File: slsqp_optmz.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (2150 lines) | stat: -rw-r--r-- 68,471 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
C
C      ALGORITHM 733, COLLECTED ALGORITHMS FROM ACM.
C      TRANSACTIONS ON MATHEMATICAL SOFTWARE,
C      VOL. 20, NO. 3, SEPTEMBER, 1994, PP. 262-281.
C      http://doi.acm.org/10.1145/192115.192124
C
C
C      http://permalink.gmane.org/gmane.comp.python.scientific.devel/6725
C      ------
C      From: Deborah Cotton <cotton@hq.acm.org>
C      Date: Fri, 14 Sep 2007 12:35:55 -0500
C      Subject: RE: Algorithm License requested
C      To: Alan Isaac
C
C      Prof. Issac,
C
C      In that case, then because the author consents to [the ACM] releasing
C      the code currently archived at http://www.netlib.org/toms/733 under the
C      BSD license, the ACM hereby releases this code under the BSD license.
C
C      Regards,
C
C      Deborah Cotton, Copyright & Permissions
C      ACM Publications
C      2 Penn Plaza, Suite 701**
C      New York, NY 10121-0701
C      permissions@acm.org
C      212.869.7440 ext. 652
C      Fax. 212.869.0481
C      ------
C

************************************************************************
*                              optimizer                               *
************************************************************************

      SUBROUTINE slsqp (m, meq, la, n, x, xl, xu, f, c, g, a,
     *                  acc, iter, mode, w, l_w, jw, l_jw)

C   SLSQP       S EQUENTIAL  L EAST  SQ UARES  P ROGRAMMING
C            TO SOLVE GENERAL NONLINEAR OPTIMIZATION PROBLEMS

C***********************************************************************
C*                                                                     *
C*                                                                     *
C*            A NONLINEAR PROGRAMMING METHOD WITH                      *
C*            QUADRATIC  PROGRAMMING  SUBPROBLEMS                      *
C*                                                                     *
C*                                                                     *
C*  THIS SUBROUTINE SOLVES THE GENERAL NONLINEAR PROGRAMMING PROBLEM   *
C*                                                                     *
C*            MINIMIZE    F(X)                                         *
C*                                                                     *
C*            SUBJECT TO  C (X) .EQ. 0  ,  J = 1,...,MEQ               *
C*                         J                                           *
C*                                                                     *
C*                        C (X) .GE. 0  ,  J = MEQ+1,...,M             *
C*                         J                                           *
C*                                                                     *
C*                        XL .LE. X .LE. XU , I = 1,...,N.             *
C*                          I      I       I                           *
C*                                                                     *
C*  THE ALGORITHM IMPLEMENTS THE METHOD OF HAN AND POWELL              *
C*  WITH BFGS-UPDATE OF THE B-MATRIX AND L1-TEST FUNCTION              *
C*  WITHIN THE STEPLENGTH ALGORITHM.                                   *
C*                                                                     *
C*    PARAMETER DESCRIPTION:                                           *
C*    ( * MEANS THIS PARAMETER WILL BE CHANGED DURING CALCULATION )    *
C*                                                                     *
C*    M              IS THE TOTAL NUMBER OF CONSTRAINTS, M .GE. 0      *
C*    MEQ            IS THE NUMBER OF EQUALITY CONSTRAINTS, MEQ .GE. 0 *
C*    LA             SEE A, LA .GE. MAX(M,1)                           *
C*    N              IS THE NUMBER OF VARIBLES, N .GE. 1               *
C*  * X()            X() STORES THE CURRENT ITERATE OF THE N VECTOR X  *
C*                   ON ENTRY X() MUST BE INITIALIZED. ON EXIT X()     *
C*                   STORES THE SOLUTION VECTOR X IF MODE = 0.         *
C*    XL()           XL() STORES AN N VECTOR OF LOWER BOUNDS XL TO X.  *
C*                   ELEMENTS MAY BE NAN TO INDICATE NO LOWER BOUND.   *
C*    XU()           XU() STORES AN N VECTOR OF UPPER BOUNDS XU TO X.  *
C*                   ELEMENTS MAY BE NAN TO INDICATE NO UPPER BOUND.   *
C*    F              IS THE VALUE OF THE OBJECTIVE FUNCTION.           *
C*    C()            C() STORES THE M VECTOR C OF CONSTRAINTS,         *
C*                   EQUALITY CONSTRAINTS (IF ANY) FIRST.              *
C*                   DIMENSION OF C MUST BE GREATER OR EQUAL LA,       *
C*                   which must be GREATER OR EQUAL MAX(1,M).          *
C*    G()            G() STORES THE N VECTOR G OF PARTIALS OF THE      *
C*                   OBJECTIVE FUNCTION; DIMENSION OF G MUST BE        *
C*                   GREATER OR EQUAL N+1.                             *
C*    A(),LA,M,N     THE LA BY N + 1 ARRAY A() STORES                  *
C*                   THE M BY N MATRIX A OF CONSTRAINT NORMALS.        *
C*                   A() HAS FIRST DIMENSIONING PARAMETER LA,          *
C*                   WHICH MUST BE GREATER OR EQUAL MAX(1,M).          *
C*    F,C,G,A        MUST ALL BE SET BY THE USER BEFORE EACH CALL.     *
C*  * ACC            ABS(ACC) CONTROLS THE FINAL ACCURACY.             *
C*                   IF ACC .LT. ZERO AN EXACT LINESEARCH IS PERFORMED,*
C*                   OTHERWISE AN ARMIJO-TYPE LINESEARCH IS USED.      *
C*  * ITER           PRESCRIBES THE MAXIMUM NUMBER OF ITERATIONS.      *
C*                   ON EXIT ITER INDICATES THE NUMBER OF ITERATIONS.  *
C*  * MODE           MODE CONTROLS CALCULATION:                        *
C*                   REVERSE COMMUNICATION IS USED IN THE SENSE THAT   *
C*                   THE PROGRAM IS INITIALIZED BY MODE = 0; THEN IT IS*
C*                   TO BE CALLED REPEATEDLY BY THE USER UNTIL A RETURN*
C*                   WITH MODE .NE. IABS(1) TAKES PLACE.               *
C*                   IF MODE = -1 GRADIENTS HAVE TO BE CALCULATED,     *
C*                   WHILE WITH MODE = 1 FUNCTIONS HAVE TO BE CALCULATED
C*                   MODE MUST NOT BE CHANGED BETWEEN SUBSEQUENT CALLS *
C*                   OF SQP.                                           *
C*                   EVALUATION MODES:                                 *
C*        MODE = -1: GRADIENT EVALUATION, (G&A)                        *
C*                0: ON ENTRY: INITIALIZATION, (F,G,C&A)               *
C*                   ON EXIT : REQUIRED ACCURACY FOR SOLUTION OBTAINED *
C*                1: FUNCTION EVALUATION, (F&C)                        *
C*                                                                     *
C*                   FAILURE MODES:                                    *
C*                2: NUMBER OF EQUALITY CONTRAINTS LARGER THAN N       *
C*                3: MORE THAN 3*N ITERATIONS IN LSQ SUBPROBLEM        *
C*                4: INEQUALITY CONSTRAINTS INCOMPATIBLE               *
C*                5: SINGULAR MATRIX E IN LSQ SUBPROBLEM               *
C*                6: SINGULAR MATRIX C IN LSQ SUBPROBLEM               *
C*                7: RANK-DEFICIENT EQUALITY CONSTRAINT SUBPROBLEM HFTI*
C*                8: POSITIVE DIRECTIONAL DERIVATIVE FOR LINESEARCH    *
C*                9: MORE THAN ITER ITERATIONS IN SQP                  *
C*             >=10: WORKING SPACE W OR JW TOO SMALL,                  *
C*                   W SHOULD BE ENLARGED TO L_W=MODE/1000             *
C*                   JW SHOULD BE ENLARGED TO L_JW=MODE-1000*L_W       *
C*  * W(), L_W       W() IS A ONE DIMENSIONAL WORKING SPACE,           *
C*                   THE LENGTH L_W OF WHICH SHOULD BE AT LEAST        *
C*                   (3*N1+M)*(N1+1)                        for LSQ    *
C*                  +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ         for LSI    *
C*                  +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1       for LSEI   *
C*                  + N1*N/2 + 2*M + 3*N + 3*N1 + 1         for SLSQPB *
C*                   with MINEQ = M - MEQ + 2*N1  &  N1 = N+1          *
C*        NOTICE:    FOR PROPER DIMENSIONING OF W IT IS RECOMMENDED TO *
C*                   COPY THE FOLLOWING STATEMENTS INTO THE HEAD OF    *
C*                   THE CALLING PROGRAM (AND REMOVE THE COMMENT C)    *
c#######################################################################
C     INTEGER LEN_W, LEN_JW, M, N, N1, MEQ, MINEQ
C     PARAMETER (M=... , MEQ=... , N=...  )
C     PARAMETER (N1= N+1, MINEQ= M-MEQ+N1+N1)
C     PARAMETER (LEN_W=
c    $           (3*N1+M)*(N1+1)
c    $          +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ
c    $          +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1
c    $          +(N+1)*N/2 + 2*M + 3*N + 3*N1 + 1,
c    $           LEN_JW=MINEQ)
C     DOUBLE PRECISION W(LEN_W)
C     INTEGER          JW(LEN_JW)
c#######################################################################
C*                   THE FIRST M+N+N*N1/2 ELEMENTS OF W MUST NOT BE    *
C*                   CHANGED BETWEEN SUBSEQUENT CALLS OF SLSQP.        *
C*                   ON RETURN W(1) ... W(M) CONTAIN THE MULTIPLIERS   *
C*                   ASSOCIATED WITH THE GENERAL CONSTRAINTS, WHILE    *
C*                   W(M+1) ... W(M+N(N+1)/2) STORE THE CHOLESKY FACTOR*
C*                   L*D*L(T) OF THE APPROXIMATE HESSIAN OF THE        *
C*                   LAGRANGIAN COLUMNWISE DENSE AS LOWER TRIANGULAR   *
C*                   UNIT MATRIX L WITH D IN ITS 'DIAGONAL' and        *
C*                   W(M+N(N+1)/2+N+2 ... W(M+N(N+1)/2+N+2+M+2N)       *
C*                   CONTAIN THE MULTIPLIERS ASSOCIATED WITH ALL       *
C*                   ALL CONSTRAINTS OF THE QUADRATIC PROGRAM FINDING  *
C*                   THE SEARCH DIRECTION TO THE SOLUTION X*           *
C*  * JW(), L_JW     JW() IS A ONE DIMENSIONAL INTEGER WORKING SPACE   *
C*                   THE LENGTH L_JW OF WHICH SHOULD BE AT LEAST       *
C*                   MINEQ                                             *
C*                   with MINEQ = M - MEQ + 2*N1  &  N1 = N+1          *
C*                                                                     *
C*  THE USER HAS TO PROVIDE THE FOLLOWING SUBROUTINES:                 *
C*     LDL(N,A,Z,SIG,W) :   UPDATE OF THE LDL'-FACTORIZATION.          *
C*     LINMIN(A,B,F,TOL) :  LINESEARCH ALGORITHM IF EXACT = 1          *
C*     LSQ(M,MEQ,LA,N,NC,C,D,A,B,XL,XU,X,LAMBDA,W,....) :              *
C*                                                                     *
C*        SOLUTION OF THE QUADRATIC PROGRAM                            *
C*                QPSOL IS RECOMMENDED:                                *
C*     PE GILL, W MURRAY, MA SAUNDERS, MH WRIGHT:                      *
C*     USER'S GUIDE FOR SOL/QPSOL:                                     *
C*     A FORTRAN PACKAGE FOR QUADRATIC PROGRAMMING,                    *
C*     TECHNICAL REPORT SOL 83-7, JULY 1983                            *
C*     DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY          *
C*     STANFORD, CA 94305                                              *
C*     QPSOL IS THE MOST ROBUST AND EFFICIENT QP-SOLVER                *
C*     AS IT ALLOWS WARM STARTS WITH PROPER WORKING SETS               *
C*                                                                     *
C*     IF IT IS NOT AVAILABLE USE LSEI, A CONSTRAINT LINEAR LEAST      *
C*     SQUARES SOLVER IMPLEMENTED USING THE SOFTWARE HFTI, LDP, NNLS   *
C*     FROM C.L. LAWSON, R.J.HANSON: SOLVING LEAST SQUARES PROBLEMS,   *
C*     PRENTICE HALL, ENGLEWOOD CLIFFS, 1974.                          *
C*     LSEI COMES WITH THIS PACKAGE, together with all necessary SR's. *
C*                                                                     *
C*     TOGETHER WITH A COUPLE OF SUBROUTINES FROM BLAS LEVEL 1         *
C*                                                                     *
C*     SQP IS HEAD SUBROUTINE FOR BODY SUBROUTINE SQPBDY               *
C*     IN WHICH THE ALGORITHM HAS BEEN IMPLEMENTED.                    *
C*                                                                     *
C*  IMPLEMENTED BY: DIETER KRAFT, DFVLR OBERPFAFFENHOFEN               *
C*  as described in Dieter Kraft: A Software Package for               *
C*                                Sequential Quadratic Programming     *
C*                                DFVLR-FB 88-28, 1988                 *
C*  which should be referenced if the user publishes results of SLSQP  *
C*                                                                     *
C*  DATE:           APRIL - OCTOBER, 1981.                             *
C*  STATUS:         DECEMBER, 31-ST, 1984.                             *
C*  STATUS:         MARCH   , 21-ST, 1987, REVISED TO FORTAN 77        *
C*  STATUS:         MARCH   , 20-th, 1989, REVISED TO MS-FORTRAN       *
C*  STATUS:         APRIL   , 14-th, 1989, HESSE   in-line coded       *
C*  STATUS:         FEBRUARY, 28-th, 1991, FORTRAN/2 Version 1.04      *
C*                                         accepts Statement Functions *
C*  STATUS:         MARCH   ,  1-st, 1991, tested with SALFORD         *
C*                                         FTN77/386 COMPILER VERS 2.40*
C*                                         in protected mode           *
C*                                                                     *
C***********************************************************************
C*                                                                     *
C*  Copyright 1991: Dieter Kraft, FHM                                  *
C*                                                                     *
C***********************************************************************

