1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
|
C
C ALGORITHM 733, COLLECTED ALGORITHMS FROM ACM.
C TRANSACTIONS ON MATHEMATICAL SOFTWARE,
C VOL. 20, NO. 3, SEPTEMBER, 1994, PP. 262-281.
C http://doi.acm.org/10.1145/192115.192124
C
C
C http://permalink.gmane.org/gmane.comp.python.scientific.devel/6725
C ------
C From: Deborah Cotton <cotton@hq.acm.org>
C Date: Fri, 14 Sep 2007 12:35:55 -0500
C Subject: RE: Algorithm License requested
C To: Alan Isaac
C
C Prof. Issac,
C
C In that case, then because the author consents to [the ACM] releasing
C the code currently archived at http://www.netlib.org/toms/733 under the
C BSD license, the ACM hereby releases this code under the BSD license.
C
C Regards,
C
C Deborah Cotton, Copyright & Permissions
C ACM Publications
C 2 Penn Plaza, Suite 701**
C New York, NY 10121-0701
C permissions@acm.org
C 212.869.7440 ext. 652
C Fax. 212.869.0481
C ------
C
************************************************************************
* optimizer *
************************************************************************
SUBROUTINE slsqp (m, meq, la, n, x, xl, xu, f, c, g, a,
* acc, iter, mode, w, l_w, jw, l_jw)
C SLSQP S EQUENTIAL L EAST SQ UARES P ROGRAMMING
C TO SOLVE GENERAL NONLINEAR OPTIMIZATION PROBLEMS
C***********************************************************************
C* *
C* *
C* A NONLINEAR PROGRAMMING METHOD WITH *
C* QUADRATIC PROGRAMMING SUBPROBLEMS *
C* *
C* *
C* THIS SUBROUTINE SOLVES THE GENERAL NONLINEAR PROGRAMMING PROBLEM *
C* *
C* MINIMIZE F(X) *
C* *
C* SUBJECT TO C (X) .EQ. 0 , J = 1,...,MEQ *
C* J *
C* *
C* C (X) .GE. 0 , J = MEQ+1,...,M *
C* J *
C* *
C* XL .LE. X .LE. XU , I = 1,...,N. *
C* I I I *
C* *
C* THE ALGORITHM IMPLEMENTS THE METHOD OF HAN AND POWELL *
C* WITH BFGS-UPDATE OF THE B-MATRIX AND L1-TEST FUNCTION *
C* WITHIN THE STEPLENGTH ALGORITHM. *
C* *
C* PARAMETER DESCRIPTION: *
C* ( * MEANS THIS PARAMETER WILL BE CHANGED DURING CALCULATION ) *
C* *
C* M IS THE TOTAL NUMBER OF CONSTRAINTS, M .GE. 0 *
C* MEQ IS THE NUMBER OF EQUALITY CONSTRAINTS, MEQ .GE. 0 *
C* LA SEE A, LA .GE. MAX(M,1) *
C* N IS THE NUMBER OF VARIBLES, N .GE. 1 *
C* * X() X() STORES THE CURRENT ITERATE OF THE N VECTOR X *
C* ON ENTRY X() MUST BE INITIALIZED. ON EXIT X() *
C* STORES THE SOLUTION VECTOR X IF MODE = 0. *
C* XL() XL() STORES AN N VECTOR OF LOWER BOUNDS XL TO X. *
C* ELEMENTS MAY BE NAN TO INDICATE NO LOWER BOUND. *
C* XU() XU() STORES AN N VECTOR OF UPPER BOUNDS XU TO X. *
C* ELEMENTS MAY BE NAN TO INDICATE NO UPPER BOUND. *
C* F IS THE VALUE OF THE OBJECTIVE FUNCTION. *
C* C() C() STORES THE M VECTOR C OF CONSTRAINTS, *
C* EQUALITY CONSTRAINTS (IF ANY) FIRST. *
C* DIMENSION OF C MUST BE GREATER OR EQUAL LA, *
C* which must be GREATER OR EQUAL MAX(1,M). *
C* G() G() STORES THE N VECTOR G OF PARTIALS OF THE *
