError(RuntimeError):
    pass


def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval,
                         **kwargs):
    """
    Same as line_search_wolfe1, but fall back to line_search_wolfe2 if
    suitable step length is not found, and raise an exception if a
    suitable step length is not found.

    Raises
    ------
    _LineSearchError
        If no suitable step size is found

    """
    ret = line_search_wolfe1(f, fprime, xk, pk, gfk,
                             old_fval, old_old_fval,
                             **kwargs)

    if ret[0] is None:
        # line search failed: try different one.
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', LineSearchWarning)
            ret = line_search_wolfe2(f, fprime, xk, pk, gfk,
                                     old_fval, old_old_fval)

    if ret[0] is None:
        raise _LineSearchError()

    return ret


def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf,
              epsilon=_epsilon, maxiter=None, full_output=0, disp=1,
              retall=0, callback=None):
    """
    Minimize a function using the BFGS algorithm.

    Parameters
    ----------
    f : callable f(x,*args)
        Objective function to be minimized.
    x0 : ndarray
        Initial guess.
    fprime : callable f'(x,*args), optional
        Gradient of f.
    args : tuple, optional
        Extra arguments passed to f and fprime.
    gtol : float, optional
        Gradient norm must be less than gtol before successful termination.
    norm : float, optional
        Order of norm (Inf is max, -Inf is min)
    epsilon : int or ndarray, optional
        If fprime is approximated, use this value for the step size.
    callback : callable, optional
        An optional user-supplied function to call after each
        iteration.  Called as callback(xk), where xk is the
        current parameter vector.
    maxiter : int, optional
        Maximum number of iterations to perform.
    full_output : bool, optional
        If True,return fopt, func_calls, grad_calls, and warnflag
        in addition to xopt.
    disp : bool, optional
        Print convergence message if True.
    retall : bool, optional
        Return a list of results at each iteration if True.

    Returns
    -------
    xopt : ndarray
        Parameters which minimize f, i.e. f(xopt) == fopt.
    fopt : float
        Minimum value.
    gopt : ndarray
        Value of gradient at minimum, f'(xopt), which should be near 0.
    Bopt : ndarray
        Value of 1/f''(xopt), i.e. the inverse hessian matrix.
    func_calls : int
        Number of function_calls made.
    grad_calls : int
        Number of gradient calls made.
    warnflag : integer
        1 : Maximum number of iterations exceeded.
        2 : Gradient and/or function calls not changing.
    allvecs  :  list
        `OptimizeResult` at each iteration.  Only returned if retall is True.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'BFGS' `method` in particular.

    Notes
    -----
    Optimize the function, f, whose gradient is given by fprime
    using the quasi-Newton method of Broyden, Fletcher, Goldfarb,
    and Shanno (BFGS)

    References
    ----------
    Wright, and Nocedal 'Numerical Optimization', 1999, pg. 198.

    """
    opts = {'gtol': gtol,
            'norm': norm,
            'eps': epsilon,
            'disp': disp,
            'maxiter': maxiter,
            'return_all': retall}

    res = _minimize_bfgs(f, x0, args, fprime, callback=callback, **opts)

    if full_output:
        retlist = (res['x'], res['fun'], res['jac'], res['hess_inv'],
                   res['nfev'], res['njev'], res['status'])
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_bfgs(fun, x0, args=(), jac=None, callback=None,
                   gtol=1e-5, norm=Inf, eps=_epsilon, maxiter=None,
                   disp=False, return_all=False,
                   **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    BFGS algorithm.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    maxiter : int
        Maximum number of iterations to perform.
    gtol : float
        Gradient norm must be less than `gtol` before successful
        termination.
    norm : float
        Order of norm (Inf is max, -Inf is min).
    eps : float or ndarray
        If `jac` is approximated, use this value for the step size.

    """
    _check_unknown_options(unknown_options)
    f = fun
    fprime = jac
    epsilon = eps
    retall = return_all

    x0 = asarray(x0).flatten()
    if x0.ndim == 0:
        x0.shape = (1,)
    if maxiter is None:
        maxiter = len(x0) * 200
    func_calls, f = wrap_function(f, args)
    if fprime is None:
        grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon))
    else:
        grad_calls, myfprime = wrap_function(fprime, args)
    gfk = myfprime(x0)
    k = 0
    N = len(x0)
    I = numpy.eye(N, dtype=int)
    Hk = I

    # Sets the initial step guess to dx ~ 1
    old_fval = f(x0)
    old_old_fval = old_fval + np.linalg.norm(gfk) / 2

    xk = x0
    if retall:
        allvecs = [x0]
    sk = [2 * gtol]
    warnflag = 0
    gnorm = vecnorm(gfk, ord=norm)
    while (gnorm > gtol) and (k < maxiter):
        pk = -numpy.dot(Hk, gfk)
        try:
            alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                     _line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                          old_fval, old_old_fval, amin=1e-100, amax=1e100)
        except _LineSearchError:
            # Line search failed to find a better solution.
            warnflag = 2
            break

        xkp1 = xk + alpha_k * pk
        if retall:
            allvecs.append(xkp1)
        sk = xkp1 - xk
        xk = xkp1
        if gfkp1 is None:
            gfkp1 = myfprime(xkp1)

        yk = gfkp1 - gfk
        gfk = gfkp1
        if callback is not None:
            callback(xk)
        k += 1
        gnorm = vecnorm(gfk, ord=norm)
        if (gnorm <= gtol):
            break

        if not numpy.isfinite(old_fval):
            # We correctly found +-Inf as optimal value, or something went
            # wrong.
            warnflag = 2
            break

        try:  # this was handled in numeric, let it remaines for more safety
            rhok = 1.0 / (numpy.dot(yk, sk))
        except ZeroDivisionError:
            rhok = 1000.0
            if disp:
                print("Divide-by-zero encountered: rhok assumed large")
        if isinf(rhok):  # this is patch for numpy
            rhok = 1000.0
            if disp:
                print("Divide-by-zero encountered: rhok assumed large")
        A1 = I - sk[:, numpy.newaxis] * yk[numpy.newaxis, :] * rhok
        A2 = I - yk[:, numpy.newaxis] * sk[numpy.newaxis, :] * rhok
        Hk = numpy.dot(A1, numpy.dot(Hk, A2)) + (rhok * sk[:, numpy.newaxis] *
                                                 sk[numpy.newaxis, :])

    fval = old_fval
    if np.isnan(fval):
        # This can happen if the first call to f returned NaN;
        # the loop is then never entered.
        warnflag = 2

    if warnflag == 2:
        msg = _status_message['pr_loss']
        if disp:
            print("Warning: " + msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % func_calls[0])
            print("         Gradient evaluations: %d" % grad_calls[0])

    elif k >= maxiter:
        warnflag = 1
        msg = _status_message['maxiter']
        if disp:
            print("Warning: " + msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % func_calls[0])
            print("         Gradient evaluations: %d" % grad_calls[0])
    else:
        msg = _status_message['success']
        if disp:
            print(msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % func_calls[0])
            print("         Gradient evaluations: %d" % grad_calls[0])

    result = OptimizeResult(fun=fval, jac=gfk, hess_inv=Hk, nfev=func_calls[0],
                            njev=grad_calls[0], status=warnflag,
                            success=(warnflag == 0), message=msg, x=xk,
                            nit=k)
    if retall:
        result['allvecs'] = allvecs
    return result


def fmin_cg(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf, epsilon=_epsilon,
            maxiter=None, full_output=0, disp=1, retall=0, callback=None):
    """
    Minimize a function using a nonlinear conjugate gradient algorithm.

    Parameters
    ----------
    f : callable, ``f(x, *args)``
        Objective function to be minimized.  Here `x` must be a 1-D array of
        the variables that are to be changed in the search for a minimum, and
        `args` are the other (fixed) parameters of `f`.
    x0 : ndarray
        A user-supplied initial estimate of `xopt`, the optimal value of `x`.
        It must be a 1-D array of values.
    fprime : callable, ``fprime(x, *args)``, optional
        A function that returns the gradient of `f` at `x`. Here `x` and `args`
        are as described above for `f`. The returned value must be a 1-D array.
        Defaults to None, in which case the gradient is approximated
        numerically (see `epsilon`, below).
    args : tuple, optional
        Parameter values passed to `f` and `fprime`. Must be supplied whenever
        additional fixed parameters are needed to completely specify the
        functions `f` and `fprime`.
    gtol : float, optional
        Stop when the norm of the gradient is less than `gtol`.
    norm : float, optional
        Order to use for the norm of the gradient
        (``-np.Inf`` is min, ``np.Inf`` is max).
    epsilon : float or ndarray, optional
        Step size(s) to use when `fprime` is approximated numerically. Can be a
        scalar or a 1-D array.  Defaults to ``sqrt(eps)``, with eps the
        floating point machine precision.  Usually ``sqrt(eps)`` is about
        1.5e-8.
    maxiter : int, optional
        Maximum number of iterations to perform. Default is ``200 * len(x0)``.
    full_output : bool, optional
        If True, return `fopt`, `func_calls`, `grad_calls`, and `warnflag` in
        addition to `xopt`.  See the Returns section below for additional
        information on optional return values.
    disp : bool, optional
        If True, return a convergence message, followed by `xopt`.
    retall : bool, optional
        If True, add to the returned values the results of each iteration.
    callback : callable, optional
        An optional user-supplied function, called after each iteration.
        Called as ``callback(xk)``, where ``xk`` is the current value of `x0`.