      INTEGER          il, im, ir, is, iter, iu, iv, iw, ix, l_w, l_jw,
     *                 jw(l_jw), la, m, meq, mineq, mode, n, n1

      DOUBLE PRECISION acc, a(la,n+1), c(la), f, g(n+1),
     *                 x(n), xl(n), xu(n), w(l_w)

c     dim(W) =         N1*(N1+1) + MEQ*(N1+1) + MINEQ*(N1+1)  for LSQ
c                    +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ          for LSI
c                    +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1        for LSEI
c                    + N1*N/2 + 2*M + 3*N +3*N1 + 1           for SLSQPB
c                      with MINEQ = M - MEQ + 2*N1  &  N1 = N+1

C   CHECK LENGTH OF WORKING ARRAYS

      n1 = n+1
      mineq = m-meq+n1+n1
      il = (3*n1+m)*(n1+1) +
     .(n1-meq+1)*(mineq+2) + 2*mineq +
     .(n1+mineq)*(n1-meq)  + 2*meq +
     .n1*n/2 + 2*m + 3*n + 4*n1 + 1
      im = MAX(mineq, n1-meq)
      IF (l_w .LT. il .OR. l_jw .LT. im) THEN
          mode = 1000*MAX(10,il)
          mode = mode+MAX(10,im)
          RETURN
      ENDIF

C   PREPARE DATA FOR CALLING SQPBDY  -  INITIAL ADDRESSES IN W

      im = 1
      il = im + MAX(1,m)
      il = im + la
      ix = il + n1*n/2 + 1
      ir = ix + n
      is = ir + n + n + MAX(1,m)
      is = ir + n + n + la
      iu = is + n1
      iv = iu + n1
      iw = iv + n1

      CALL slsqpb  (m, meq, la, n, x, xl, xu, f, c, g, a, acc, iter,
     * mode, w(ir), w(il), w(ix), w(im), w(is), w(iu), w(iv), w(iw), jw)

      END

      SUBROUTINE slsqpb (m, meq, la, n, x, xl, xu, f, c, g, a, acc,
     *                   iter, mode, r, l, x0, mu, s, u, v, w, iw)

C   NONLINEAR PROGRAMMING BY SOLVING SEQUENTIALLY QUADRATIC PROGRAMS

C        -  L1 - LINE SEARCH,  POSITIVE DEFINITE  BFGS UPDATE  -

C                      BODY SUBROUTINE FOR SLSQP

      INTEGER          iw(*), i, iexact, incons, ireset, iter, itermx,
     *                 k, j, la, line, m, meq, mode, n, n1, n2, n3

      DOUBLE PRECISION a(la,n+1), c(la), g(n+1), l((n+1)*(n+2)/2),
     *                 mu(la), r(m+n+n+2), s(n+1), u(n+1), v(n+1), w(*),
     *                 x(n), xl(n), xu(n), x0(n),
     *                 ddot_sl, dnrm2_, linmin,
     *                 acc, alfmin, alpha, f, f0, gs, h1, h2, h3, h4,
     *                 hun, one, t, t0, ten, tol, two, ZERO

c     dim(W) =         N1*(N1+1) + MEQ*(N1+1) + MINEQ*(N1+1)  for LSQ
c                     +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ
c                     +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1       for LSEI
c                      with MINEQ = M - MEQ + 2*N1  &  N1 = N+1

      SAVE             alpha, f0, gs, h1, h2, h3, h4, t, t0, tol,
     *                 iexact, incons, ireset, itermx, line, n1, n2, n3

      DATA             ZERO /0.0d0/, one /1.0d0/, alfmin /1.0d-1/,
     *                 hun /1.0d+2/, ten /1.0d+1/, two /2.0d0/

      IF (mode) 260, 100, 220

  100 itermx = iter
      IF (acc.GE.ZERO) THEN
          iexact = 0
      ELSE
          iexact = 1
      ENDIF
      acc = ABS(acc)
      tol = ten*acc
      iter = 0
      ireset = 0
      n1 = n + 1
      n2 = n1*n/2
      n3 = n2 + 1
      s(1) = ZERO
      mu(1) = ZERO
      CALL dcopy_(n, s(1),  0, s,  1)
      CALL dcopy_(m, mu(1), 0, mu, 1)

C   RESET BFGS MATRIX

  110 ireset = ireset + 1
      IF (ireset.GT.5) GO TO 255
      l(1) = ZERO
      CALL dcopy_(n2, l(1), 0, l, 1)
      j = 1
      DO 120 i=1,n
         l(j) = one
         j = j + n1 - i
  120 CONTINUE

C   MAIN ITERATION : SEARCH DIRECTION, STEPLENGTH, LDL'-UPDATE

  130 iter = iter + 1
      mode = 9
      IF (iter.GT.itermx) GO TO 330

C   SEARCH DIRECTION AS SOLUTION OF QP - SUBPROBLEM

      CALL dcopy_(n, xl, 1, u, 1)
      CALL dcopy_(n, xu, 1, v, 1)
      CALL daxpy_sl(n, -one, x, 1, u, 1)
      CALL daxpy_sl(n, -one, x, 1, v, 1)
      h4 = one
      CALL lsq (m, meq, n , n3, la, l, g, a, c, u, v, s, r, w, iw, mode)

C   AUGMENTED PROBLEM FOR INCONSISTENT LINEARIZATION

      IF (mode.EQ.6) THEN
          IF (n.EQ.meq) THEN
              mode = 4
          ENDIF
      ENDIF
      IF (mode.EQ.4) THEN
          DO 140 j=1,m
             IF (j.LE.meq) THEN
                 a(j,n1) = -c(j)
             ELSE
                 a(j,n1) = MAX(-c(j),ZERO)
             ENDIF
  140     CONTINUE
          s(1) = ZERO
          CALL dcopy_(n, s(1), 0, s, 1)
          h3 = ZERO
          g(n1) = ZERO
          l(n3) = hun
          s(n1) = one
          u(n1) = ZERO
          v(n1) = one
          incons = 0
  150     CALL lsq (m, meq, n1, n3, la, l, g, a, c, u, v, s, r,
     *              w, iw, mode)
          h4 = one - s(n1)
          IF (mode.EQ.4) THEN
              l(n3) = ten*l(n3)
              incons = incons + 1
              IF (incons.GT.5) GO TO 330
              GOTO 150
          ELSE IF (mode.NE.1) THEN
              GOTO 330
          ENDIF
      ELSE IF (mode.NE.1) THEN
          GOTO 330
      ENDIF

C   UPDATE MULTIPLIERS FOR L1-TEST

      DO 160 i=1,n
         v(i) = g(i) - ddot_sl(m,a(1,i),1,r,1)
  160 CONTINUE
      f0 = f
      CALL dcopy_(n, x, 1, x0, 1)
      gs = ddot_sl(n, g, 1, s, 1)
      h1 = ABS(gs)
      h2 = ZERO
      DO 170 j=1,m
         IF (j.LE.meq) THEN
             h3 = c(j)
         ELSE
             h3 = ZERO
         ENDIF
         h2 = h2 + MAX(-c(j),h3)
         h3 = ABS(r(j))
         mu(j) = MAX(h3,(mu(j)+h3)/two)
         h1 = h1 + h3*ABS(c(j))
  170 CONTINUE

C   CHECK CONVERGENCE

      mode = 0
      IF (h1.LT.acc .AND. h2.LT.acc) GO TO 330
      h1 = ZERO
      DO 180 j=1,m
         IF (j.LE.meq) THEN
             h3 = c(j)
         ELSE
             h3 = ZERO
         ENDIF
         h1 = h1 + mu(j)*MAX(-c(j),h3)
  180 CONTINUE
      t0 = f + h1
      h3 = gs - h1*h4
      mode = 8
      IF (h3.GE.ZERO) GO TO 110

C   LINE SEARCH WITH AN L1-TESTFUNCTION

      line = 0
      alpha = one
      IF (iexact.EQ.1) GOTO 210

C   INEXACT LINESEARCH

  190     line = line + 1
          h3 = alpha*h3
          CALL dscal_sl(n, alpha, s, 1)
          CALL dcopy_(n, x0, 1, x, 1)
          CALL daxpy_sl(n, one, s, 1, x, 1)
          mode = 1
          GO TO 330
  200         IF (h1.LE.h3/ten .OR. line.GT.10) GO TO 240
              alpha = MAX(h3/(two*(h3-h1)),alfmin)
              GO TO 190

C   EXACT LINESEARCH

  210 IF (line.NE.3) THEN
          alpha = linmin(line,alfmin,one,t,tol)
          CALL dcopy_(n, x0, 1, x, 1)
          CALL daxpy_sl(n, alpha, s, 1, x, 1)
          mode = 1
          GOTO 330
      ENDIF
      CALL dscal_sl(n, alpha, s, 1)
      GOTO 240