C* OBJECTIVE FUNCTION; DIMENSION OF G MUST BE *
C* GREATER OR EQUAL N+1. *
C* A(),LA,M,N THE LA BY N + 1 ARRAY A() STORES *
C* THE M BY N MATRIX A OF CONSTRAINT NORMALS. *
C* A() HAS FIRST DIMENSIONING PARAMETER LA, *
C* WHICH MUST BE GREATER OR EQUAL MAX(1,M). *
C* F,C,G,A MUST ALL BE SET BY THE USER BEFORE EACH CALL. *
C* * ACC ABS(ACC) CONTROLS THE FINAL ACCURACY. *
C* IF ACC .LT. ZERO AN EXACT LINESEARCH IS PERFORMED,*
C* OTHERWISE AN ARMIJO-TYPE LINESEARCH IS USED. *
C* * ITER PRESCRIBES THE MAXIMUM NUMBER OF ITERATIONS. *
C* ON EXIT ITER INDICATES THE NUMBER OF ITERATIONS. *
C* * MODE MODE CONTROLS CALCULATION: *
C* REVERSE COMMUNICATION IS USED IN THE SENSE THAT *
C* THE PROGRAM IS INITIALIZED BY MODE = 0; THEN IT IS*
C* TO BE CALLED REPEATEDLY BY THE USER UNTIL A RETURN*
C* WITH MODE .NE. IABS(1) TAKES PLACE. *
C* IF MODE = -1 GRADIENTS HAVE TO BE CALCULATED, *
C* WHILE WITH MODE = 1 FUNCTIONS HAVE TO BE CALCULATED
C* MODE MUST NOT BE CHANGED BETWEEN SUBSEQUENT CALLS *
C* OF SQP. *
C* EVALUATION MODES: *
C* MODE = -1: GRADIENT EVALUATION, (G&A) *
C* 0: ON ENTRY: INITIALIZATION, (F,G,C&A) *
C* ON EXIT : REQUIRED ACCURACY FOR SOLUTION OBTAINED *
C* 1: FUNCTION EVALUATION, (F&C) *
C* *
C* FAILURE MODES: *
C* 2: NUMBER OF EQUALITY CONTRAINTS LARGER THAN N *
C* 3: MORE THAN 3*N ITERATIONS IN LSQ SUBPROBLEM *
C* 4: INEQUALITY CONSTRAINTS INCOMPATIBLE *
C* 5: SINGULAR MATRIX E IN LSQ SUBPROBLEM *
C* 6: SINGULAR MATRIX C IN LSQ SUBPROBLEM *
C* 7: RANK-DEFICIENT EQUALITY CONSTRAINT SUBPROBLEM HFTI*
C* 8: POSITIVE DIRECTIONAL DERIVATIVE FOR LINESEARCH *
C* 9: MORE THAN ITER ITERATIONS IN SQP *
C* >=10: WORKING SPACE W OR JW TOO SMALL, *
C* W SHOULD BE ENLARGED TO L_W=MODE/1000 *
C* JW SHOULD BE ENLARGED TO L_JW=MODE-1000*L_W *
C* * W(), L_W W() IS A ONE DIMENSIONAL WORKING SPACE, *
C* THE LENGTH L_W OF WHICH SHOULD BE AT LEAST *
C* (3*N1+M)*(N1+1) for LSQ *
C* +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ for LSI *
C* +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1 for LSEI *
C* + N1*N/2 + 2*M + 3*N + 3*N1 + 1 for SLSQPB *
C* with MINEQ = M - MEQ + 2*N1 & N1 = N+1 *
C* NOTICE: FOR PROPER DIMENSIONING OF W IT IS RECOMMENDED TO *
C* COPY THE FOLLOWING STATEMENTS INTO THE HEAD OF *
C* THE CALLING PROGRAM (AND REMOVE THE COMMENT C) *
c#######################################################################
C INTEGER LEN_W, LEN_JW, M, N, N1, MEQ, MINEQ
C PARAMETER (M=... , MEQ=... , N=... )
C PARAMETER (N1= N+1, MINEQ= M-MEQ+N1+N1)
C PARAMETER (LEN_W=
c $ (3*N1+M)*(N1+1)
c $ +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ
c $ +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1
c $ +(N+1)*N/2 + 2*M + 3*N + 3*N1 + 1,
c $ LEN_JW=MINEQ)
C DOUBLE PRECISION W(LEN_W)
C INTEGER JW(LEN_JW)
c#######################################################################