    Returns
    -------
    xopt : ndarray
        Parameters which minimize f, i.e. ``f(xopt) == fopt``.
    fopt : float, optional
        Minimum value found, f(xopt).  Only returned if `full_output` is True.
    func_calls : int, optional
        The number of function_calls made.  Only returned if `full_output`
        is True.
    grad_calls : int, optional
        The number of gradient calls made. Only returned if `full_output` is
        True.
    warnflag : int, optional
        Integer value with warning status, only returned if `full_output` is
        True.

        0 : Success.

        1 : The maximum number of iterations was exceeded.

        2 : Gradient and/or function calls were not changing.  May indicate
            that precision was lost, i.e., the routine did not converge.

    allvecs : list of ndarray, optional
        List of arrays, containing the results at each iteration.
        Only returned if `retall` is True.

    See Also
    --------
    minimize : common interface to all `scipy.optimize` algorithms for
               unconstrained and constrained minimization of multivariate
               functions.  It provides an alternative way to call
               ``fmin_cg``, by specifying ``method='CG'``.

    Notes
    -----
    This conjugate gradient algorithm is based on that of Polak and Ribiere
    [1]_.

    Conjugate gradient methods tend to work better when:

    1. `f` has a unique global minimizing point, and no local minima or
       other stationary points,
    2. `f` is, at least locally, reasonably well approximated by a
       quadratic function of the variables,
    3. `f` is continuous and has a continuous gradient,
    4. `fprime` is not too large, e.g., has a norm less than 1000,
    5. The initial guess, `x0`, is reasonably close to `f` 's global
       minimizing point, `xopt`.

    References
    ----------
    .. [1] Wright & Nocedal, "Numerical Optimization", 1999, pp. 120-122.

    Examples
    --------
    Example 1: seek the minimum value of the expression
    ``a*u**2 + b*u*v + c*v**2 + d*u + e*v + f`` for given values
    of the parameters and an initial guess ``(u, v) = (0, 0)``.

    >>> args = (2, 3, 7, 8, 9, 10)  # parameter values
    >>> def f(x, *args):
    ...     u, v = x
    ...     a, b, c, d, e, f = args
    ...     return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f
    >>> def gradf(x, *args):
    ...     u, v = x
    ...     a, b, c, d, e, f = args
    ...     gu = 2*a*u + b*v + d     # u-component of the gradient
    ...     gv = b*u + 2*c*v + e     # v-component of the gradient
    ...     return np.asarray((gu, gv))
    >>> x0 = np.asarray((0, 0))  # Initial guess.
    >>> from scipy import optimize
    >>> res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args)
    Optimization terminated successfully.
             Current function value: 1.617021
             Iterations: 4
             Function evaluations: 8
             Gradient evaluations: 8
    >>> res1
    array([-1.80851064, -0.25531915])

    Example 2: solve the same problem using the `minimize` function.
    (This `myopts` dictionary shows all of the available options,
    although in practice only non-default values would be needed.
    The returned value will be a dictionary.)

    >>> opts = {'maxiter' : None,    # default value.
    ...         'disp' : True,    # non-default value.
    ...         'gtol' : 1e-5,    # default value.
    ...         'norm' : np.inf,  # default value.
    ...         'eps' : 1.4901161193847656e-08}  # default value.
    >>> res2 = optimize.minimize(f, x0, jac=gradf, args=args,
    ...                          method='CG', options=opts)
    Optimization terminated successfully.
            Current function value: 1.617021
            Iterations: 4
            Function evaluations: 8
            Gradient evaluations: 8
    >>> res2.x  # minimum found
    array([-1.80851064, -0.25531915])

    """
    opts = {'gtol': gtol,
            'norm': norm,
            'eps': epsilon,
            'disp': disp,
            'maxiter': maxiter,
            'return_all': retall}

    res = _minimize_cg(f, x0, args, fprime, callback=callback, **opts)

    if full_output:
        retlist = res['x'], res['fun'], res['nfev'], res['njev'], res['status']
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_cg(fun, x0, args=(), jac=None, callback=None,
                 gtol=1e-5, norm=Inf, eps=_epsilon, maxiter=None,
                 disp=False, return_all=False,
                 **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    conjugate gradient algorithm.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    maxiter : int
        Maximum number of iterations to perform.
    gtol : float
        Gradient norm must be less than `gtol` before successful
        termination.
    norm : float
        Order of norm (Inf is max, -Inf is min).
    eps : float or ndarray
        If `jac` is approximated, use this value for the step size.

    """
    _check_unknown_options(unknown_options)
    f = fun
    fprime = jac
    epsilon = eps
    retall = return_all

    x0 = asarray(x0).flatten()
    if maxiter is None:
        maxiter = len(x0) * 200
    func_calls, f = wrap_function(f, args)
    if fprime is None:
        grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon))
    else:
        grad_calls, myfprime = wrap_function(fprime, args)
    gfk = myfprime(x0)
    k = 0
    xk = x0

    # Sets the initial step guess to dx ~ 1
    old_fval = f(xk)
    old_old_fval = old_fval + np.linalg.norm(gfk) / 2

    if retall:
        allvecs = [xk]
    warnflag = 0
    pk = -gfk
    gnorm = vecnorm(gfk, ord=norm)
    while (gnorm > gtol) and (k < maxiter):
        deltak = numpy.dot(gfk, gfk)

        try:
            alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                     _line_search_wolfe12(f, myfprime, xk, pk, gfk, old_fval,
                                          old_old_fval, c2=0.4, amin=1e-100, amax=1e100)
        except _LineSearchError:
            # Line search failed to find a better solution.
            warnflag = 2
            break

        xk = xk + alpha_k * pk
        if retall:
            allvecs.append(xk)
        if gfkp1 is None:
            gfkp1 = myfprime(xk)
        yk = gfkp1 - gfk
        beta_k = max(0, numpy.dot(yk, gfkp1) / deltak)
        pk = -gfkp1 + beta_k * pk
        gfk = gfkp1
        gnorm = vecnorm(gfk, ord=norm)
        if callback is not None:
            callback(xk)
        k += 1

    fval = old_fval
    if warnflag == 2:
        msg = _status_message['pr_loss']
        if disp:
            print("Warning: " + msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % func_calls[0])
            print("         Gradient evaluations: %d" % grad_calls[0])

    elif k >= maxiter:
        warnflag = 1
        msg = _status_message['maxiter']
        if disp:
            print("Warning: " + msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % func_calls[0])
            print("         Gradient evaluations: %d" % grad_calls[0])
    else:
        msg = _status_message['success']
        if disp:
            print(msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % func_calls[0])
            print("         Gradient evaluations: %d" % grad_calls[0])

    result = OptimizeResult(fun=fval, jac=gfk, nfev=func_calls[0],
                            njev=grad_calls[0], status=warnflag,
                            success=(warnflag == 0), message=msg, x=xk,
                            nit=k)
    if retall:
        result['allvecs'] = allvecs
    return result


def fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5,
             epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0,
             callback=None):
    """
    Unconstrained minimization of a function using the Newton-CG method.

    Parameters
    ----------
    f : callable ``f(x, *args)``
        Objective function to be minimized.
    x0 : ndarray
        Initial guess.
    fprime : callable ``f'(x, *args)``
        Gradient of f.
    fhess_p : callable ``fhess_p(x, p, *args)``, optional
        Function which computes the Hessian of f times an
        arbitrary vector, p.
    fhess : callable ``fhess(x, *args)``, optional
        Function to compute the Hessian matrix of f.
    args : tuple, optional
        Extra arguments passed to f, fprime, fhess_p, and fhess
        (the same set of extra arguments is supplied to all of
        these functions).
    epsilon : float or ndarray, optional
        If fhess is approximated, use this value for the step size.
    callback : callable, optional
        An optional user-supplied function which is called after
        each iteration.  Called as callback(xk), where xk is the
        current parameter vector.
    avextol : float, optional
        Convergence is assumed when the average relative error in
        the minimizer falls below this amount.
    maxiter : int, optional
        Maximum number of iterations to perform.
    full_output : bool, optional
        If True, return the optional outputs.
    disp : bool, optional
        If True, print convergence message.
    retall : bool, optional
        If True, return a list of results at each iteration.