C   CALL FUNCTIONS AT CURRENT X

  220     t = f
          DO 230 j=1,m
             IF (j.LE.meq) THEN
                 h1 = c(j)
             ELSE
                 h1 = ZERO
             ENDIF
             t = t + mu(j)*MAX(-c(j),h1)
  230     CONTINUE
          h1 = t - t0
          GOTO (200, 210) iexact+1

C   CHECK CONVERGENCE

  240 h3 = ZERO
      DO 250 j=1,m
         IF (j.LE.meq) THEN
             h1 = c(j)
         ELSE
             h1 = ZERO
         ENDIF
         h3 = h3 + MAX(-c(j),h1)
  250 CONTINUE
      IF ((ABS(f-f0).LT.acc .OR. dnrm2_(n,s,1).LT.acc) .AND. h3.LT.acc)
     *   THEN
            mode = 0
         ELSE
            mode = -1
         ENDIF
      GO TO 330

C   CHECK relaxed CONVERGENCE in case of positive directional derivative

  255 CONTINUE
      IF ((ABS(f-f0).LT.tol .OR. dnrm2_(n,s,1).LT.tol) .AND. h3.LT.tol)
     *   THEN
            mode = 0
         ELSE
            mode = 8
         ENDIF
      GO TO 330

C   CALL JACOBIAN AT CURRENT X

C   UPDATE CHOLESKY-FACTORS OF HESSIAN MATRIX BY MODIFIED BFGS FORMULA

  260 DO 270 i=1,n
         u(i) = g(i) - ddot_sl(m,a(1,i),1,r,1) - v(i)
  270 CONTINUE

C   L'*S

      k = 0
      DO 290 i=1,n
         h1 = ZERO
         k = k + 1
         DO 280 j=i+1,n
            k = k + 1
            h1 = h1 + l(k)*s(j)
  280    CONTINUE
         v(i) = s(i) + h1
  290 CONTINUE

C   D*L'*S

      k = 1
      DO 300 i=1,n
         v(i) = l(k)*v(i)
         k = k + n1 - i
  300 CONTINUE

C   L*D*L'*S

      DO 320 i=n,1,-1
         h1 = ZERO
         k = i
         DO 310 j=1,i - 1
            h1 = h1 + l(k)*v(j)
            k = k + n - j
  310    CONTINUE
         v(i) = v(i) + h1
  320 CONTINUE

      h1 = ddot_sl(n,s,1,u,1)
      h2 = ddot_sl(n,s,1,v,1)
      h3 = 0.2d0*h2
      IF (h1.LT.h3) THEN
          h4 = (h2-h3)/(h2-h1)
          h1 = h3
          CALL dscal_sl(n, h4, u, 1)
          CALL daxpy_sl(n, one-h4, v, 1, u, 1)
      ENDIF
      CALL ldl(n, l, u, +one/h1, v)
      CALL ldl(n, l, v, -one/h2, u)

C   END OF MAIN ITERATION

      GO TO 130

C   END OF SLSQPB

  330 END


      SUBROUTINE lsq(m,meq,n,nl,la,l,g,a,b,xl,xu,x,y,w,jw,mode)

C   MINIMIZE with respect to X

C             ||E*X - F||
C                                      1/2  T
C   WITH UPPER TRIANGULAR MATRIX E = +D   *L ,

C                                      -1/2  -1
C                     AND VECTOR F = -D    *L  *G,

C  WHERE THE UNIT LOWER TRIDIANGULAR MATRIX L IS STORED COLUMNWISE
C  DENSE IN THE N*(N+1)/2 ARRAY L WITH VECTOR D STORED IN ITS
C 'DIAGONAL' THUS SUBSTITUTING THE ONE-ELEMENTS OF L

C   SUBJECT TO

C             A(J)*X - B(J) = 0 ,         J=1,...,MEQ,
C             A(J)*X - B(J) >=0,          J=MEQ+1,...,M,
C             XL(I) <= X(I) <= XU(I),     I=1,...,N,
C     ON ENTRY, THE USER HAS TO PROVIDE THE ARRAYS L, G, A, B, XL, XU.
C     WITH DIMENSIONS: L(N*(N+1)/2), G(N), A(LA,N), B(M), XL(N), XU(N)
C     THE WORKING ARRAY W MUST HAVE AT LEAST THE FOLLOWING DIMENSION:
c     DIM(W) =        (3*N+M)*(N+1)                        for LSQ
c                    +(N-MEQ+1)*(MINEQ+2) + 2*MINEQ        for LSI
c                    +(N+MINEQ)*(N-MEQ) + 2*MEQ + N        for LSEI
c                      with MINEQ = M - MEQ + 2*N
C     ON RETURN, NO ARRAY WILL BE CHANGED BY THE SUBROUTINE.
C     X     STORES THE N-DIMENSIONAL SOLUTION VECTOR
C     Y     STORES THE VECTOR OF LAGRANGE MULTIPLIERS OF DIMENSION
C           M+N+N (CONSTRAINTS+LOWER+UPPER BOUNDS)
C     MODE  IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANINGS:
C          MODE=1: SUCCESSFUL COMPUTATION
C               2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N<1)
C               3: ITERATION COUNT EXCEEDED BY NNLS
C               4: INEQUALITY CONSTRAINTS INCOMPATIBLE
C               5: MATRIX E IS NOT OF FULL RANK
C               6: MATRIX C IS NOT OF FULL RANK
C               7: RANK DEFECT IN HFTI

c     coded            Dieter Kraft, april 1987
c     revised                        march 1989

      DOUBLE PRECISION l,g,a,b,w,xl,xu,x,y,
     .                 diag,ZERO,one,ddot_sl,xnorm

      INTEGER          jw(*),i,ic,id,ie,IF,ig,ih,il,im,ip,iu,iw,
     .     i1,i2,i3,i4,la,m,meq,mineq,mode,m1,n,nl,n1,n2,n3,
     .     nancnt,j

      DIMENSION        a(la,n), b(la), g(n), l(nl),
     .                 w(*), x(n), xl(n), xu(n), y(m+n+n)

      DATA             ZERO/0.0d0/, one/1.0d0/

      n1 = n + 1
      mineq = m - meq
      m1 = mineq + n + n

c  determine whether to solve problem
c  with inconsistent linerarization (n2=1)
c  or not (n2=0)

      n2 = n1*n/2 + 1
      IF (n2.EQ.nl) THEN
          n2 = 0
      ELSE
          n2 = 1
      ENDIF
      n3 = n-n2

C  RECOVER MATRIX E AND VECTOR F FROM L AND G

      i2 = 1
      i3 = 1
      i4 = 1
      ie = 1
      IF = n*n+1
      DO 10 i=1,n3
         i1 = n1-i
         diag = SQRT (l(i2))
         w(i3) = ZERO
         CALL dcopy_ (i1  ,  w(i3), 0, w(i3), 1)
         CALL dcopy_ (i1-n2, l(i2), 1, w(i3), n)
         CALL dscal_sl (i1-n2,     diag, w(i3), n)
         w(i3) = diag
         w(IF-1+i) = (g(i) - ddot_sl (i-1, w(i4), 1, w(IF), 1))/diag
         i2 = i2 + i1 - n2
         i3 = i3 + n1
         i4 = i4 + n
   10 CONTINUE
      IF (n2.EQ.1) THEN
          w(i3) = l(nl)
          w(i4) = ZERO
          CALL dcopy_ (n3, w(i4), 0, w(i4), 1)
          w(IF-1+n) = ZERO
      ENDIF
      CALL dscal_sl (n, - one, w(IF), 1)

      ic = IF + n
      id = ic + meq*n

      IF (meq .GT. 0) THEN

C  RECOVER MATRIX C FROM UPPER PART OF A

          DO 20 i=1,meq
              CALL dcopy_ (n, a(i,1), la, w(ic-1+i), meq)
   20     CONTINUE

C  RECOVER VECTOR D FROM UPPER PART OF B

          CALL dcopy_ (meq, b(1), 1, w(id), 1)
          CALL dscal_sl (meq,   - one, w(id), 1)

      ENDIF

      ig = id + meq

C  RECOVER MATRIX G FROM LOWER PART OF A
C  The matrix G(mineq+2*n,m1) is stored at w(ig)
C  Not all rows will be filled if some of the upper/lower
C  bounds are unbounded.

      IF (mineq .GT. 0) THEN

          DO 30 i=1,mineq
              CALL dcopy_ (n, a(meq+i,1), la, w(ig-1+i), m1)
   30     CONTINUE

      ENDIF

      ih = ig + m1*n
      iw = ih + mineq + 2*n

      IF (mineq .GT. 0) THEN

C  RECOVER H FROM LOWER PART OF B
C  The vector H(mineq+2*n) is stored at w(ih)

          CALL dcopy_ (mineq, b(meq+1), 1, w(ih), 1)
          CALL dscal_sl (mineq,       - one, w(ih), 1)

      ENDIF

C  AUGMENT MATRIX G BY +I AND -I, AND,
C  AUGMENT VECTOR H BY XL AND XU
C  NaN value indicates no bound

      ip = ig + mineq
      il = ih + mineq
      nancnt = 0

      DO 40 i=1,n
         if (xl(i).eq.xl(i)) then
            w(il) = xl(i)
            do 41 j=1,n
               w(ip + m1*(j-1)) = 0
 41         continue
            w(ip + m1*(i-1)) = 1
            ip = ip + 1
            il = il + 1
         else
            nancnt = nancnt + 1
         end if
   40 CONTINUE

      DO 50 i=1,n
         if (xu(i).eq.xu(i)) then
            w(il) = -xu(i)
            do 51 j=1,n
               w(ip + m1*(j-1)) = 0
 51         continue
            w(ip + m1*(i-1)) = -1
            ip = ip + 1
            il = il + 1
         else
            nancnt = nancnt + 1
         end if
 50   CONTINUE

      CALL lsei (w(ic), w(id), w(ie), w(IF), w(ig), w(ih), MAX(1,meq),
     .           meq, n, n, m1, m1-nancnt, n, x, xnorm, w(iw), jw, mode)

      IF (mode .EQ. 1) THEN

c   restore Lagrange multipliers (only for user-defined variables)

          CALL dcopy_ (m,  w(iw),     1, y(1),      1)

c   set rest of the multipliers to nan (they are not used)

          IF (n3 .GT. 0) THEN
             y(m+1) = 0
             y(m+1) = 0 / y(m+1)
             do 60 i=m+2,m+n3+n3
                y(i) = y(m+1)
 60          continue
          ENDIF

      ENDIF
      call bound(n, x, xl, xu)

C   END OF SUBROUTINE LSQ

      END


      SUBROUTINE lsei(c,d,e,f,g,h,lc,mc,LE,me,lg,mg,n,x,xnrm,w,jw,mode)

C     FOR MODE=1, THE SUBROUTINE RETURNS THE SOLUTION X OF
C     EQUALITY & INEQUALITY CONSTRAINED LEAST SQUARES PROBLEM LSEI :

C                MIN ||E*X - F||
C                 X

C                S.T.  C*X  = D,
C                      G*X >= H.

C     USING QR DECOMPOSITION & ORTHOGONAL BASIS OF NULLSPACE OF C
C     CHAPTER 23.6 OF LAWSON & HANSON: SOLVING LEAST SQUARES PROBLEMS.