C* THE FIRST M+N+N*N1/2 ELEMENTS OF W MUST NOT BE *
C* CHANGED BETWEEN SUBSEQUENT CALLS OF SLSQP. *
C* ON RETURN W(1) ... W(M) CONTAIN THE MULTIPLIERS *
C* ASSOCIATED WITH THE GENERAL CONSTRAINTS, WHILE *
C* W(M+1) ... W(M+N(N+1)/2) STORE THE CHOLESKY FACTOR*
C* L*D*L(T) OF THE APPROXIMATE HESSIAN OF THE *
C* LAGRANGIAN COLUMNWISE DENSE AS LOWER TRIANGULAR *
C* UNIT MATRIX L WITH D IN ITS 'DIAGONAL' and *
C* W(M+N(N+1)/2+N+2 ... W(M+N(N+1)/2+N+2+M+2N) *
C* CONTAIN THE MULTIPLIERS ASSOCIATED WITH ALL *
C* ALL CONSTRAINTS OF THE QUADRATIC PROGRAM FINDING *
C* THE SEARCH DIRECTION TO THE SOLUTION X* *
C* * JW(), L_JW JW() IS A ONE DIMENSIONAL INTEGER WORKING SPACE *
C* THE LENGTH L_JW OF WHICH SHOULD BE AT LEAST *
C* MINEQ *
C* with MINEQ = M - MEQ + 2*N1 & N1 = N+1 *
C* *
C* THE USER HAS TO PROVIDE THE FOLLOWING SUBROUTINES: *
C* LDL(N,A,Z,SIG,W) : UPDATE OF THE LDL'-FACTORIZATION. *
C* LINMIN(A,B,F,TOL) : LINESEARCH ALGORITHM IF EXACT = 1 *
C* LSQ(M,MEQ,LA,N,NC,C,D,A,B,XL,XU,X,LAMBDA,W,....) : *
C* *
C* SOLUTION OF THE QUADRATIC PROGRAM *
C* QPSOL IS RECOMMENDED: *
C* PE GILL, W MURRAY, MA SAUNDERS, MH WRIGHT: *
C* USER'S GUIDE FOR SOL/QPSOL: *
C* A FORTRAN PACKAGE FOR QUADRATIC PROGRAMMING, *
C* TECHNICAL REPORT SOL 83-7, JULY 1983 *
C* DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY *
C* STANFORD, CA 94305 *
C* QPSOL IS THE MOST ROBUST AND EFFICIENT QP-SOLVER *
C* AS IT ALLOWS WARM STARTS WITH PROPER WORKING SETS *
C* *
C* IF IT IS NOT AVAILABLE USE LSEI, A CONSTRAINT LINEAR LEAST *
C* SQUARES SOLVER IMPLEMENTED USING THE SOFTWARE HFTI, LDP, NNLS *
C* FROM C.L. LAWSON, R.J.HANSON: SOLVING LEAST SQUARES PROBLEMS, *
C* PRENTICE HALL, ENGLEWOOD CLIFFS, 1974. *
C* LSEI COMES WITH THIS PACKAGE, together with all necessary SR's. *
C* *
C* TOGETHER WITH A COUPLE OF SUBROUTINES FROM BLAS LEVEL 1 *
C* *
C* SQP IS HEAD SUBROUTINE FOR BODY SUBROUTINE SQPBDY *
C* IN WHICH THE ALGORITHM HAS BEEN IMPLEMENTED. *
C* *
C* IMPLEMENTED BY: DIETER KRAFT, DFVLR OBERPFAFFENHOFEN *
C* as described in Dieter Kraft: A Software Package for *
C* Sequential Quadratic Programming *
C* DFVLR-FB 88-28, 1988 *
C* which should be referenced if the user publishes results of SLSQP *
C* *
C* DATE: APRIL - OCTOBER, 1981. *
C* STATUS: DECEMBER, 31-ST, 1984. *
C* STATUS: MARCH , 21-ST, 1987, REVISED TO FORTAN 77 *
C* STATUS: MARCH , 20-th, 1989, REVISED TO MS-FORTRAN *
C* STATUS: APRIL , 14-th, 1989, HESSE in-line coded *
C* STATUS: FEBRUARY, 28-th, 1991, FORTRAN/2 Version 1.04 *
C* accepts Statement Functions *
C* STATUS: MARCH , 1-st, 1991, tested with SALFORD *
C* FTN77/386 COMPILER VERS 2.40*
C* in protected mode *
C* *
C***********************************************************************
C* *
C* Copyright 1991: Dieter Kraft, FHM *
C* *