    Returns
    -------
    xopt : ndarray
        Parameters which minimize f, i.e. ``f(xopt) == fopt``.
    fopt : float
        Value of the function at xopt, i.e. ``fopt = f(xopt)``.
    fcalls : int
        Number of function calls made.
    gcalls : int
        Number of gradient calls made.
    hcalls : int
        Number of hessian calls made.
    warnflag : int
        Warnings generated by the algorithm.
        1 : Maximum number of iterations exceeded.
    allvecs : list
        The result at each iteration, if retall is True (see below).

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'Newton-CG' `method` in particular.

    Notes
    -----
    Only one of `fhess_p` or `fhess` need to be given.  If `fhess`
    is provided, then `fhess_p` will be ignored.  If neither `fhess`
    nor `fhess_p` is provided, then the hessian product will be
    approximated using finite differences on `fprime`. `fhess_p`
    must compute the hessian times an arbitrary vector. If it is not
    given, finite-differences on `fprime` are used to compute
    it.

    Newton-CG methods are also called truncated Newton methods. This
    function differs from scipy.optimize.fmin_tnc because

    1. scipy.optimize.fmin_ncg is written purely in python using numpy
        and scipy while scipy.optimize.fmin_tnc calls a C function.
    2. scipy.optimize.fmin_ncg is only for unconstrained minimization
        while scipy.optimize.fmin_tnc is for unconstrained minimization
        or box constrained minimization. (Box constraints give
        lower and upper bounds for each variable separately.)

    References
    ----------
    Wright & Nocedal, 'Numerical Optimization', 1999, pg. 140.

    """
    opts = {'xtol': avextol,
            'eps': epsilon,
            'maxiter': maxiter,
            'disp': disp,
            'return_all': retall}

    res = _minimize_newtoncg(f, x0, args, fprime, fhess, fhess_p,
                             callback=callback, **opts)

    if full_output:
        retlist = (res['x'], res['fun'], res['nfev'], res['njev'],
                   res['nhev'], res['status'])
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_newtoncg(fun, x0, args=(), jac=None, hess=None, hessp=None,
                       callback=None, xtol=1e-5, eps=_epsilon, maxiter=None,
                       disp=False, return_all=False,
                       **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    Newton-CG algorithm.

    Note that the `jac` parameter (Jacobian) is required.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    xtol : float
        Average relative error in solution `xopt` acceptable for
        convergence.
    maxiter : int
        Maximum number of iterations to perform.
    eps : float or ndarray
        If `jac` is approximated, use this value for the step size.

    """
    _check_unknown_options(unknown_options)
    if jac is None:
        raise ValueError('Jacobian is required for Newton-CG method')
    f = fun
    fprime = jac
    fhess_p = hessp
    fhess = hess
    avextol = xtol
    epsilon = eps
    retall = return_all

    x0 = asarray(x0).flatten()
    fcalls, f = wrap_function(f, args)
    gcalls, fprime = wrap_function(fprime, args)
    hcalls = 0
    if maxiter is None:
        maxiter = len(x0)*200

    xtol = len(x0) * avextol
    update = [2 * xtol]
    xk = x0
    if retall:
        allvecs = [xk]
    k = 0
    old_fval = f(x0)
    old_old_fval = None
    float64eps = numpy.finfo(numpy.float64).eps
    warnflag = 0
    while (numpy.add.reduce(numpy.abs(update)) > xtol) and (k < maxiter):
        # Compute a search direction pk by applying the CG method to
        #  del2 f(xk) p = - grad f(xk) starting from 0.
        b = -fprime(xk)
        maggrad = numpy.add.reduce(numpy.abs(b))
        eta = numpy.min([0.5, numpy.sqrt(maggrad)])
        termcond = eta * maggrad
        xsupi = zeros(len(x0), dtype=x0.dtype)
        ri = -b
        psupi = -ri
        i = 0
        dri0 = numpy.dot(ri, ri)

        if fhess is not None:             # you want to compute hessian once.
            A = fhess(*(xk,) + args)
            hcalls = hcalls + 1

        k2 = 0
        cg_maxiter = 20*len(x0)
        while (numpy.add.reduce(numpy.abs(ri)) > termcond) and (k2 < cg_maxiter):
            if fhess is None:
                if fhess_p is None:
                    Ap = approx_fhess_p(xk, psupi, fprime, epsilon)
                else:
                    Ap = fhess_p(xk, psupi, *args)
                    hcalls = hcalls + 1
            else:
                Ap = numpy.dot(A, psupi)
            # check curvature
            Ap = asarray(Ap).squeeze()  # get rid of matrices...
            curv = numpy.dot(psupi, Ap)
            if 0 <= curv <= 3 * float64eps:
                break
            elif curv < 0:
                if (i > 0):
                    break
                else:
                    # fall back to steepest descent direction
                    xsupi = dri0 / (-curv) * b
                    break
            alphai = dri0 / curv
            xsupi = xsupi + alphai * psupi
            ri = ri + alphai * Ap
            dri1 = numpy.dot(ri, ri)
            betai = dri1 / dri0
            psupi = -ri + betai * psupi
            i = i + 1
            dri0 = dri1          # update numpy.dot(ri,ri) for next time.
            k2 += 1

        if k2 >= cg_maxiter:
            # curvature keeps increasing, bail out
            break

        pk = xsupi  # search direction is solution to system.
        gfk = -b    # gradient at xk

        try:
            alphak, fc, gc, old_fval, old_old_fval, gfkp1 = \
                     _line_search_wolfe12(f, fprime, xk, pk, gfk,
                                          old_fval, old_old_fval)
        except _LineSearchError:
            # Line search failed to find a better solution.
            warnflag = 2
            break

        update = alphak * pk
        xk = xk + update        # upcast if necessary
        if callback is not None:
            callback(xk)
        if retall:
            allvecs.append(xk)
        k += 1

    fval = old_fval
    if warnflag == 2:
        msg = _status_message['pr_loss']
        if disp:
            print("Warning: " + msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % fcalls[0])
            print("         Gradient evaluations: %d" % gcalls[0])
            print("         Hessian evaluations: %d" % hcalls)
    elif k >= maxiter:
        warnflag = 1
        msg = _status_message['maxiter']
        if disp:
            print("Warning: " + msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % fcalls[0])
            print("         Gradient evaluations: %d" % gcalls[0])
            print("         Hessian evaluations: %d" % hcalls)
    elif k2 >= cg_maxiter:
        warnflag = 3
        msg = ("Warning: CG iterations didn't converge.  The Hessian is not "
              "positive definite.")
        if disp:
            print("Warning: " + msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % fcalls[0])
            print("         Gradient evaluations: %d" % gcalls[0])
            print("         Hessian evaluations: %d" % hcalls)
    else:
        msg = _status_message['success']
        if disp:
            print(msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % fcalls[0])
            print("         Gradient evaluations: %d" % gcalls[0])
            print("         Hessian evaluations: %d" % hcalls)

    result = OptimizeResult(fun=fval, jac=gfk, nfev=fcalls[0], njev=gcalls[0],
                            nhev=hcalls, status=warnflag,
                            success=(warnflag == 0), message=msg, x=xk,
                            nit=k)
    if retall:
        result['allvecs'] = allvecs
    return result


def fminbound(func, x1, x2, args=(), xtol=1e-5, maxfun=500,
              full_output=0, disp=1):
    """Bounded minimization for scalar functions.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function to be minimized (must accept and return scalars).
    x1, x2 : float or array scalar
        The optimization bounds.
    args : tuple, optional
        Extra arguments passed to function.
    xtol : float, optional
        The convergence tolerance.
    maxfun : int, optional
        Maximum number of function evaluations allowed.
    full_output : bool, optional
        If True, return optional outputs.
    disp : int, optional
        If non-zero, print messages.
            0 : no message printing.
            1 : non-convergence notification messages only.
            2 : print a message on convergence too.
            3 : print iteration results.