C     THE FOLLOWING DIMENSIONS OF THE ARRAYS DEFINING THE PROBLEM
C     ARE NECESSARY
C     DIM(E) :   FORMAL (LE,N),    ACTUAL (ME,N)
C     DIM(F) :   FORMAL (LE  ),    ACTUAL (ME  )
C     DIM(C) :   FORMAL (LC,N),    ACTUAL (MC,N)
C     DIM(D) :   FORMAL (LC  ),    ACTUAL (MC  )
C     DIM(G) :   FORMAL (LG,N),    ACTUAL (MG,N)
C     DIM(H) :   FORMAL (LG  ),    ACTUAL (MG  )
C     DIM(X) :   FORMAL (N   ),    ACTUAL (N   )
C     DIM(W) :   2*MC+ME+(ME+MG)*(N-MC)  for LSEI
C              +(N-MC+1)*(MG+2)+2*MG     for LSI
C     DIM(JW):   MAX(MG,L)
C     ON ENTRY, THE USER HAS TO PROVIDE THE ARRAYS C, D, E, F, G, AND H.
C     ON RETURN, ALL ARRAYS WILL BE CHANGED BY THE SUBROUTINE.
C     X     STORES THE SOLUTION VECTOR
C     XNORM STORES THE RESIDUUM OF THE SOLUTION IN EUCLIDIAN NORM
C     W     STORES THE VECTOR OF LAGRANGE MULTIPLIERS IN ITS FIRST
C           MC+MG ELEMENTS
C     MODE  IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANINGS:
C          MODE=1: SUCCESSFUL COMPUTATION
C               2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N<1)
C               3: ITERATION COUNT EXCEEDED BY NNLS
C               4: INEQUALITY CONSTRAINTS INCOMPATIBLE
C               5: MATRIX E IS NOT OF FULL RANK
C               6: MATRIX C IS NOT OF FULL RANK
C               7: RANK DEFECT IN HFTI

C     18.5.1981, DIETER KRAFT, DFVLR OBERPFAFFENHOFEN
C     20.3.1987, DIETER KRAFT, DFVLR OBERPFAFFENHOFEN

      INTEGER          jw(*),i,ie,IF,ig,iw,j,k,krank,l,lc,LE,lg,
     .                 mc,mc1,me,mg,mode,n
      DOUBLE PRECISION c(lc,n),e(LE,n),g(lg,n),d(lc),f(LE),h(lg),x(n),
     .                 w(*),t,ddot_sl,xnrm,dnrm2_,epmach,ZERO
      DATA             epmach/2.22d-16/,ZERO/0.0d+00/

      mode=2
      IF(mc.GT.n)                      GOTO 75
      l=n-mc
      mc1=mc+1
      iw=(l+1)*(mg+2)+2*mg+mc
      ie=iw+mc+1
      IF=ie+me*l
      ig=IF+me

C  TRIANGULARIZE C AND APPLY FACTORS TO E AND G

      DO 10 i=1,mc
          j=MIN(i+1,lc)
          CALL h12(1,i,i+1,n,c(i,1),lc,w(iw+i),c(j,1),lc,1,mc-i)
          CALL h12(2,i,i+1,n,c(i,1),lc,w(iw+i),e     ,LE,1,me)
   10     CALL h12(2,i,i+1,n,c(i,1),lc,w(iw+i),g     ,lg,1,mg)

C  SOLVE C*X=D AND MODIFY F

      mode=6
      DO 15 i=1,mc
          IF(ABS(c(i,i)).LT.epmach)    GOTO 75
          x(i)=(d(i)-ddot_sl(i-1,c(i,1),lc,x,1))/c(i,i)
   15 CONTINUE
      mode=1
      w(mc1) = ZERO
      CALL dcopy_ (mg-mc,w(mc1),0,w(mc1),1)

      IF(mc.EQ.n)                      GOTO 50

      DO 20 i=1,me
   20     w(IF-1+i)=f(i)-ddot_sl(mc,e(i,1),LE,x,1)

C  STORE TRANSFORMED E & G

      DO 25 i=1,me
   25     CALL dcopy_(l,e(i,mc1),LE,w(ie-1+i),me)
      DO 30 i=1,mg
   30     CALL dcopy_(l,g(i,mc1),lg,w(ig-1+i),mg)

      IF(mg.GT.0)                      GOTO 40

C  SOLVE LS WITHOUT INEQUALITY CONSTRAINTS

      mode=7
      k=MAX(LE,n)
      t=SQRT(epmach)
      CALL hfti (w(ie),me,me,l,w(IF),k,1,t,krank,xnrm,w,w(l+1),jw)
      CALL dcopy_(l,w(IF),1,x(mc1),1)
      IF(krank.NE.l)                   GOTO 75
      mode=1
                                       GOTO 50
C  MODIFY H AND SOLVE INEQUALITY CONSTRAINED LS PROBLEM

   40 DO 45 i=1,mg
   45     h(i)=h(i)-ddot_sl(mc,g(i,1),lg,x,1)
      CALL lsi
     . (w(ie),w(IF),w(ig),h,me,me,mg,mg,l,x(mc1),xnrm,w(mc1),jw,mode)
      IF(mc.EQ.0)                      GOTO 75
      t=dnrm2_(mc,x,1)
      xnrm=SQRT(xnrm*xnrm+t*t)
      IF(mode.NE.1)                    GOTO 75

C  SOLUTION OF ORIGINAL PROBLEM AND LAGRANGE MULTIPLIERS

   50 DO 55 i=1,me
   55     f(i)=ddot_sl(n,e(i,1),LE,x,1)-f(i)
      DO 60 i=1,mc
   60     d(i)=ddot_sl(me,e(1,i),1,f,1)-ddot_sl(mg,g(1,i),1,w(mc1),1)

      DO 65 i=mc,1,-1
   65     CALL h12(2,i,i+1,n,c(i,1),lc,w(iw+i),x,1,1,1)

      DO 70 i=mc,1,-1
          j=MIN(i+1,lc)
          w(i)=(d(i)-ddot_sl(mc-i,c(j,i),1,w(j),1))/c(i,i)
   70 CONTINUE

C  END OF SUBROUTINE LSEI

   75                                  END


      SUBROUTINE lsi(e,f,g,h,LE,me,lg,mg,n,x,xnorm,w,jw,mode)

C     FOR MODE=1, THE SUBROUTINE RETURNS THE SOLUTION X OF
C     INEQUALITY CONSTRAINED LINEAR LEAST SQUARES PROBLEM:

C                    MIN ||E*X-F||
C                     X

C                    S.T.  G*X >= H

C     THE ALGORITHM IS BASED ON QR DECOMPOSITION AS DESCRIBED IN
C     CHAPTER 23.5 OF LAWSON & HANSON: SOLVING LEAST SQUARES PROBLEMS

C     THE FOLLOWING DIMENSIONS OF THE ARRAYS DEFINING THE PROBLEM
C     ARE NECESSARY
C     DIM(E) :   FORMAL (LE,N),    ACTUAL (ME,N)
C     DIM(F) :   FORMAL (LE  ),    ACTUAL (ME  )
C     DIM(G) :   FORMAL (LG,N),    ACTUAL (MG,N)
C     DIM(H) :   FORMAL (LG  ),    ACTUAL (MG  )
C     DIM(X) :   N
C     DIM(W) :   (N+1)*(MG+2) + 2*MG
C     DIM(JW):   LG
C     ON ENTRY, THE USER HAS TO PROVIDE THE ARRAYS E, F, G, AND H.
C     ON RETURN, ALL ARRAYS WILL BE CHANGED BY THE SUBROUTINE.
C     X     STORES THE SOLUTION VECTOR
C     XNORM STORES THE RESIDUUM OF THE SOLUTION IN EUCLIDIAN NORM
C     W     STORES THE VECTOR OF LAGRANGE MULTIPLIERS IN ITS FIRST
C           MG ELEMENTS
C     MODE  IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANINGS:
C          MODE=1: SUCCESSFUL COMPUTATION
C               2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N<1)
C               3: ITERATION COUNT EXCEEDED BY NNLS
C               4: INEQUALITY CONSTRAINTS INCOMPATIBLE
C               5: MATRIX E IS NOT OF FULL RANK

C     03.01.1980, DIETER KRAFT: CODED
C     20.03.1987, DIETER KRAFT: REVISED TO FORTRAN 77

      INTEGER          i,j,LE,lg,me,mg,mode,n,jw(lg)
      DOUBLE PRECISION e(LE,n),f(LE),g(lg,n),h(lg),x(n),w(*),
     .                 ddot_sl,xnorm,dnrm2_,epmach,t,one
      DATA             epmach/2.22d-16/,one/1.0d+00/

C  QR-FACTORS OF E AND APPLICATION TO F

      DO 10 i=1,n
      j=MIN(i+1,n)
      CALL h12(1,i,i+1,me,e(1,i),1,t,e(1,j),1,LE,n-i)
   10 CALL h12(2,i,i+1,me,e(1,i),1,t,f     ,1,1 ,1  )

C  TRANSFORM G AND H TO GET LEAST DISTANCE PROBLEM

      mode=5
      DO 30 i=1,mg
          DO 20 j=1,n
              IF (ABS(e(j,j)).LT.epmach) GOTO 50
   20         g(i,j)=(g(i,j)-ddot_sl(j-1,g(i,1),lg,e(1,j),1))/e(j,j)
   30     h(i)=h(i)-ddot_sl(n,g(i,1),lg,f,1)

C  SOLVE LEAST DISTANCE PROBLEM

      CALL ldp(g,lg,mg,n,h,x,xnorm,w,jw,mode)
      IF (mode.NE.1)                     GOTO 50

C  SOLUTION OF ORIGINAL PROBLEM

      CALL daxpy_sl(n,one,f,1,x,1)
      DO 40 i=n,1,-1
          j=MIN(i+1,n)
   40     x(i)=(x(i)-ddot_sl(n-i,e(i,j),LE,x(j),1))/e(i,i)
      j=MIN(n+1,me)
      t=dnrm2_(me-n,f(j),1)
      xnorm=SQRT(xnorm*xnorm+t*t)

C  END OF SUBROUTINE LSI

   50                                    END

      SUBROUTINE ldp(g,mg,m,n,h,x,xnorm,w,INDEX,mode)

C                     T
C     MINIMIZE   1/2 X X    SUBJECT TO   G * X >= H.

C       C.L. LAWSON, R.J. HANSON: 'SOLVING LEAST SQUARES PROBLEMS'
C       PRENTICE HALL, ENGLEWOOD CLIFFS, NEW JERSEY, 1974.