C***********************************************************************
INTEGER il, im, ir, is, iter, iu, iv, iw, ix, l_w, l_jw,
* jw(l_jw), la, m, meq, mineq, mode, n, n1
DOUBLE PRECISION acc, a(la,n+1), c(la), f, g(n+1),
* x(n), xl(n), xu(n), w(l_w)
c dim(W) = N1*(N1+1) + MEQ*(N1+1) + MINEQ*(N1+1) for LSQ
c +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ for LSI
c +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1 for LSEI
c + N1*N/2 + 2*M + 3*N +3*N1 + 1 for SLSQPB
c with MINEQ = M - MEQ + 2*N1 & N1 = N+1
C CHECK LENGTH OF WORKING ARRAYS
n1 = n+1
mineq = m-meq+n1+n1
il = (3*n1+m)*(n1+1) +
.(n1-meq+1)*(mineq+2) + 2*mineq +
.(n1+mineq)*(n1-meq) + 2*meq +
.n1*n/2 + 2*m + 3*n + 4*n1 + 1
im = MAX(mineq, n1-meq)
IF (l_w .LT. il .OR. l_jw .LT. im) THEN
mode = 1000*MAX(10,il)
mode = mode+MAX(10,im)
RETURN
ENDIF
C PREPARE DATA FOR CALLING SQPBDY - INITIAL ADDRESSES IN W
im = 1
il = im + MAX(1,m)
il = im + la
ix = il + n1*n/2 + 1
ir = ix + n
is = ir + n + n + MAX(1,m)
is = ir + n + n + la
iu = is + n1
iv = iu + n1
iw = iv + n1
CALL slsqpb (m, meq, la, n, x, xl, xu, f, c, g, a, acc, iter,
* mode, w(ir), w(il), w(ix), w(im), w(is), w(iu), w(iv), w(iw), jw)
END
SUBROUTINE slsqpb (m, meq, la, n, x, xl, xu, f, c, g, a, acc,
* iter, mode, r, l, x0, mu, s, u, v, w, iw)
C NONLINEAR PROGRAMMING BY SOLVING SEQUENTIALLY QUADRATIC PROGRAMS
C - L1 - LINE SEARCH, POSITIVE DEFINITE BFGS UPDATE -
C BODY SUBROUTINE FOR SLSQP
INTEGER iw(*), i, iexact, incons, ireset, iter, itermx,
* k, j, la, line, m, meq, mode, n, n1, n2, n3
DOUBLE PRECISION a(la,n+1), c(la), g(n+1), l((n+1)*(n+2)/2),
* mu(la), r(m+n+n+2), s(n+1), u(n+1), v(n+1), w(*),
* x(n), xl(n), xu(n), x0(n),
* ddot_sl, dnrm2_, linmin,
* acc, alfmin, alpha, f, f0, gs, h1, h2, h3, h4,
* hun, one, t, t0, ten, tol, two, ZERO
c dim(W) = N1*(N1+1) + MEQ*(N1+1) + MINEQ*(N1+1) for LSQ
c +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ
c +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1 for LSEI
c with MINEQ = M - MEQ + 2*N1 & N1 = N+1
SAVE alpha, f0, gs, h1, h2, h3, h4, t, t0, tol,
* iexact, incons, ireset, itermx, line, n1, n2, n3
DATA ZERO /0.0d0/, one /1.0d0/, alfmin /1.0d-1/,
* hun /1.0d+2/, ten /1.0d+1/, two /2.0d0/
IF (mode) 260, 100, 220
100 itermx = iter
IF (acc.GE.ZERO) THEN
iexact = 0
ELSE
iexact = 1
ENDIF
acc = ABS(acc)
tol = ten*acc
iter = 0
ireset = 0
n1 = n + 1
n2 = n1*n/2
n3 = n2 + 1
s(1) = ZERO
mu(1) = ZERO
CALL dcopy_(n, s(1), 0, s, 1)
CALL dcopy_(m, mu(1), 0, mu, 1)
C RESET BFGS MATRIX
110 ireset = ireset + 1
IF (ireset.GT.5) GO TO 255
l(1) = ZERO
CALL dcopy_(n2, l(1), 0, l, 1)
j = 1
DO 120 i=1,n
l(j) = one
j = j + n1 - i
120 CONTINUE
C MAIN ITERATION : SEARCH DIRECTION, STEPLENGTH, LDL'-UPDATE
130 iter = iter + 1
mode = 9
IF (iter.GT.itermx) GO TO 330
C SEARCH DIRECTION AS SOLUTION OF QP - SUBPROBLEM
CALL dcopy_(n, xl, 1, u, 1)