    Returns
    -------
    xopt : ndarray
        Parameters (over given interval) which minimize the
        objective function.
    fval : number
        The function value at the minimum point.
    ierr : int
        An error flag (0 if converged, 1 if maximum number of
        function calls reached).
    numfunc : int
      The number of function calls made.

    See also
    --------
    minimize_scalar: Interface to minimization algorithms for scalar
        univariate functions. See the 'Bounded' `method` in particular.

    Notes
    -----
    Finds a local minimizer of the scalar function `func` in the
    interval x1 < xopt < x2 using Brent's method.  (See `brent`
    for auto-bracketing).

    """
    options = {'xatol': xtol,
               'maxiter': maxfun,
               'disp': disp}

    res = _minimize_scalar_bounded(func, (x1, x2), args, **options)
    if full_output:
        return res['x'], res['fun'], res['status'], res['nfev']
    else:
        return res['x']


def _minimize_scalar_bounded(func, bounds, args=(),
                             xatol=1e-5, maxiter=500, disp=0,
                             **unknown_options):
    """
    Options
    -------
    maxiter : int
        Maximum number of iterations to perform.
    disp : bool
        Set to True to print convergence messages.
    xatol : float
        Absolute error in solution `xopt` acceptable for convergence.

    """
    _check_unknown_options(unknown_options)
    maxfun = maxiter
    # Test bounds are of correct form
    if len(bounds) != 2:
        raise ValueError('bounds must have two elements.')
    x1, x2 = bounds

    if not (is_array_scalar(x1) and is_array_scalar(x2)):
        raise ValueError("Optimisation bounds must be scalars"
                         " or array scalars.")
    if x1 > x2:
        raise ValueError("The lower bound exceeds the upper bound.")

    flag = 0
    header = ' Func-count     x          f(x)          Procedure'
    step = '       initial'

    sqrt_eps = sqrt(2.2e-16)
    golden_mean = 0.5 * (3.0 - sqrt(5.0))
    a, b = x1, x2
    fulc = a + golden_mean * (b - a)
    nfc, xf = fulc, fulc
    rat = e = 0.0
    x = xf
    fx = func(x, *args)
    num = 1
    fmin_data = (1, xf, fx)

    ffulc = fnfc = fx
    xm = 0.5 * (a + b)
    tol1 = sqrt_eps * numpy.abs(xf) + xatol / 3.0
    tol2 = 2.0 * tol1

    if disp > 2:
        print(" ")
        print(header)
        print("%5.0f   %12.6g %12.6g %s" % (fmin_data + (step,)))

    while (numpy.abs(xf - xm) > (tol2 - 0.5 * (b - a))):
        golden = 1
        # Check for parabolic fit
        if numpy.abs(e) > tol1:
            golden = 0
            r = (xf - nfc) * (fx - ffulc)
            q = (xf - fulc) * (fx - fnfc)
            p = (xf - fulc) * q - (xf - nfc) * r
            q = 2.0 * (q - r)
            if q > 0.0:
                p = -p
            q = numpy.abs(q)
            r = e
            e = rat

            # Check for acceptability of parabola
            if ((numpy.abs(p) < numpy.abs(0.5*q*r)) and (p > q*(a - xf)) and
                    (p < q * (b - xf))):
                rat = (p + 0.0) / q
                x = xf + rat
                step = '       parabolic'

                if ((x - a) < tol2) or ((b - x) < tol2):
                    si = numpy.sign(xm - xf) + ((xm - xf) == 0)
                    rat = tol1 * si
            else:      # do a golden section step
                golden = 1

        if golden:  # Do a golden-section step
            if xf >= xm:
                e = a - xf
            else:
                e = b - xf
            rat = golden_mean*e
            step = '       golden'

        si = numpy.sign(rat) + (rat == 0)
        x = xf + si * numpy.max([numpy.abs(rat), tol1])
        fu = func(x, *args)
        num += 1
        fmin_data = (num, x, fu)
        if disp > 2:
            print("%5.0f   %12.6g %12.6g %s" % (fmin_data + (step,)))

        if fu <= fx:
            if x >= xf:
                a = xf
            else:
                b = xf
            fulc, ffulc = nfc, fnfc
            nfc, fnfc = xf, fx
            xf, fx = x, fu
        else:
            if x < xf:
                a = x
            else:
                b = x
            if (fu <= fnfc) or (nfc == xf):
                fulc, ffulc = nfc, fnfc
                nfc, fnfc = x, fu
            elif (fu <= ffulc) or (fulc == xf) or (fulc == nfc):
                fulc, ffulc = x, fu

        xm = 0.5 * (a + b)
        tol1 = sqrt_eps * numpy.abs(xf) + xatol / 3.0
        tol2 = 2.0 * tol1

        if num >= maxfun:
            flag = 1
            break

    fval = fx
    if disp > 0:
        _endprint(x, flag, fval, maxfun, xatol, disp)

    result = OptimizeResult(fun=fval, status=flag, success=(flag == 0),
                            message={0: 'Solution found.',
                                     1: 'Maximum number of function calls '
                                        'reached.'}.get(flag, ''),
                            x=xf, nfev=num)

    return result


class Brent:
    #need to rethink design of __init__
    def __init__(self, func, args=(), tol=1.48e-8, maxiter=500,
                 full_output=0):
        self.func = func
        self.args = args
        self.tol = tol
        self.maxiter = maxiter
        self._mintol = 1.0e-11
        self._cg = 0.3819660
        self.xmin = None
        self.fval = None
        self.iter = 0
        self.funcalls = 0

    # need to rethink design of set_bracket (new options, etc)
    def set_bracket(self, brack=None):
        self.brack = brack

    def get_bracket_info(self):
        #set up
        func = self.func
        args = self.args
        brack = self.brack
        ### BEGIN core bracket_info code ###
        ### carefully DOCUMENT any CHANGES in core ##
        if brack is None:
            xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args)
        elif len(brack) == 2:
            xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0],
                                                       xb=brack[1], args=args)
        elif len(brack) == 3:
            xa, xb, xc = brack
            if (xa > xc):  # swap so xa < xc can be assumed
                xc, xa = xa, xc
            if not ((xa < xb) and (xb < xc)):
                raise ValueError("Not a bracketing interval.")
            fa = func(*((xa,) + args))
            fb = func(*((xb,) + args))
            fc = func(*((xc,) + args))
            if not ((fb < fa) and (fb < fc)):
                raise ValueError("Not a bracketing interval.")
            funcalls = 3
        else:
            raise ValueError("Bracketing interval must be "
                             "length 2 or 3 sequence.")
        ### END core bracket_info code ###

        return xa, xb, xc, fa, fb, fc, funcalls

    def optimize(self):
        # set up for optimization
        func = self.func
        xa, xb, xc, fa, fb, fc, funcalls = self.get_bracket_info()
        _mintol = self._mintol
        _cg = self._cg
        #################################
        #BEGIN CORE ALGORITHM
        #################################
        x = w = v = xb
        fw = fv = fx = func(*((x,) + self.args))
        if (xa < xc):
            a = xa
            b = xc
        else:
            a = xc
            b = xa
        deltax = 0.0
        funcalls = 1
        iter = 0
        while (iter < self.maxiter):
            tol1 = self.tol * numpy.abs(x) + _mintol
            tol2 = 2.0 * tol1
            xmid = 0.5 * (a + b)
            # check for convergence
            if numpy.abs(x - xmid) < (tol2 - 0.5 * (b - a)):
                break
            # XXX In the first iteration, rat is only bound in the true case
            # of this conditional. This used to cause an UnboundLocalError
            # (gh-4140). It should be set before the if (but to what?).
            if (numpy.abs(deltax) <= tol1):
                if (x >= xmid):
                    deltax = a - x       # do a golden section step
                else:
                    deltax = b - x
                rat = _cg * deltax
            else:                              # do a parabolic step
                tmp1 = (x - w) * (fx - fv)
                tmp2 = (x - v) * (fx - fw)
                p = (x - v) * tmp2 - (x - w) * tmp1
                tmp2 = 2.0 * (tmp2 - tmp1)
                if (tmp2 > 0.0):
                    p = -p
                tmp2 = numpy.abs(tmp2)
                dx_temp = deltax
                deltax = rat
                # check parabolic fit
                if ((p > tmp2 * (a - x)) and (p < tmp2 * (b - x)) and
                        (numpy.abs(p) < numpy.abs(0.5 * tmp2 * dx_temp))):
                    rat = p * 1.0 / tmp2        # if parabolic step is useful.
                    u = x + rat
                    if ((u - a) < tol2 or (b - u) < tol2):
                        if xmid - x >= 0:
                            rat = tol1
                        else:
                            rat = -tol1
                else:
                    if (x >= xmid):
                        deltax = a - x  # if it's not do a golden section step
                    else:
                        deltax = b - x
                    rat = _cg * deltax