C     PARAMETER DESCRIPTION:

C     G(),MG,M,N   ON ENTRY G() STORES THE M BY N MATRIX OF
C                  LINEAR INEQUALITY CONSTRAINTS. G() HAS FIRST
C                  DIMENSIONING PARAMETER MG
C     H()          ON ENTRY H() STORES THE M VECTOR H REPRESENTING
C                  THE RIGHT SIDE OF THE INEQUALITY SYSTEM

C     REMARK: G(),H() WILL NOT BE CHANGED DURING CALCULATIONS BY LDP

C     X()          ON ENTRY X() NEED NOT BE INITIALIZED.
C                  ON EXIT X() STORES THE SOLUTION VECTOR X IF MODE=1.
C     XNORM        ON EXIT XNORM STORES THE EUCLIDIAN NORM OF THE
C                  SOLUTION VECTOR IF COMPUTATION IS SUCCESSFUL
C     W()          W IS A ONE DIMENSIONAL WORKING SPACE, THE LENGTH
C                  OF WHICH SHOULD BE AT LEAST (M+2)*(N+1) + 2*M
C                  ON EXIT W() STORES THE LAGRANGE MULTIPLIERS
C                  ASSOCIATED WITH THE CONSTRAINTS
C                  AT THE SOLUTION OF PROBLEM LDP
C     INDEX()      INDEX() IS A ONE DIMENSIONAL INTEGER WORKING SPACE
C                  OF LENGTH AT LEAST M
C     MODE         MODE IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING
C                  MEANINGS:
C          MODE=1: SUCCESSFUL COMPUTATION
C               2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N.LE.0)
C               3: ITERATION COUNT EXCEEDED BY NNLS
C               4: INEQUALITY CONSTRAINTS INCOMPATIBLE

      DOUBLE PRECISION g,h,x,xnorm,w,u,v,
     .                 ZERO,one,fac,rnorm,dnrm2_,ddot_sl,diff
      INTEGER          INDEX,i,IF,iw,iwdual,iy,iz,j,m,mg,mode,n,n1
      DIMENSION        g(mg,n),h(m),x(n),w(*),INDEX(m)
      diff(u,v)=       u-v
      DATA             ZERO,one/0.0d0,1.0d0/

      mode=2
      IF(n.LE.0)                    GOTO 50

C  STATE DUAL PROBLEM

      mode=1
      x(1)=ZERO
      CALL dcopy_(n,x(1),0,x,1)
      xnorm=ZERO
      IF(m.EQ.0)                    GOTO 50
      iw=0
      DO 20 j=1,m
          DO 10 i=1,n
              iw=iw+1
   10         w(iw)=g(j,i)
          iw=iw+1
   20     w(iw)=h(j)
      IF=iw+1
      DO 30 i=1,n
          iw=iw+1
   30     w(iw)=ZERO
      w(iw+1)=one
      n1=n+1
      iz=iw+2
      iy=iz+n1
      iwdual=iy+m

C  SOLVE DUAL PROBLEM

      CALL nnls (w,n1,n1,m,w(IF),w(iy),rnorm,w(iwdual),w(iz),INDEX,mode)

      IF(mode.NE.1)                 GOTO 50
      mode=4
      IF(rnorm.LE.ZERO)             GOTO 50

C  COMPUTE SOLUTION OF PRIMAL PROBLEM

      fac=one-ddot_sl(m,h,1,w(iy),1)
      IF(diff(one+fac,one).LE.ZERO) GOTO 50
      mode=1
      fac=one/fac
      DO 40 j=1,n
   40     x(j)=fac*ddot_sl(m,g(1,j),1,w(iy),1)
      xnorm=dnrm2_(n,x,1)

C  COMPUTE LAGRANGE MULTIPLIERS FOR PRIMAL PROBLEM

      w(1)=ZERO
      CALL dcopy_(m,w(1),0,w,1)
      CALL daxpy_sl(m,fac,w(iy),1,w,1)

C  END OF SUBROUTINE LDP

   50                               END


      SUBROUTINE nnls (a, mda, m, n, b, x, rnorm, w, z, INDEX, mode)

C     C.L.LAWSON AND R.J.HANSON, JET PROPULSION LABORATORY:
C     'SOLVING LEAST SQUARES PROBLEMS'. PRENTICE-HALL.1974

C      **********   NONNEGATIVE LEAST SQUARES   **********

C     GIVEN AN M BY N MATRIX, A, AND AN M-VECTOR, B, COMPUTE AN
C     N-VECTOR, X, WHICH SOLVES THE LEAST SQUARES PROBLEM

C                  A*X = B  SUBJECT TO  X >= 0

C     A(),MDA,M,N
C            MDA IS THE FIRST DIMENSIONING PARAMETER FOR THE ARRAY,A().
C            ON ENTRY A()  CONTAINS THE M BY N MATRIX,A.
C            ON EXIT A() CONTAINS THE PRODUCT Q*A,
C            WHERE Q IS AN M BY M ORTHOGONAL MATRIX GENERATED
C            IMPLICITLY BY THIS SUBROUTINE.
C            EITHER M>=N OR M<N IS PERMISSIBLE.
C            THERE IS NO RESTRICTION ON THE RANK OF A.
C     B()    ON ENTRY B() CONTAINS THE M-VECTOR, B.
C            ON EXIT B() CONTAINS Q*B.
C     X()    ON ENTRY X() NEED NOT BE INITIALIZED.
C            ON EXIT X() WILL CONTAIN THE SOLUTION VECTOR.
C     RNORM  ON EXIT RNORM CONTAINS THE EUCLIDEAN NORM OF THE
C            RESIDUAL VECTOR.
C     W()    AN N-ARRAY OF WORKING SPACE.
C            ON EXIT W() WILL CONTAIN THE DUAL SOLUTION VECTOR.
C            W WILL SATISFY W(I)=0 FOR ALL I IN SET P
C            AND W(I)<=0 FOR ALL I IN SET Z
C     Z()    AN M-ARRAY OF WORKING SPACE.
C     INDEX()AN INTEGER WORKING ARRAY OF LENGTH AT LEAST N.
C            ON EXIT THE CONTENTS OF THIS ARRAY DEFINE THE SETS
C            P AND Z AS FOLLOWS:
C            INDEX(1)    THRU INDEX(NSETP) = SET P.
C            INDEX(IZ1)  THRU INDEX (IZ2)  = SET Z.
C            IZ1=NSETP + 1 = NPP1, IZ2=N.
C     MODE   THIS IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANING:
C            1    THE SOLUTION HAS BEEN COMPUTED SUCCESSFULLY.
C            2    THE DIMENSIONS OF THE PROBLEM ARE WRONG,
C                 EITHER M <= 0 OR N <= 0.
C            3    ITERATION COUNT EXCEEDED, MORE THAN 3*N ITERATIONS.

      INTEGER          i,ii,ip,iter,itmax,iz,izmax,iz1,iz2,j,jj,jz,
     *                 k,l,m,mda,mode,n,npp1,nsetp,INDEX(n)

      DOUBLE PRECISION a(mda,n),b(m),x(n),w(n),z(m),asave,diff,
     *                 factor,ddot_sl,ZERO,one,wmax,alpha,
     *                 c,s,t,u,v,up,rnorm,unorm,dnrm2_

      diff(u,v)=       u-v

      DATA             ZERO,one,factor/0.0d0,1.0d0,1.0d-2/

c     revised          Dieter Kraft, March 1983

      mode=2
      IF(m.LE.0.OR.n.LE.0)            GOTO 290
      mode=1
      iter=0
      itmax=3*n

C STEP ONE (INITIALIZE)

      DO 100 i=1,n
  100    INDEX(i)=i
      iz1=1
      iz2=n
      nsetp=0
      npp1=1
      x(1)=ZERO
      CALL dcopy_(n,x(1),0,x,1)

C STEP TWO (COMPUTE DUAL VARIABLES)
C .....ENTRY LOOP A

  110 IF(iz1.GT.iz2.OR.nsetp.GE.m)    GOTO 280
      DO 120 iz=iz1,iz2
         j=INDEX(iz)
  120    w(j)=ddot_sl(m-nsetp,a(npp1,j),1,b(npp1),1)

C STEP THREE (TEST DUAL VARIABLES)

  130 wmax=ZERO
      DO 140 iz=iz1,iz2
      j=INDEX(iz)
         IF(w(j).LE.wmax)             GOTO 140
         wmax=w(j)
         izmax=iz
  140 CONTINUE

C .....EXIT LOOP A

      IF(wmax.LE.ZERO)                GOTO 280
      iz=izmax
      j=INDEX(iz)

C STEP FOUR (TEST INDEX J FOR LINEAR DEPENDENCY)

      asave=a(npp1,j)
      CALL h12(1,npp1,npp1+1,m,a(1,j),1,up,z,1,1,0)
      unorm=dnrm2_(nsetp,a(1,j),1)
      t=factor*ABS(a(npp1,j))
      IF(diff(unorm+t,unorm).LE.ZERO) GOTO 150
      CALL dcopy_(m,b,1,z,1)
      CALL h12(2,npp1,npp1+1,m,a(1,j),1,up,z,1,1,1)
      IF(z(npp1)/a(npp1,j).GT.ZERO)   GOTO 160
  150 a(npp1,j)=asave
      w(j)=ZERO
                                      GOTO 130
C STEP FIVE (ADD COLUMN)

  160 CALL dcopy_(m,z,1,b,1)
      INDEX(iz)=INDEX(iz1)
      INDEX(iz1)=j
      iz1=iz1+1
      nsetp=npp1
      npp1=npp1+1
      DO 170 jz=iz1,iz2
         jj=INDEX(jz)
  170    CALL h12(2,nsetp,npp1,m,a(1,j),1,up,a(1,jj),1,mda,1)
      k=MIN(npp1,mda)
      w(j)=ZERO
      CALL dcopy_(m-nsetp,w(j),0,a(k,j),1)

C STEP SIX (SOLVE LEAST SQUARES SUB-PROBLEM)
C .....ENTRY LOOP B

  180 DO 200 ip=nsetp,1,-1
         IF(ip.EQ.nsetp)              GOTO 190
         CALL daxpy_sl(ip,-z(ip+1),a(1,jj),1,z,1)
  190    jj=INDEX(ip)
  200    z(ip)=z(ip)/a(ip,jj)
      iter=iter+1
      IF(iter.LE.itmax)               GOTO 220
  210 mode=3
                                      GOTO 280
C STEP SEVEN TO TEN (STEP LENGTH ALGORITHM)

  220 alpha=one
      jj=0
      DO 230 ip=1,nsetp
         IF(z(ip).GT.ZERO)            GOTO 230
         l=INDEX(ip)
         t=-x(l)/(z(ip)-x(l))
         IF(alpha.LT.t)               GOTO 230
         alpha=t
         jj=ip
  230 CONTINUE
      DO 240 ip=1,nsetp
         l=INDEX(ip)
  240    x(l)=(one-alpha)*x(l) + alpha*z(ip)

C .....EXIT LOOP B

      IF(jj.EQ.0)                     GOTO 110

C STEP ELEVEN (DELETE COLUMN)

      i=INDEX(jj)
  250 x(i)=ZERO
      jj=jj+1
      DO 260 j=jj,nsetp
         ii=INDEX(j)
         INDEX(j-1)=ii
         CALL dsrotg(a(j-1,ii),a(j,ii),c,s)
         t=a(j-1,ii)
         CALL dsrot(n,a(j-1,1),mda,a(j,1),mda,c,s)
         a(j-1,ii)=t
         a(j,ii)=ZERO
  260    CALL dsrot(1,b(j-1),1,b(j),1,c,s)
      npp1=nsetp
      nsetp=nsetp-1
      iz1=iz1-1
      INDEX(iz1)=i
      IF(nsetp.LE.0)                  GOTO 210
      DO 270 jj=1,nsetp
         i=INDEX(jj)
         IF(x(i).LE.ZERO)             GOTO 250
  270 CONTINUE
      CALL dcopy_(m,b,1,z,1)
                                      GOTO 180
C STEP TWELVE (SOLUTION)

  280 k=MIN(npp1,m)
      rnorm=dnrm2_(m-nsetp,b(k),1)
      IF(npp1.GT.m) THEN
         w(1)=ZERO
         CALL dcopy_(n,w(1),0,w,1)
      ENDIF

C END OF SUBROUTINE NNLS

  290                                 END

      SUBROUTINE hfti(a,mda,m,n,b,mdb,nb,tau,krank,rnorm,h,g,ip)

C     RANK-DEFICIENT LEAST SQUARES ALGORITHM AS DESCRIBED IN:
C     C.L.LAWSON AND R.J.HANSON, JET PROPULSION LABORATORY, 1973 JUN 12
C     TO APPEAR IN 'SOLVING LEAST SQUARES PROBLEMS', PRENTICE-HALL, 1974

C     A(*,*),MDA,M,N   THE ARRAY A INITIALLY CONTAINS THE M x N MATRIX A
C                      OF THE LEAST SQUARES PROBLEM AX = B.
C                      THE FIRST DIMENSIONING PARAMETER MDA MUST SATISFY
C                      MDA >= M. EITHER M >= N OR M < N IS PERMITTED.
C                      THERE IS NO RESTRICTION ON THE RANK OF A.
C                      THE MATRIX A WILL BE MODIFIED BY THE SUBROUTINE.
C     B(*,*),MDB,NB    IF NB = 0 THE SUBROUTINE WILL MAKE NO REFERENCE
C                      TO THE ARRAY B. IF NB > 0 THE ARRAY B() MUST
C                      INITIALLY CONTAIN THE M x NB MATRIX B  OF THE
C                      THE LEAST SQUARES PROBLEM AX = B AND ON RETURN
C                      THE ARRAY B() WILL CONTAIN THE N x NB SOLUTION X.
C                      IF NB>1 THE ARRAY B() MUST BE DOUBLE SUBSCRIPTED
C                      WITH FIRST DIMENSIONING PARAMETER MDB>=MAX(M,N),
C                      IF NB=1 THE ARRAY B() MAY BE EITHER SINGLE OR
C                      DOUBLE SUBSCRIPTED.
C     TAU              ABSOLUTE TOLERANCE PARAMETER FOR PSEUDORANK
C                      DETERMINATION, PROVIDED BY THE USER.
C     KRANK            PSEUDORANK OF A, SET BY THE SUBROUTINE.
C     RNORM            ON EXIT, RNORM(J) WILL CONTAIN THE EUCLIDIAN
C                      NORM OF THE RESIDUAL VECTOR FOR THE PROBLEM
C                      DEFINED BY THE J-TH COLUMN VECTOR OF THE ARRAY B.
C     H(), G()         ARRAYS OF WORKING SPACE OF LENGTH >= N.
C     IP()             INTEGER ARRAY OF WORKING SPACE OF LENGTH >= N
C                      RECORDING PERMUTATION INDICES OF COLUMN VECTORS

      INTEGER          i,j,jb,k,kp1,krank,l,ldiag,lmax,m,
     .                 mda,mdb,n,nb,ip(n)
      DOUBLE PRECISION a(mda,n),b(mdb,nb),h(n),g(n),rnorm(nb),factor,
     .                 tau,ZERO,hmax,diff,tmp,ddot_sl,dnrm2_,u,v
      diff(u,v)=       u-v
      DATA             ZERO/0.0d0/, factor/1.0d-3/

      k=0
      ldiag=MIN(m,n)
      IF(ldiag.LE.0)                  GOTO 270

C   COMPUTE LMAX

      DO 80 j=1,ldiag
          IF(j.EQ.1)                  GOTO 20
          lmax=j
          DO 10 l=j,n
              h(l)=h(l)-a(j-1,l)**2
   10         IF(h(l).GT.h(lmax)) lmax=l
          IF(diff(hmax+factor*h(lmax),hmax).GT.ZERO)
     .                                GOTO 50
   20     lmax=j
          DO 40 l=j,n
              h(l)=ZERO
              DO 30 i=j,m
   30             h(l)=h(l)+a(i,l)**2
   40         IF(h(l).GT.h(lmax)) lmax=l
          hmax=h(lmax)

C   COLUMN INTERCHANGES IF NEEDED

   50     ip(j)=lmax
          IF(ip(j).EQ.j)              GOTO 70
          DO 60 i=1,m
              tmp=a(i,j)
              a(i,j)=a(i,lmax)
   60         a(i,lmax)=tmp
          h(lmax)=h(j)

C   J-TH TRANSFORMATION AND APPLICATION TO A AND B

   70     i=MIN(j+1,n)
          CALL h12(1,j,j+1,m,a(1,j),1,h(j),a(1,i),1,mda,n-j)
   80     CALL h12(2,j,j+1,m,a(1,j),1,h(j),b,1,mdb,nb)

C   DETERMINE PSEUDORANK

      DO 90 j=1,ldiag
   90     IF(ABS(a(j,j)).LE.tau)      GOTO 100
      k=ldiag
      GOTO 110
  100 k=j-1
  110 kp1=k+1

C   NORM OF RESIDUALS

      DO 130 jb=1,nb
  130     rnorm(jb)=dnrm2_(m-k,b(kp1,jb),1)
      IF(k.GT.0)                      GOTO 160
      DO 150 jb=1,nb
          DO 150 i=1,n
  150         b(i,jb)=ZERO
      GOTO 270
  160 IF(k.EQ.n)                      GOTO 180

C   HOUSEHOLDER DECOMPOSITION OF FIRST K ROWS

      DO 170 i=k,1,-1
  170     CALL h12(1,i,kp1,n,a(i,1),mda,g(i),a,mda,1,i-1)
  180 DO 250 jb=1,nb

C   SOLVE K*K TRIANGULAR SYSTEM

          DO 210 i=k,1,-1
              j=MIN(i+1,n)
  210         b(i,jb)=(b(i,jb)-ddot_sl(k-i,a(i,j),mda,b(j,jb),1))/a(i,i)

C   COMPLETE SOLUTION VECTOR

          IF(k.EQ.n)                  GOTO 240
          DO 220 j=kp1,n
  220         b(j,jb)=ZERO
          DO 230 i=1,k
  230         CALL h12(2,i,kp1,n,a(i,1),mda,g(i),b(1,jb),1,mdb,1)

C   REORDER SOLUTION ACCORDING TO PREVIOUS COLUMN INTERCHANGES

  240     DO 250 j=ldiag,1,-1
              IF(ip(j).EQ.j)          GOTO 250
              l=ip(j)
              tmp=b(l,jb)
              b(l,jb)=b(j,jb)
              b(j,jb)=tmp
  250 CONTINUE
  270 krank=k
      END

      SUBROUTINE h12 (mode,lpivot,l1,m,u,iue,up,c,ice,icv,ncv)

C     C.L.LAWSON AND R.J.HANSON, JET PROPULSION LABORATORY, 1973 JUN 12
C     TO APPEAR IN 'SOLVING LEAST SQUARES PROBLEMS', PRENTICE-HALL, 1974

C     CONSTRUCTION AND/OR APPLICATION OF A SINGLE
C     HOUSEHOLDER TRANSFORMATION  Q = I + U*(U**T)/B

C     MODE    = 1 OR 2   TO SELECT ALGORITHM  H1  OR  H2 .
C     LPIVOT IS THE INDEX OF THE PIVOT ELEMENT.
C     L1,M   IF L1 <= M   THE TRANSFORMATION WILL BE CONSTRUCTED TO
C            ZERO ELEMENTS INDEXED FROM L1 THROUGH M.
C            IF L1 > M THE SUBROUTINE DOES AN IDENTITY TRANSFORMATION.
C     U(),IUE,UP
C            ON ENTRY TO H1 U() STORES THE PIVOT VECTOR.
C            IUE IS THE STORAGE INCREMENT BETWEEN ELEMENTS.
C            ON EXIT FROM H1 U() AND UP STORE QUANTITIES DEFINING
C            THE VECTOR U OF THE HOUSEHOLDER TRANSFORMATION.
C            ON ENTRY TO H2 U() AND UP
C            SHOULD STORE QUANTITIES PREVIOUSLY COMPUTED BY H1.
C            THESE WILL NOT BE MODIFIED BY H2.
C     C()    ON ENTRY TO H1 OR H2 C() STORES A MATRIX WHICH WILL BE
C            REGARDED AS A SET OF VECTORS TO WHICH THE HOUSEHOLDER
C            TRANSFORMATION IS TO BE APPLIED.
C            ON EXIT C() STORES THE SET OF TRANSFORMED VECTORS.
C     ICE    STORAGE INCREMENT BETWEEN ELEMENTS OF VECTORS IN C().
C     ICV    STORAGE INCREMENT BETWEEN VECTORS IN C().
C     NCV    NUMBER OF VECTORS IN C() TO BE TRANSFORMED.
C            IF NCV <= 0 NO OPERATIONS WILL BE DONE ON C().

      INTEGER          incr, ice, icv, iue, lpivot, l1, mode, ncv
      INTEGER          i, i2, i3, i4, j, m
      DOUBLE PRECISION u,up,c,cl,clinv,b,sm,one,ZERO
      DIMENSION        u(iue,*), c(*)
      DATA             one/1.0d+00/, ZERO/0.0d+00/

      IF (0.GE.lpivot.OR.lpivot.GE.l1.OR.l1.GT.m) GOTO 80
      cl=ABS(u(1,lpivot))
      IF (mode.EQ.2)                              GOTO 30

C     ****** CONSTRUCT THE TRANSFORMATION ******

          DO 10 j=l1,m
             sm=ABS(u(1,j))
   10     cl=MAX(sm,cl)
      IF (cl.LE.ZERO)                             GOTO 80
      clinv=one/cl
      sm=(u(1,lpivot)*clinv)**2
          DO 20 j=l1,m
   20     sm=sm+(u(1,j)*clinv)**2
      cl=cl*SQRT(sm)
      IF (u(1,lpivot).GT.ZERO) cl=-cl
      up=u(1,lpivot)-cl
      u(1,lpivot)=cl
                                                  GOTO 40
C     ****** APPLY THE TRANSFORMATION  I+U*(U**T)/B  TO C ******

   30 IF (cl.LE.ZERO)                             GOTO 80
   40 IF (ncv.LE.0)                               GOTO 80
      b=up*u(1,lpivot)
      IF (b.GE.ZERO)                              GOTO 80
      b=one/b
      i2=1-icv+ice*(lpivot-1)
      incr=ice*(l1-lpivot)
          DO 70 j=1,ncv
          i2=i2+icv
          i3=i2+incr
          i4=i3
          sm=c(i2)*up
              DO 50 i=l1,m
              sm=sm+c(i3)*u(1,i)
   50         i3=i3+ice
          IF (sm.EQ.ZERO)                         GOTO 70
          sm=sm*b
          c(i2)=c(i2)+sm*up
              DO 60 i=l1,m
              c(i4)=c(i4)+sm*u(1,i)
   60         i4=i4+ice
   70     CONTINUE
   80                                             END

      SUBROUTINE ldl (n,a,z,sigma,w)
C   LDL     LDL' - RANK-ONE - UPDATE

C   PURPOSE:
C           UPDATES THE LDL' FACTORS OF MATRIX A BY RANK-ONE MATRIX
C           SIGMA*Z*Z'

C   INPUT ARGUMENTS: (* MEANS PARAMETERS ARE CHANGED DURING EXECUTION)
C     N     : ORDER OF THE COEFFICIENT MATRIX A
C   * A     : POSITIVE DEFINITE MATRIX OF DIMENSION N;
C             ONLY THE LOWER TRIANGLE IS USED AND IS STORED COLUMN BY
C             COLUMN AS ONE DIMENSIONAL ARRAY OF DIMENSION N*(N+1)/2.
C   * Z     : VECTOR OF DIMENSION N OF UPDATING ELEMENTS
C     SIGMA : SCALAR FACTOR BY WHICH THE MODIFYING DYADE Z*Z' IS
C             MULTIPLIED

C   OUTPUT ARGUMENTS:
C     A     : UPDATED LDL' FACTORS

C   WORKING ARRAY:
C     W     : VECTOR OP DIMENSION N (USED ONLY IF SIGMA .LT. ZERO)

C   METHOD:
C     THAT OF FLETCHER AND POWELL AS DESCRIBED IN :
C     FLETCHER,R.,(1974) ON THE MODIFICATION OF LDL' FACTORIZATION.
C     POWELL,M.J.D.      MATH.COMPUTATION 28, 1067-1078.