            if (numpy.abs(rat) < tol1):            # update by at least tol1
                if rat >= 0:
                    u = x + tol1
                else:
                    u = x - tol1
            else:
                u = x + rat
            fu = func(*((u,) + self.args))      # calculate new output value
            funcalls += 1

            if (fu > fx):                 # if it's bigger than current
                if (u < x):
                    a = u
                else:
                    b = u
                if (fu <= fw) or (w == x):
                    v = w
                    w = u
                    fv = fw
                    fw = fu
                elif (fu <= fv) or (v == x) or (v == w):
                    v = u
                    fv = fu
            else:
                if (u >= x):
                    a = x
                else:
                    b = x
                v = w
                w = x
                x = u
                fv = fw
                fw = fx
                fx = fu

            iter += 1
        #################################
        #END CORE ALGORITHM
        #################################

        self.xmin = x
        self.fval = fx
        self.iter = iter
        self.funcalls = funcalls

    def get_result(self, full_output=False):
        if full_output:
            return self.xmin, self.fval, self.iter, self.funcalls
        else:
            return self.xmin


def brent(func, args=(), brack=None, tol=1.48e-8, full_output=0, maxiter=500):
    """
    Given a function of one-variable and a possible bracketing interval,
    return the minimum of the function isolated to a fractional precision of
    tol.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function.
    args : tuple, optional
        Additional arguments (if present).
    brack : tuple, optional
        Either a triple (xa,xb,xc) where xa<xb<xc and func(xb) <
        func(xa), func(xc) or a pair (xa,xb) which are used as a
        starting interval for a downhill bracket search (see
        `bracket`). Providing the pair (xa,xb) does not always mean
        the obtained solution will satisfy xa<=x<=xb.
    tol : float, optional
        Stop if between iteration change is less than `tol`.
    full_output : bool, optional
        If True, return all output args (xmin, fval, iter,
        funcalls).
    maxiter : int, optional
        Maximum number of iterations in solution.

    Returns
    -------
    xmin : ndarray
        Optimum point.
    fval : float
        Optimum value.
    iter : int
        Number of iterations.
    funcalls : int
        Number of objective function evaluations made.

    See also
    --------
    minimize_scalar: Interface to minimization algorithms for scalar
        univariate functions. See the 'Brent' `method` in particular.

    Notes
    -----
    Uses inverse parabolic interpolation when possible to speed up
    convergence of golden section method.

    """
    options = {'xtol': tol,
               'maxiter': maxiter}
    res = _minimize_scalar_brent(func, brack, args, **options)
    if full_output:
        return res['x'], res['fun'], res['nit'], res['nfev']
    else:
        return res['x']


def _minimize_scalar_brent(func, brack=None, args=(),
                           xtol=1.48e-8, maxiter=500,
                           **unknown_options):
    """
    Options
    -------
    maxiter : int
        Maximum number of iterations to perform.
    xtol : float
        Relative error in solution `xopt` acceptable for convergence.

    Notes
    -----
    Uses inverse parabolic interpolation when possible to speed up
    convergence of golden section method.

    """
    _check_unknown_options(unknown_options)
    tol = xtol
    if tol < 0:
        raise ValueError('tolerance should be >= 0, got %r' % tol)

    brent = Brent(func=func, args=args, tol=tol,
                  full_output=True, maxiter=maxiter)
    brent.set_bracket(brack)
    brent.optimize()
    x, fval, nit, nfev = brent.get_result(full_output=True)
    return OptimizeResult(fun=fval, x=x, nit=nit, nfev=nfev,
                          success=nit < maxiter)


def golden(func, args=(), brack=None, tol=_epsilon, full_output=0):
    """
    Return the minimum of a function of one variable.

    Given a function of one variable and a possible bracketing interval,
    return the minimum of the function isolated to a fractional precision of
    tol.

    Parameters
    ----------
    func : callable func(x,*args)
        Objective function to minimize.
    args : tuple, optional
        Additional arguments (if present), passed to func.
    brack : tuple, optional
        Triple (a,b,c), where (a<b<c) and func(b) <
        func(a),func(c).  If bracket consists of two numbers (a,
        c), then they are assumed to be a starting interval for a
        downhill bracket search (see `bracket`); it doesn't always
        mean that obtained solution will satisfy a<=x<=c.
    tol : float, optional
        x tolerance stop criterion
    full_output : bool, optional
        If True, return optional outputs.

    See also
    --------
    minimize_scalar: Interface to minimization algorithms for scalar
        univariate functions. See the 'Golden' `method` in particular.

    Notes
    -----
    Uses analog of bisection method to decrease the bracketed
    interval.

    """
    options = {'xtol': tol}
    res = _minimize_scalar_golden(func, brack, args, **options)
    if full_output:
        return res['x'], res['fun'], res['nfev']
    else:
        return res['x']


def _minimize_scalar_golden(func, brack=None, args=(),
                            xtol=_epsilon, **unknown_options):
    """
    Options
    -------
    maxiter : int
        Maximum number of iterations to perform.
    xtol : float
        Relative error in solution `xopt` acceptable for convergence.

    """
    _check_unknown_options(unknown_options)
    tol = xtol
    if brack is None:
        xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args)
    elif len(brack) == 2:
        xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0],
                                                   xb=brack[1], args=args)
    elif len(brack) == 3:
        xa, xb, xc = brack
        if (xa > xc):  # swap so xa < xc can be assumed
            xc, xa = xa, xc
        if not ((xa < xb) and (xb < xc)):
            raise ValueError("Not a bracketing interval.")
        fa = func(*((xa,) + args))
        fb = func(*((xb,) + args))
        fc = func(*((xc,) + args))
        if not ((fb < fa) and (fb < fc)):
            raise ValueError("Not a bracketing interval.")
        funcalls = 3
    else:
        raise ValueError("Bracketing interval must be length 2 or 3 sequence.")

    _gR = 0.61803399
    _gC = 1.0 - _gR
    x3 = xc
    x0 = xa
    if (numpy.abs(xc - xb) > numpy.abs(xb - xa)):
        x1 = xb
        x2 = xb + _gC * (xc - xb)
    else:
        x2 = xb
        x1 = xb - _gC * (xb - xa)
    f1 = func(*((x1,) + args))
    f2 = func(*((x2,) + args))
    funcalls += 2
    while (numpy.abs(x3 - x0) > tol * (numpy.abs(x1) + numpy.abs(x2))):
        if (f2 < f1):
            x0 = x1
            x1 = x2
            x2 = _gR * x1 + _gC * x3
            f1 = f2
            f2 = func(*((x2,) + args))
        else:
            x3 = x2
            x2 = x1
            x1 = _gR * x2 + _gC * x0
            f2 = f1
            f1 = func(*((x1,) + args))
        funcalls += 1
    if (f1 < f2):
        xmin = x1
        fval = f1
    else:
        xmin = x2
        fval = f2

    return OptimizeResult(fun=fval, nfev=funcalls, x=xmin)


def bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000):
    """
    Bracket the minimum of the function.

    Given a function and distinct initial points, search in the
    downhill direction (as defined by the initital points) and return
    new points xa, xb, xc that bracket the minimum of the function
    f(xa) > f(xb) < f(xc). It doesn't always mean that obtained
    solution will satisfy xa<=x<=xb

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function to minimize.
    xa, xb : float, optional
        Bracketing interval. Defaults `xa` to 0.0, and `xb` to 1.0.
    args : tuple, optional
        Additional arguments (if present), passed to `func`.
    grow_limit : float, optional
        Maximum grow limit.  Defaults to 110.0
    maxiter : int, optional
        Maximum number of iterations to perform. Defaults to 1000.

    Returns
    -------
    xa, xb, xc : float
        Bracket.
    fa, fb, fc : float
        Objective function values in bracket.
    funcalls : int
        Number of function evaluations made.