C   IMPLEMENTED BY:
C     KRAFT,D., DFVLR - INSTITUT FUER DYNAMIK DER FLUGSYSTEME
C               D-8031  OBERPFAFFENHOFEN

C   STATUS: 15. JANUARY 1980

C   SUBROUTINES REQUIRED: NONE

      INTEGER          i, ij, j, n
      DOUBLE PRECISION a(*), t, v, w(*), z(*), u, tp, one, beta, four,
     *                 ZERO, alpha, delta, gamma, sigma, epmach
      DATA ZERO, one, four, epmach /0.0d0, 1.0d0, 4.0d0, 2.22d-16/

      IF(sigma.EQ.ZERO)               GOTO 280
      ij=1
      t=one/sigma
      IF(sigma.GT.ZERO)               GOTO 220
C PREPARE NEGATIVE UPDATE
      DO 150 i=1,n
  150     w(i)=z(i)
      DO 170 i=1,n
          v=w(i)
          t=t+v*v/a(ij)
          DO 160 j=i+1,n
              ij=ij+1
  160         w(j)=w(j)-v*a(ij)
  170     ij=ij+1
      IF(t.GE.ZERO) t=epmach/sigma
      DO 210 i=1,n
          j=n+1-i
          ij=ij-i
          u=w(j)
          w(j)=t
  210     t=t-u*u/a(ij)
  220 CONTINUE
C HERE UPDATING BEGINS
      DO 270 i=1,n
          v=z(i)
          delta=v/a(ij)
          IF(sigma.LT.ZERO) tp=w(i)
          IF(sigma.GT.ZERO) tp=t+delta*v
          alpha=tp/t
          a(ij)=alpha*a(ij)
          IF(i.EQ.n)                  GOTO 280
          beta=delta/tp
          IF(alpha.GT.four)           GOTO 240
          DO 230 j=i+1,n
              ij=ij+1
              z(j)=z(j)-v*a(ij)
  230         a(ij)=a(ij)+beta*z(j)
                                      GOTO 260
  240     gamma=t/tp
          DO 250 j=i+1,n
              ij=ij+1
              u=a(ij)
              a(ij)=gamma*u+beta*z(j)
  250         z(j)=z(j)-v*u
  260     ij=ij+1
  270     t=tp
  280 RETURN
C END OF LDL
      END

      DOUBLE PRECISION FUNCTION linmin (mode, ax, bx, f, tol)
C   LINMIN  LINESEARCH WITHOUT DERIVATIVES

C   PURPOSE:

C  TO FIND THE ARGUMENT LINMIN WHERE THE FUNCTION F TAKES IT'S MINIMUM
C  ON THE INTERVAL AX, BX.
C  COMBINATION OF GOLDEN SECTION AND SUCCESSIVE QUADRATIC INTERPOLATION.

C   INPUT ARGUMENTS: (* MEANS PARAMETERS ARE CHANGED DURING EXECUTION)

C *MODE   SEE OUTPUT ARGUMENTS
C  AX     LEFT ENDPOINT OF INITIAL INTERVAL
C  BX     RIGHT ENDPOINT OF INITIAL INTERVAL
C  F      FUNCTION VALUE AT LINMIN WHICH IS TO BE BROUGHT IN BY
C         REVERSE COMMUNICATION CONTROLLED BY MODE
C  TOL    DESIRED LENGTH OF INTERVAL OF UNCERTAINTY OF FINAL RESULT

C   OUTPUT ARGUMENTS:

C  LINMIN ABSCISSA APPROXIMATING THE POINT WHERE F ATTAINS A MINIMUM
C  MODE   CONTROLS REVERSE COMMUNICATION
C         MUST BE SET TO 0 INITIALLY, RETURNS WITH INTERMEDIATE
C         VALUES 1 AND 2 WHICH MUST NOT BE CHANGED BY THE USER,
C         ENDS WITH CONVERGENCE WITH VALUE 3.

C   WORKING ARRAY:

C  NONE

C   METHOD:

C  THIS FUNCTION SUBPROGRAM IS A SLIGHTLY MODIFIED VERSION OF THE
C  ALGOL 60 PROCEDURE LOCALMIN GIVEN IN
C  R.P. BRENT: ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES,
C              PRENTICE-HALL (1973).

C   IMPLEMENTED BY:

C     KRAFT, D., DFVLR - INSTITUT FUER DYNAMIK DER FLUGSYSTEME
C                D-8031  OBERPFAFFENHOFEN

C   STATUS: 31. AUGUST  1984

C   SUBROUTINES REQUIRED: NONE

      INTEGER          mode
      DOUBLE PRECISION f, tol, a, b, c, d, e, p, q, r, u, v, w, x, m,
     &                 fu, fv, fw, fx, eps, tol1, tol2, ZERO, ax, bx
      DATA             c /0.381966011d0/, eps /1.5d-8/, ZERO /0.0d0/

C  EPS = SQUARE - ROOT OF MACHINE PRECISION
C  C = GOLDEN SECTION RATIO = (3-SQRT(5))/2

      GOTO (10, 55), mode

C  INITIALIZATION

      a = ax
      b = bx
      e = ZERO
      v = a + c*(b - a)
      w = v
      x = w
      linmin = x
      mode = 1
      GOTO 100

C  MAIN LOOP STARTS HERE

   10 fx = f
      fv = fx
      fw = fv
   20 m = 0.5d0*(a + b)
      tol1 = eps*ABS(x) + tol
      tol2 = tol1 + tol1

C  TEST CONVERGENCE

      IF (ABS(x - m) .LE. tol2 - 0.5d0*(b - a)) GOTO 90
      r = ZERO
      q = r
      p = q
      IF (ABS(e) .LE. tol1) GOTO 30

C  FIT PARABOLA

      r = (x - w)*(fx - fv)
      q = (x - v)*(fx - fw)
      p = (x - v)*q - (x - w)*r
      q = q - r
      q = q + q
      IF (q .GT. ZERO) p = -p
      IF (q .LT. ZERO) q = -q
      r = e
      e = d

C  IS PARABOLA ACCEPTABLE

   30 IF (ABS(p) .GE. 0.5d0*ABS(q*r) .OR.
     &    p .LE. q*(a - x) .OR. p .GE. q*(b-x)) GOTO 40

C  PARABOLIC INTERPOLATION STEP

      d = p/q

C  F MUST NOT BE EVALUATED TOO CLOSE TO A OR B

      IF (u - a .LT. tol2) d = SIGN(tol1, m - x)
      IF (b - u .LT. tol2) d = SIGN(tol1, m - x)
      GOTO 50

C  GOLDEN SECTION STEP

   40 IF (x .GE. m) e = a - x
      IF (x .LT. m) e = b - x
      d = c*e

C  F MUST NOT BE EVALUATED TOO CLOSE TO X

   50 IF (ABS(d) .LT. tol1) d = SIGN(tol1, d)
      u = x + d
      linmin = u
      mode = 2
      GOTO 100
   55 fu = f

C  UPDATE A, B, V, W, AND X

      IF (fu .GT. fx) GOTO 60
      IF (u .GE. x) a = x
      IF (u .LT. x) b = x
      v = w
      fv = fw
      w = x
      fw = fx
      x = u
      fx = fu
      GOTO 85
   60 IF (u .LT. x) a = u
      IF (u .GE. x) b = u
      IF (fu .LE. fw .OR. w .EQ. x) GOTO 70
      IF (fu .LE. fv .OR. v .EQ. x .OR. v .EQ. w) GOTO 80
      GOTO 85
   70 v = w
      fv = fw
      w = u
      fw = fu
      GOTO 85
   80 v = u
      fv = fu
   85 GOTO 20

C  END OF MAIN LOOP

   90 linmin = x
      mode = 3
  100 RETURN

C  END OF LINMIN

      END

C## Following a selection from BLAS Level 1

      SUBROUTINE daxpy_sl(n,da,dx,incx,dy,incy)

C     CONSTANT TIMES A VECTOR PLUS A VECTOR.
C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C     JACK DONGARRA, LINPACK, 3/11/78.

      DOUBLE PRECISION dx(*),dy(*),da
      INTEGER i,incx,incy,ix,iy,m,mp1,n

      IF(n.LE.0)RETURN
      IF(da.EQ.0.0d0)RETURN
      IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20

C        CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C        NOT EQUAL TO 1

      ix = 1
      iy = 1
      IF(incx.LT.0)ix = (-n+1)*incx + 1
      IF(incy.LT.0)iy = (-n+1)*incy + 1
      DO 10 i = 1,n
        dy(iy) = dy(iy) + da*dx(ix)
        ix = ix + incx
        iy = iy + incy
   10 CONTINUE
      RETURN

C        CODE FOR BOTH INCREMENTS EQUAL TO 1

C        CLEAN-UP LOOP

   20 m = MOD(n,4)
      IF( m .EQ. 0 ) GO TO 40
      DO 30 i = 1,m
        dy(i) = dy(i) + da*dx(i)
   30 CONTINUE
      IF( n .LT. 4 ) RETURN
   40 mp1 = m + 1
      DO 50 i = mp1,n,4
        dy(i) = dy(i) + da*dx(i)
        dy(i + 1) = dy(i + 1) + da*dx(i + 1)
        dy(i + 2) = dy(i + 2) + da*dx(i + 2)
        dy(i + 3) = dy(i + 3) + da*dx(i + 3)
   50 CONTINUE
      RETURN
      END

      SUBROUTINE  dcopy_(n,dx,incx,dy,incy)

C     COPIES A VECTOR, X, TO A VECTOR, Y.
C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C     JACK DONGARRA, LINPACK, 3/11/78.

      DOUBLE PRECISION dx(*),dy(*)
      INTEGER i,incx,incy,ix,iy,m,mp1,n

      IF(n.LE.0)RETURN
      IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20

C        CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C        NOT EQUAL TO 1

      ix = 1
      iy = 1
      IF(incx.LT.0)ix = (-n+1)*incx + 1
      IF(incy.LT.0)iy = (-n+1)*incy + 1
      DO 10 i = 1,n
        dy(iy) = dx(ix)
        ix = ix + incx
        iy = iy + incy
   10 CONTINUE
      RETURN

C        CODE FOR BOTH INCREMENTS EQUAL TO 1

C        CLEAN-UP LOOP

   20 m = MOD(n,7)
      IF( m .EQ. 0 ) GO TO 40
      DO 30 i = 1,m
        dy(i) = dx(i)
   30 CONTINUE
      IF( n .LT. 7 ) RETURN
   40 mp1 = m + 1
      DO 50 i = mp1,n,7
        dy(i) = dx(i)
        dy(i + 1) = dx(i + 1)
        dy(i + 2) = dx(i + 2)
        dy(i + 3) = dx(i + 3)
        dy(i + 4) = dx(i + 4)
        dy(i + 5) = dx(i + 5)
        dy(i + 6) = dx(i + 6)
   50 CONTINUE
      RETURN
      END

      DOUBLE PRECISION FUNCTION ddot_sl(n,dx,incx,dy,incy)

C     FORMS THE DOT PRODUCT OF TWO VECTORS.
C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C     JACK DONGARRA, LINPACK, 3/11/78.

      DOUBLE PRECISION dx(*),dy(*),dtemp
      INTEGER i,incx,incy,ix,iy,m,mp1,n

      ddot_sl = 0.0d0
      dtemp = 0.0d0
      IF(n.LE.0)RETURN
      IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20

C        CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C          NOT EQUAL TO 1

      ix = 1
      iy = 1
      IF(incx.LT.0)ix = (-n+1)*incx + 1
      IF(incy.LT.0)iy = (-n+1)*incy + 1
      DO 10 i = 1,n
        dtemp = dtemp + dx(ix)*dy(iy)
        ix = ix + incx
        iy = iy + incy
   10 CONTINUE
      ddot_sl = dtemp
      RETURN

C        CODE FOR BOTH INCREMENTS EQUAL TO 1

C        CLEAN-UP LOOP

   20 m = MOD(n,5)
      IF( m .EQ. 0 ) GO TO 40
      DO 30 i = 1,m
        dtemp = dtemp + dx(i)*dy(i)
   30 CONTINUE
      IF( n .LT. 5 ) GO TO 60
   40 mp1 = m + 1
      DO 50 i = mp1,n,5
        dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
     *   dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
   50 CONTINUE
   60 ddot_sl = dtemp
      RETURN
      END

      DOUBLE PRECISION FUNCTION dnrm1(n,x,i,j)
      INTEGER n, i, j, k
      DOUBLE PRECISION snormx, sum, x(n), ZERO, one, scale, temp
      DATA ZERO/0.0d0/, one/1.0d0/

C      DNRM1 - COMPUTES THE I-NORM OF A VECTOR
C              BETWEEN THE ITH AND THE JTH ELEMENTS

C      INPUT -
C      N       LENGTH OF VECTOR
C      X       VECTOR OF LENGTH N
C      I       INITIAL ELEMENT OF VECTOR TO BE USED
C      J       FINAL ELEMENT TO USE

C      OUTPUT -
C      DNRM1   NORM

      snormx=ZERO
      DO 10 k=i,j
 10      snormx=MAX(snormx,ABS(x(k)))
      dnrm1 = snormx
      IF (snormx.EQ.ZERO) RETURN
      scale = snormx
      IF (snormx.GE.one) scale=SQRT(snormx)
      sum=ZERO
      DO 20 k=i,j
         temp=ZERO
         IF (ABS(x(k))+scale .NE. scale) temp = x(k)/snormx
         IF (one+temp.NE.one) sum = sum+temp*temp
 20      CONTINUE
      sum=SQRT(sum)
      dnrm1=snormx*sum
      RETURN
      END

      DOUBLE PRECISION FUNCTION dnrm2_ ( n, dx, incx)
      INTEGER          n, i, j, nn, next, incx
      DOUBLE PRECISION dx(*), cutlo, cuthi, hitest, sum, xmax, ZERO, one
      DATA             ZERO, one /0.0d0, 1.0d0/

C     EUCLIDEAN NORM OF THE N-VECTOR STORED IN DX() WITH STORAGE
C     INCREMENT INCX .
C     IF    N .LE. 0 RETURN WITH RESULT = 0.
C     IF N .GE. 1 THEN INCX MUST BE .GE. 1

C           C.L.LAWSON, 1978 JAN 08

C     FOUR PHASE METHOD     USING TWO BUILT-IN CONSTANTS THAT ARE
C     HOPEFULLY APPLICABLE TO ALL MACHINES.
C         CUTLO = MAXIMUM OF  SQRT(U/EPS)   OVER ALL KNOWN MACHINES.
C         CUTHI = MINIMUM OF  SQRT(V)       OVER ALL KNOWN MACHINES.
C     WHERE
C         EPS = SMALLEST NO. SUCH THAT EPS + 1. .GT. 1.
C         U   = SMALLEST POSITIVE NO.   (UNDERFLOW LIMIT)
C         V   = LARGEST  NO.            (OVERFLOW  LIMIT)

C     BRIEF OUTLINE OF ALGORITHM..

C     PHASE 1    SCANS ZERO COMPONENTS.
C     MOVE TO PHASE 2 WHEN A COMPONENT IS NONZERO AND .LE. CUTLO
C     MOVE TO PHASE 3 WHEN A COMPONENT IS .GT. CUTLO
C     MOVE TO PHASE 4 WHEN A COMPONENT IS .GE. CUTHI/M
C     WHERE M = N FOR X() REAL AND M = 2*N FOR COMPLEX.

C     VALUES FOR CUTLO AND CUTHI..
C     FROM THE ENVIRONMENTAL PARAMETERS LISTED IN THE IMSL CONVERTER
C     DOCUMENT THE LIMITING VALUES ARE AS FOLLOWS..
C     CUTLO, S.P.   U/EPS = 2**(-102) FOR  HONEYWELL.  CLOSE SECONDS ARE
C                   UNIVAC AND DEC AT 2**(-103)
C                   THUS CUTLO = 2**(-51) = 4.44089E-16
C     CUTHI, S.P.   V = 2**127 FOR UNIVAC, HONEYWELL, AND DEC.
C                   THUS CUTHI = 2**(63.5) = 1.30438E19
C     CUTLO, D.P.   U/EPS = 2**(-67) FOR HONEYWELL AND DEC.
C                   THUS CUTLO = 2**(-33.5) = 8.23181D-11
C     CUTHI, D.P.   SAME AS S.P.  CUTHI = 1.30438D19
C     DATA CUTLO, CUTHI / 8.232D-11,  1.304D19 /
C     DATA CUTLO, CUTHI / 4.441E-16,  1.304E19 /
      DATA cutlo, cuthi / 8.232d-11,  1.304d19 /

      IF(n .GT. 0) GO TO 10
         dnrm2_  = ZERO
         GO TO 300

   10 assign 30 to next
      sum = ZERO
      nn = n * incx
C                       BEGIN MAIN LOOP
      i = 1
   20    GO TO next,(30, 50, 70, 110)
   30 IF( ABS(dx(i)) .GT. cutlo) GO TO 85
      assign 50 to next
      xmax = ZERO

C                        PHASE 1.  SUM IS ZERO

   50 IF( dx(i) .EQ. ZERO) GO TO 200
      IF( ABS(dx(i)) .GT. cutlo) GO TO 85

C                        PREPARE FOR PHASE 2.

      assign 70 to next
      GO TO 105

C                        PREPARE FOR PHASE 4.

  100 i = j
      assign 110 to next
      sum = (sum / dx(i)) / dx(i)
  105 xmax = ABS(dx(i))
      GO TO 115

C                   PHASE 2.  SUM IS SMALL.
C                             SCALE TO AVOID DESTRUCTIVE UNDERFLOW.

   70 IF( ABS(dx(i)) .GT. cutlo ) GO TO 75

C                   COMMON CODE FOR PHASES 2 AND 4.
C                   IN PHASE 4 SUM IS LARGE.  SCALE TO AVOID OVERFLOW.

  110 IF( ABS(dx(i)) .LE. xmax ) GO TO 115
         sum = one + sum * (xmax / dx(i))**2
         xmax = ABS(dx(i))
         GO TO 200

  115 sum = sum + (dx(i)/xmax)**2
      GO TO 200

C                  PREPARE FOR PHASE 3.

   75 sum = (sum * xmax) * xmax

C     FOR REAL OR D.P. SET HITEST = CUTHI/N
C     FOR COMPLEX      SET HITEST = CUTHI/(2*N)

   85 hitest = cuthi/float( n )

C                   PHASE 3.  SUM IS MID-RANGE.  NO SCALING.

      DO 95 j =i,nn,incx
      IF(ABS(dx(j)) .GE. hitest) GO TO 100
   95    sum = sum + dx(j)**2
      dnrm2_ = SQRT( sum )
      GO TO 300

  200 CONTINUE
      i = i + incx
      IF ( i .LE. nn ) GO TO 20

C              END OF MAIN LOOP.

C              COMPUTE SQUARE ROOT AND ADJUST FOR SCALING.

      dnrm2_ = xmax * SQRT(sum)
  300 CONTINUE
      RETURN
      END

      SUBROUTINE  dsrot (n,dx,incx,dy,incy,c,s)

C     APPLIES A PLANE ROTATION.
C     JACK DONGARRA, LINPACK, 3/11/78.

      DOUBLE PRECISION dx(*),dy(*),dtemp,c,s
      INTEGER i,incx,incy,ix,iy,n

      IF(n.LE.0)RETURN
      IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20

C       CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL
C         TO 1

      ix = 1
      iy = 1
      IF(incx.LT.0)ix = (-n+1)*incx + 1
      IF(incy.LT.0)iy = (-n+1)*incy + 1
      DO 10 i = 1,n
        dtemp = c*dx(ix) + s*dy(iy)
        dy(iy) = c*dy(iy) - s*dx(ix)
        dx(ix) = dtemp
        ix = ix + incx
        iy = iy + incy
   10 CONTINUE
      RETURN

C       CODE FOR BOTH INCREMENTS EQUAL TO 1

   20 DO 30 i = 1,n
        dtemp = c*dx(i) + s*dy(i)
        dy(i) = c*dy(i) - s*dx(i)
        dx(i) = dtemp
   30 CONTINUE
      RETURN
      END

      SUBROUTINE dsrotg(da,db,c,s)

C     CONSTRUCT GIVENS PLANE ROTATION.
C     JACK DONGARRA, LINPACK, 3/11/78.
C                    MODIFIED 9/27/86.

      DOUBLE PRECISION da,db,c,s,roe,scale,r,z,one,ZERO
      DATA one, ZERO /1.0d+00, 0.0d+00/

      roe = db
      IF( ABS(da) .GT. ABS(db) ) roe = da
      scale = ABS(da) + ABS(db)
      IF( scale .NE. ZERO ) GO TO 10
         c = one
         s = ZERO
         r = ZERO
         GO TO 20
   10 r = scale*SQRT((da/scale)**2 + (db/scale)**2)
      r = SIGN(one,roe)*r
      c = da/r
      s = db/r
   20 z = s
      IF( ABS(c) .GT. ZERO .AND. ABS(c) .LE. s ) z = one/c
      da = r
      db = z
      RETURN
      END

      SUBROUTINE  dscal_sl(n,da,dx,incx)

C     SCALES A VECTOR BY A CONSTANT.
C     USES UNROLLED LOOPS FOR INCREMENT EQUAL TO ONE.
C     JACK DONGARRA, LINPACK, 3/11/78.

      DOUBLE PRECISION da,dx(*)
      INTEGER i,incx,m,mp1,n,nincx

      IF(n.LE.0)RETURN
      IF(incx.EQ.1)GO TO 20


C        CODE FOR INCREMENT NOT EQUAL TO 1

      nincx = n*incx
      DO 10 i = 1,nincx,incx
        dx(i) = da*dx(i)
   10 CONTINUE
      RETURN

C        CODE FOR INCREMENT EQUAL TO 1

C        CLEAN-UP LOOP

   20 m = MOD(n,5)
      IF( m .EQ. 0 ) GO TO 40
      DO 30 i = 1,m
        dx(i) = da*dx(i)
   30 CONTINUE
      IF( n .LT. 5 ) RETURN
   40 mp1 = m + 1
      DO 50 i = mp1,n,5
        dx(i) = da*dx(i)
        dx(i + 1) = da*dx(i + 1)
        dx(i + 2) = da*dx(i + 2)
        dx(i + 3) = da*dx(i + 3)
        dx(i + 4) = da*dx(i + 4)
   50 CONTINUE
      RETURN
      END

      subroutine bound(n, x, xl, xu)
      integer n, i
      double precision x(n), xl(n), xu(n)
      do i = 1, n
C        Note that xl(i) and xu(i) may be NaN to indicate no bound
         if(xl(i).eq.xl(i).and.x(i) < xl(i))then
            x(i) = xl(i)
         else if(xu(i).eq.xu(i).and.x(i) > xu(i))then
            x(i) = xu(i)
         end if
      end do
      end subroutine bound