    """
    _gold = 1.618034
    _verysmall_num = 1e-21
    fa = func(*(xa,) + args)
    fb = func(*(xb,) + args)
    if (fa < fb):                      # Switch so fa > fb
        xa, xb = xb, xa
        fa, fb = fb, fa
    xc = xb + _gold * (xb - xa)
    fc = func(*((xc,) + args))
    funcalls = 3
    iter = 0
    while (fc < fb):
        tmp1 = (xb - xa) * (fb - fc)
        tmp2 = (xb - xc) * (fb - fa)
        val = tmp2 - tmp1
        if numpy.abs(val) < _verysmall_num:
            denom = 2.0 * _verysmall_num
        else:
            denom = 2.0 * val
        w = xb - ((xb - xc) * tmp2 - (xb - xa) * tmp1) / denom
        wlim = xb + grow_limit * (xc - xb)
        if iter > maxiter:
            raise RuntimeError("Too many iterations.")
        iter += 1
        if (w - xc) * (xb - w) > 0.0:
            fw = func(*((w,) + args))
            funcalls += 1
            if (fw < fc):
                xa = xb
                xb = w
                fa = fb
                fb = fw
                return xa, xb, xc, fa, fb, fc, funcalls
            elif (fw > fb):
                xc = w
                fc = fw
                return xa, xb, xc, fa, fb, fc, funcalls
            w = xc + _gold * (xc - xb)
            fw = func(*((w,) + args))
            funcalls += 1
        elif (w - wlim)*(wlim - xc) >= 0.0:
            w = wlim
            fw = func(*((w,) + args))
            funcalls += 1
        elif (w - wlim)*(xc - w) > 0.0:
            fw = func(*((w,) + args))
            funcalls += 1
            if (fw < fc):
                xb = xc
                xc = w
                w = xc + _gold * (xc - xb)
                fb = fc
                fc = fw
                fw = func(*((w,) + args))
                funcalls += 1
        else:
            w = xc + _gold * (xc - xb)
            fw = func(*((w,) + args))
            funcalls += 1
        xa = xb
        xb = xc
        xc = w
        fa = fb
        fb = fc
        fc = fw
    return xa, xb, xc, fa, fb, fc, funcalls


def _linesearch_powell(func, p, xi, tol=1e-3):
    """Line-search algorithm using fminbound.

    Find the minimium of the function ``func(x0+ alpha*direc)``.

    """
    def myfunc(alpha):
        return func(p + alpha*xi)
    alpha_min, fret, iter, num = brent(myfunc, full_output=1, tol=tol)
    xi = alpha_min*xi
    return squeeze(fret), p + xi, xi


def fmin_powell(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None,
                maxfun=None, full_output=0, disp=1, retall=0, callback=None,
                direc=None):
    """
    Minimize a function using modified Powell's method. This method
    only uses function values, not derivatives.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function to be minimized.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to func.
    callback : callable, optional
        An optional user-supplied function, called after each
        iteration.  Called as ``callback(xk)``, where ``xk`` is the
        current parameter vector.
    direc : ndarray, optional
        Initial direction set.
    xtol : float, optional
        Line-search error tolerance.
    ftol : float, optional
        Relative error in ``func(xopt)`` acceptable for convergence.
    maxiter : int, optional
        Maximum number of iterations to perform.
    maxfun : int, optional
        Maximum number of function evaluations to make.
    full_output : bool, optional
        If True, fopt, xi, direc, iter, funcalls, and
        warnflag are returned.
    disp : bool, optional
        If True, print convergence messages.
    retall : bool, optional
        If True, return a list of the solution at each iteration.

    Returns
    -------
    xopt : ndarray
        Parameter which minimizes `func`.
    fopt : number
        Value of function at minimum: ``fopt = func(xopt)``.
    direc : ndarray
        Current direction set.
    iter : int
        Number of iterations.
    funcalls : int
        Number of function calls made.
    warnflag : int
        Integer warning flag:
            1 : Maximum number of function evaluations.
            2 : Maximum number of iterations.
    allvecs : list
        List of solutions at each iteration.

    See also
    --------
    minimize: Interface to unconstrained minimization algorithms for
        multivariate functions. See the 'Powell' `method` in particular.

    Notes
    -----
    Uses a modification of Powell's method to find the minimum of
    a function of N variables. Powell's method is a conjugate
    direction method.

    The algorithm has two loops. The outer loop
    merely iterates over the inner loop. The inner loop minimizes
    over each current direction in the direction set. At the end
    of the inner loop, if certain conditions are met, the direction
    that gave the largest decrease is dropped and replaced with
    the difference between the current estimated x and the estimated
    x from the beginning of the inner-loop.

    The technical conditions for replacing the direction of greatest
    increase amount to checking that

    1. No further gain can be made along the direction of greatest increase
       from that iteration.
    2. The direction of greatest increase accounted for a large sufficient
       fraction of the decrease in the function value from that iteration of
       the inner loop.

    References
    ----------
    Powell M.J.D. (1964) An efficient method for finding the minimum of a
    function of several variables without calculating derivatives,
    Computer Journal, 7 (2):155-162.

    Press W., Teukolsky S.A., Vetterling W.T., and Flannery B.P.:
    Numerical Recipes (any edition), Cambridge University Press

    """
    opts = {'xtol': xtol,
            'ftol': ftol,
            'maxiter': maxiter,
            'maxfev': maxfun,
            'disp': disp,
            'direc': direc,
            'return_all': retall}

    res = _minimize_powell(func, x0, args, callback=callback, **opts)

    if full_output:
        retlist = (res['x'], res['fun'], res['direc'], res['nit'],
                   res['nfev'], res['status'])
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_powell(func, x0, args=(), callback=None,
                     xtol=1e-4, ftol=1e-4, maxiter=None, maxfev=None,
                     disp=False, direc=None, return_all=False,
                     **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    modified Powell algorithm.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    xtol : float
        Relative error in solution `xopt` acceptable for convergence.
    ftol : float
        Relative error in ``fun(xopt)`` acceptable for convergence.
    maxiter, maxfev : int
        Maximum allowed number of iterations and function evaluations.
        Will default to ``N*1000``, where ``N`` is the number of
        variables, if neither `maxiter` or `maxfev` is set. If both
        `maxiter` and `maxfev` are set, minimization will stop at the
        first reached.
    direc : ndarray
        Initial set of direction vectors for the Powell method.

    """
    _check_unknown_options(unknown_options)
    maxfun = maxfev
    retall = return_all
    # we need to use a mutable object here that we can update in the
    # wrapper function
    fcalls, func = wrap_function(func, args)
    x = asarray(x0).flatten()
    if retall:
        allvecs = [x]
    N = len(x)
    # If neither are set, then set both to default
    if maxiter is None and maxfun is None:
        maxiter = N * 1000
        maxfun = N * 1000
    elif maxiter is None:
        # Convert remaining Nones, to np.inf, unless the other is np.inf, in
        # which case use the default to avoid unbounded iteration
        if maxfun == np.inf:
            maxiter = N * 1000
        else:
            maxiter = np.inf
    elif maxfun is None:
        if maxiter == np.inf:
            maxfun = N * 1000
        else:
            maxfun = np.inf

    if direc is None:
        direc = eye(N, dtype=float)
    else:
        direc = asarray(direc, dtype=float)

    fval = squeeze(func(x))
    x1 = x.copy()
    iter = 0
    ilist = list(range(N))
    while True:
        fx = fval
        bigind = 0
        delta = 0.0
        for i in ilist:
            direc1 = direc[i]
            fx2 = fval
            fval, x, direc1 = _linesearch_powell(func, x, direc1,
                                                 tol=xtol * 100)
            if (fx2 - fval) > delta:
                delta = fx2 - fval
                bigind = i
        iter += 1
        if callback is not None:
            callback(x)
        if retall:
            allvecs.append(x)
        bnd = ftol * (numpy.abs(fx) + numpy.abs(fval)) + 1e-20
        if 2.0 * (fx - fval) <= bnd:
            break
        if fcalls[0] >= maxfun:
            break
        if iter >= maxiter:
            break

        # Construct the extrapolated point
        direc1 = x - x1
        x2 = 2*x - x1
        x1 = x.copy()
        fx2 = squeeze(func(x2))

        if (fx > fx2):
            t = 2.0*(fx + fx2 - 2.0*fval)
            temp = (fx - fval - delta)
            t *= temp*temp
            temp = fx - fx2
            t -= delta*temp*temp
            if t < 0.0:
                fval, x, direc1 = _linesearch_powell(func, x, direc1,
                                                     tol=xtol*100)
                direc[bigind] = direc[-1]
                direc[-1] = direc1

    warnflag = 0
    if fcalls[0] >= maxfun:
        warnflag = 1
        msg = _status_message['maxfev']
        if disp:
            print("Warning: " + msg)
    elif iter >= maxiter:
        warnflag = 2
        msg = _status_message['maxiter']
        if disp:
            print("Warning: " + msg)
    else:
        msg = _status_message['success']
        if disp:
            print(msg)
            print("         Current function value: %f" % fval)
            print("         Iterations: %d" % iter)
            print("         Function evaluations: %d" % fcalls[0])

    x = squeeze(x)

    result = OptimizeResult(fun=fval, direc=direc, nit=iter, nfev=fcalls[0],
                            status=warnflag, success=(warnflag == 0),
                            message=msg, x=x)
    if retall:
        result['allvecs'] = allvecs
    return result


def _endprint(x, flag, fval, maxfun, xtol, disp):
    if flag == 0:
        if disp > 1:
            print("\nOptimization terminated successfully;\n"
                  "The returned value satisfies the termination criteria\n"
                  "(using xtol = ", xtol, ")")
    if flag == 1:
        if disp:
            print("\nMaximum number of function evaluations exceeded --- "
                  "increase maxfun argument.\n")
    return


def brute(func, ranges, args=(), Ns=20, full_output=0, finish=fmin,
          disp=False):
    """Minimize a function over a given range by brute force.

    Uses the "brute force" method, i.e. computes the function's value
    at each point of a multidimensional grid of points, to find the global
    minimum of the function.

    The function is evaluated everywhere in the range with the datatype of the
    first call to the function, as enforced by the ``vectorize`` NumPy
    function.  The value and type of the function evaluation returned when
    ``full_output=True`` are affected in addition by the ``finish`` argument
    (see Notes).

    Parameters
    ----------
    func : callable
        The objective function to be minimized. Must be in the
        form ``f(x, *args)``, where ``x`` is the argument in
        the form of a 1-D array and ``args`` is a tuple of any
        additional fixed parameters needed to completely specify
        the function.
    ranges : tuple
        Each component of the `ranges` tuple must be either a
        "slice object" or a range tuple of the form ``(low, high)``.
        The program uses these to create the grid of points on which
        the objective function will be computed. See `Note 2` for
        more detail.
    args : tuple, optional
        Any additional fixed parameters needed to completely specify
        the function.
    Ns : int, optional
        Number of grid points along the axes, if not otherwise
        specified. See `Note2`.
    full_output : bool, optional
        If True, return the evaluation grid and the objective function's
        values on it.
    finish : callable, optional
        An optimization function that is called with the result of brute force
        minimization as initial guess.  `finish` should take `func` and
        the initial guess as positional arguments, and take `args` as
        keyword arguments.  It may additionally take `full_output`
        and/or `disp` as keyword arguments.  Use None if no "polishing"
        function is to be used. See Notes for more details.
    disp : bool, optional
        Set to True to print convergence messages.

    Returns
    -------
    x0 : ndarray
        A 1-D array containing the coordinates of a point at which the
        objective function had its minimum value. (See `Note 1` for
        which point is returned.)
    fval : float
        Function value at the point `x0`. (Returned when `full_output` is
        True.)
    grid : tuple
        Representation of the evaluation grid.  It has the same
        length as `x0`. (Returned when `full_output` is True.)
    Jout : ndarray
        Function values at each point of the evaluation
        grid, `i.e.`, ``Jout = func(*grid)``. (Returned
        when `full_output` is True.)

    See Also
    --------
    basinhopping, differential_evolution

    Notes
    -----
    *Note 1*: The program finds the gridpoint at which the lowest value
    of the objective function occurs.  If `finish` is None, that is the
    point returned.  When the global minimum occurs within (or not very far
    outside) the grid's boundaries, and the grid is fine enough, that
    point will be in the neighborhood of the global minimum.

    However, users often employ some other optimization program to
    "polish" the gridpoint values, `i.e.`, to seek a more precise
    (local) minimum near `brute's` best gridpoint.
    The `brute` function's `finish` option provides a convenient way to do
    that.  Any polishing program used must take `brute's` output as its
    initial guess as a positional argument, and take `brute's` input values
    for `args` as keyword arguments, otherwise an error will be raised.
    It may additionally take `full_output` and/or `disp` as keyword arguments.

    `brute` assumes that the `finish` function returns either an
    `OptimizeResult` object or a tuple in the form:
    ``(xmin, Jmin, ... , statuscode)``, where ``xmin`` is the minimizing
    value of the argument, ``Jmin`` is the minimum value of the objective
    function, "..." may be some other returned values (which are not used
    by `brute`), and ``statuscode`` is the status code of the `finish` program.

    Note that when `finish` is not None, the values returned are those
    of the `finish` program, *not* the gridpoint ones.  Consequently,
    while `brute` confines its search to the input grid points,
    the `finish` program's results usually will not coincide with any
    gridpoint, and may fall outside the grid's boundary. Thus, if a
    minimum only needs to be found over the provided grid points, make
    sure to pass in `finish=None`.

    *Note 2*: The grid of points is a `numpy.mgrid` object.
    For `brute` the `ranges` and `Ns` inputs have the following effect.
    Each component of the `ranges` tuple can be either a slice object or a
    two-tuple giving a range of values, such as (0, 5).  If the component is a
    slice object, `brute` uses it directly.  If the component is a two-tuple
    range, `brute` internally converts it to a slice object that interpolates
    `Ns` points from its low-value to its high-value, inclusive.

    Examples
    --------
    We illustrate the use of `brute` to seek the global minimum of a function
    of two variables that is given as the sum of a positive-definite
    quadratic and two deep "Gaussian-shaped" craters.  Specifically, define
    the objective function `f` as the sum of three other functions,
    ``f = f1 + f2 + f3``.  We suppose each of these has a signature
    ``(z, *params)``, where ``z = (x, y)``,  and ``params`` and the functions
    are as defined below.

    >>> params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)
    >>> def f1(z, *params):
    ...     x, y = z
    ...     a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    ...     return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f)

    >>> def f2(z, *params):
    ...     x, y = z
    ...     a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    ...     return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale))

    >>> def f3(z, *params):
    ...     x, y = z
    ...     a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    ...     return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale))

    >>> def f(z, *params):
    ...     return f1(z, *params) + f2(z, *params) + f3(z, *params)

    Thus, the objective function may have local minima near the minimum
    of each of the three functions of which it is composed.  To
    use `fmin` to polish its gridpoint result, we may then continue as
    follows:

    >>> rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25))
    >>> from scipy import optimize
    >>> resbrute = optimize.brute(f, rranges, args=params, full_output=True,
    ...                           finish=optimize.fmin)
    >>> resbrute[0]  # global minimum
    array([-1.05665192,  1.80834843])
    >>> resbrute[1]  # function value at global minimum
    -3.4085818767

    Note that if `finish` had been set to None, we would have gotten the
    gridpoint [-1.0 1.75] where the rounded function value is -2.892.

    """
    N = len(ranges)
    if N > 40:
        raise ValueError("Brute Force not possible with more "
                         "than 40 variables.")
    lrange = list(ranges)
    for k in range(N):
        if type(lrange[k]) is not type(slice(None)):
            if len(lrange[k]) < 3:
                lrange[k] = tuple(lrange[k]) + (complex(Ns),)
            lrange[k] = slice(*lrange[k])
    if (N == 1):
        lrange = lrange[0]

    def _scalarfunc(*params):
        params = squeeze(asarray(params))
        return func(params, *args)

    vecfunc = vectorize(_scalarfunc)
    grid = mgrid[lrange]
    if (N == 1):
        grid = (grid,)
    Jout = vecfunc(*grid)
    Nshape = shape(Jout)
    indx = argmin(Jout.ravel(), axis=-1)
    Nindx = zeros(N, int)
    xmin = zeros(N, float)
    for k in range(N - 1, -1, -1):
        thisN = Nshape[k]
        Nindx[k] = indx % Nshape[k]
        indx = indx // thisN
    for k in range(N):
        xmin[k] = grid[k][tuple(Nindx)]

    Jmin = Jout[tuple(Nindx)]
    if (N == 1):
        grid = grid[0]
        xmin = xmin[0]
    if callable(finish):
        # set up kwargs for `finish` function
        finish_args = _getargspec(finish).args
        finish_kwargs = dict()
        if 'full_output' in finish_args:
            finish_kwargs['full_output'] = 1
        if 'disp' in finish_args:
            finish_kwargs['disp'] = disp
        elif 'options' in finish_args:
            # pass 'disp' as `options`
            # (e.g. if `finish` is `minimize`)
            finish_kwargs['options'] = {'disp': disp}

        # run minimizer
        res = finish(func, xmin, args=args, **finish_kwargs)

        if isinstance(res, OptimizeResult):
            xmin = res.x
            Jmin = res.fun
            success = res.success
        else:
            xmin = res[0]
            Jmin = res[1]
            success = res[-1] == 0
        if not success:
            if disp:
                print("Warning: Either final optimization did not succeed "
                      "or `finish` does not return `statuscode` as its last "
                      "argument.")

    if full_output:
        return xmin, Jmin, grid, Jout
    else:
        return xmin


def show_options(solver=None, method=None, disp=True):
    """
    Show documentation for additional options of optimization solvers.

    These are method-specific options that can be supplied through the
    ``options`` dict.

    Parameters
    ----------
    solver : str
        Type of optimization solver. One of 'minimize', 'minimize_scalar',
        'root', or 'linprog'.
    method : str, optional
        If not given, shows all methods of the specified solver. Otherwise,
        show only the options for the specified method. Valid values
        corresponds to methods' names of respective solver (e.g. 'BFGS' for
        'minimize').
    disp : bool, optional
        Whether to print the result rather than returning it.

    Returns
    -------
    text
        Either None (for disp=False) or the text string (disp=True)

    Notes
    -----
    The solver-specific methods are:

    `scipy.optimize.minimize`

    - :ref:`Nelder-Mead <optimize.minimize-neldermead>`
    - :ref:`Powell      <optimize.minimize-powell>`
    - :ref:`CG          <optimize.minimize-cg>`
    - :ref:`BFGS        <optimize.minimize-bfgs>`
    - :ref:`Newton-CG   <optimize.minimize-newtoncg>`
    - :ref:`L-BFGS-B    <optimize.minimize-lbfgsb>`
    - :ref:`TNC         <optimize.minimize-tnc>`
    - :ref:`COBYLA      <optimize.minimize-cobyla>`
    - :ref:`SLSQP       <optimize.minimize-slsqp>`
    - :ref:`dogleg      <optimize.minimize-dogleg>`
    - :ref:`trust-ncg   <optimize.minimize-trustncg>`

    `scipy.optimize.root`

    - :ref:`hybr              <optimize.root-hybr>`
    - :ref:`lm                <optimize.root-lm>`
    - :ref:`broyden1          <optimize.root-broyden1>`
    - :ref:`broyden2          <optimize.root-broyden2>`
    - :ref:`anderson          <optimize.root-anderson>`
    - :ref:`linearmixing      <optimize.root-linearmixing>`
    - :ref:`diagbroyden       <optimize.root-diagbroyden>`
    - :ref:`excitingmixing    <optimize.root-excitingmixing>`
    - :ref:`krylov            <optimize.root-krylov>`
    - :ref:`df-sane           <optimize.root-dfsane>`

    `scipy.optimize.minimize_scalar`

    - :ref:`brent       <optimize.minimize_scalar-brent>`
    - :ref:`golden      <optimize.minimize_scalar-golden>`
    - :ref:`bounded     <optimize.minimize_scalar-bounded>`

    `scipy.optimize.linprog`

    - :ref:`simplex     <optimize.linprog-simplex>`

    """
    import textwrap

    doc_routines = {
        'minimize': (
            ('bfgs', 'scipy.optimize.optimize._minimize_bfgs'),
            ('cg', 'scipy.optimize.optimize._minimize_cg'),
            ('cobyla', 'scipy.optimize.cobyla._minimize_cobyla'),
            ('dogleg', 'scipy.optimize._trustregion_dogleg._minimize_dogleg'),
            ('l-bfgs-b', 'scipy.optimize.lbfgsb._minimize_lbfgsb'),
            ('nelder-mead', 'scipy.optimize.optimize._minimize_neldermead'),
            ('newtoncg', 'scipy.optimize.optimize._minimize_newtoncg'),
            ('powell', 'scipy.optimize.optimize._minimize_powell'),
            ('slsqp', 'scipy.optimize.slsqp._minimize_slsqp'),
            ('tnc', 'scipy.optimize.tnc._minimize_tnc'),
            ('trust-ncg', 'scipy.optimize._trustregion_ncg._minimize_trust_ncg'),
        ),
        'root': (
            ('hybr', 'scipy.optimize.minpack._root_hybr'),
            ('lm', 'scipy.optimize._root._root_leastsq'),
            ('broyden1', 'scipy.optimize._root._root_broyden1_doc'),
            ('broyden2', 'scipy.optimize._root._root_broyden2_doc'),
            ('anderson', 'scipy.optimize._root._root_anderson_doc'),
            ('diagbroyden', 'scipy.optimize._root._root_diagbroyden_doc'),
            ('excitingmixing', 'scipy.optimize._root._root_excitingmixing_doc'),
            ('linearmixing', 'scipy.optimize._root._root_linearmixing_doc'),
            ('krylov', 'scipy.optimize._root._root_krylov_doc'),
            ('df-sane', 'scipy.optimize._spectral._root_df_sane'),
        ),
        'linprog': (
            ('simplex', 'scipy.optimize._linprog._linprog_simplex'),
        ),
        'minimize_scalar': (
            ('brent', 'scipy.optimize.optimize._minimize_scalar_brent'),
            ('bounded', 'scipy.optimize.optimize._minimize_scalar_bounded'),
            ('golden', 'scipy.optimize.optimize._minimize_scalar_golden'),
        ),
    }

    if solver is None:
        text = ["\n\n\n========\n", "minimize\n", "========\n"]
        text.append(show_options('minimize', disp=False))
        text.extend(["\n\n===============\n", "minimize_scalar\n",
                     "===============\n"])
        text.append(show_options('minimize_scalar', disp=False))
        text.extend(["\n\n\n====\n", "root\n",
                     "====\n"])
        text.append(show_options('root', disp=False))
        text.extend(['\n\n\n=======\n', 'linprog\n',
                     '=======\n'])
        text.append(show_options('linprog', disp=False))
        text = "".join(text)
    else:
        solver = solver.lower()
        if solver not in doc_routines:
            raise ValueError('Unknown solver %r' % (solver,))

        if method is None:
            text = []
            for name, _ in doc_routines[solver]:
                text.extend(["\n\n" + name, "\n" + "="*len(name) + "\n\n"])
                text.append(show_options(solver, name, disp=False))
            text = "".join(text)
        else:
            methods = dict(doc_routines[solver])
            if method not in methods:
                raise ValueError("Unknown method %r" % (method,))
            name = methods[method]

            # Import function object
            parts = name.split('.')
            mod_name = ".".join(parts[:-1])
            __import__(mod_name)
            obj = getattr(sys.modules[mod_name], parts[-1])

            # Get doc
            doc = obj.__doc__
            if doc is not None:
                text = textwrap.dedent(doc).strip()
            else:
                text = ""

    if disp:
        print(text)
        return
    else:
        return text


def main():
    import time

    times = []
    algor = []
    x0 = [0.8, 1.2, 0.7]
    print("Nelder-Mead Simplex")
    print("===================")
    start = time.time()
    x = fmin(rosen, x0)
    print(x)
    times.append(time.time() - start)
    algor.append('Nelder-Mead Simplex\t')

    print()
    print("Powell Direction Set Method")
    print("===========================")
    start = time.time()
    x = fmin_powell(rosen, x0)
    print(x)
    times.append(time.time() - start)
    algor.append('Powell Direction Set Method.')

    print()
    print("Nonlinear CG")
    print("============")
    start = time.time()
    x = fmin_cg(rosen, x0, fprime=rosen_der, maxiter=200)
    print(x)
    times.append(time.time() - start)
    algor.append('Nonlinear CG     \t')

    print()
    print("BFGS Quasi-Newton")
    print("=================")
    start = time.time()
    x = fmin_bfgs(rosen, x0, fprime=rosen_der, maxiter=80)
    print(x)
    times.append(time.time() - start)
    algor.append('BFGS Quasi-Newton\t')

    print()
    print("BFGS approximate gradient")
    print("=========================")
    start = time.time()
    x = fmin_bfgs(rosen, x0, gtol=1e-4, maxiter=100)
    print(x)
    times.append(time.time() - start)
    algor.append('BFGS without gradient\t')

    print()
    print("Newton-CG with Hessian product")
    print("==============================")
    start = time.time()
    x = fmin_ncg(rosen, x0, rosen_der, fhess_p=rosen_hess_prod, maxiter=80)
    print(x)
    times.append(time.time() - start)
    algor.append('Newton-CG with hessian product')

    print()
    print("Newton-CG with full Hessian")
    print("===========================")
    start = time.time()
    x = fmin_ncg(rosen, x0, rosen_der, fhess=rosen_hess, maxiter=80)
    print(x)
    times.append(time.time() - start)
    algor.append('Newton-CG with full hessian')

    print()
    print("\nMinimizing the Rosenbrock function of order 3\n")
    print(" Algorithm \t\t\t       Seconds")
    print("===========\t\t\t      =========")
    for k in range(len(algor)):
        print(algor[k], "\t -- ", times[k])


if __name__ == "__main__":
    main()