CALL dcopy_(n, xu, 1, v, 1)
CALL daxpy_sl(n, -one, x, 1, u, 1)
CALL daxpy_sl(n, -one, x, 1, v, 1)
h4 = one
CALL lsq (m, meq, n , n3, la, l, g, a, c, u, v, s, r, w, iw, mode)
C AUGMENTED PROBLEM FOR INCONSISTENT LINEARIZATION
IF (mode.EQ.6) THEN
IF (n.EQ.meq) THEN
mode = 4
ENDIF
ENDIF
IF (mode.EQ.4) THEN
DO 140 j=1,m
IF (j.LE.meq) THEN
a(j,n1) = -c(j)
ELSE
a(j,n1) = MAX(-c(j),ZERO)
ENDIF
140 CONTINUE
s(1) = ZERO
CALL dcopy_(n, s(1), 0, s, 1)
h3 = ZERO
g(n1) = ZERO
l(n3) = hun
s(n1) = one
u(n1) = ZERO
v(n1) = one
incons = 0
150 CALL lsq (m, meq, n1, n3, la, l, g, a, c, u, v, s, r,
* w, iw, mode)
h4 = one - s(n1)
IF (mode.EQ.4) THEN
l(n3) = ten*l(n3)
incons = incons + 1
IF (incons.GT.5) GO TO 330
GOTO 150
ELSE IF (mode.NE.1) THEN
GOTO 330
ENDIF
ELSE IF (mode.NE.1) THEN
GOTO 330
ENDIF
C UPDATE MULTIPLIERS FOR L1-TEST
DO 160 i=1,n
v(i) = g(i) - ddot_sl(m,a(1,i),1,r,1)
160 CONTINUE
f0 = f
CALL dcopy_(n, x, 1, x0, 1)
gs = ddot_sl(n, g, 1, s, 1)
h1 = ABS(gs)
h2 = ZERO
DO 170 j=1,m
IF (j.LE.meq) THEN
h3 = c(j)
ELSE
h3 = ZERO
ENDIF
h2 = h2 + MAX(-c(j),h3)
h3 = ABS(r(j))
mu(j) = MAX(h3,(mu(j)+h3)/two)
h1 = h1 + h3*ABS(c(j))
170 CONTINUE
C CHECK CONVERGENCE
mode = 0
IF (h1.LT.acc .AND. h2.LT.acc) GO TO 330
h1 = ZERO
DO 180 j=1,m
IF (j.LE.meq) THEN
h3 = c(j)
ELSE
h3 = ZERO
ENDIF
h1 = h1 + mu(j)*MAX(-c(j),h3)
180 CONTINUE
t0 = f + h1
h3 = gs - h1*h4
mode = 8
IF (h3.GE.ZERO) GO TO 110
C LINE SEARCH WITH AN L1-TESTFUNCTION
line = 0
alpha = one
IF (iexact.EQ.1) GOTO 210
C INEXACT LINESEARCH
190 line = line + 1
h3 = alpha*h3
CALL dscal_sl(n, alpha, s, 1)
CALL dcopy_(n, x0, 1, x, 1)
CALL daxpy_sl(n, one, s, 1, x, 1)
mode = 1
GO TO 330
200 IF (h1.LE.h3/ten .OR. line.GT.10) GO TO 240
alpha = MAX(h3/(two*(h3-h1)),alfmin)
GO TO 190
C EXACT LINESEARCH
210 IF (line.NE.3) THEN
alpha = linmin(line,alfmin,one,t,tol)
CALL dcopy_(n, x0, 1, x, 1)
CALL daxpy_sl(n, alpha, s, 1, x, 1)
mode = 1
GOTO 330
ENDIF
CALL dscal_sl(n, alpha, s, 1)
GOTO 240
C CALL FUNCTIONS AT CURRENT X
220 t = f
DO 230 j=1,m
IF (j.LE.meq) THEN
h1 = c(j)
ELSE
h1 = ZERO
ENDIF
t = t + mu(j)*MAX(-c(j),h1)
230 CONTINUE
h1 = t - t0
GOTO (200, 210) iexact+1
C CHECK CONVERGENCE
240 h3 = ZERO
DO 250 j=1,m
IF (j.LE.meq) THEN
h1 = c(j)
ELSE
h1 = ZERO
ENDIF
h3 = h3 + MAX(-c(j),h1)
250 CONTINUE
IF ((ABS(f-f0).LT.acc .OR. dnrm2_(n,s,1).LT.acc) .AND. h3.LT.acc)
* THEN
mode = 0
ELSE
mode = -1
ENDIF
GO TO 330
C CHECK relaxed CONVERGENCE in case of positive directional derivative
255 CONTINUE
IF ((ABS(f-f0).LT.tol .OR. dnrm2_(n,s,1).LT.tol) .AND. h3.LT.tol)
* THEN
mode = 0
ELSE
mode = 8
ENDIF
GO TO 330
C CALL JACOBIAN AT CURRENT X
C UPDATE CHOLESKY-FACTORS OF HESSIAN MATRIX BY MODIFIED BFGS FORMULA
260 DO 270 i=1,n
u(i) = g(i) - ddot_sl(m,a(1,i),1,r,1) - v(i)
270 CONTINUE
C L'*S
k = 0
DO 290 i=1,n
h1 = ZERO
k = k + 1
DO 280 j=i+1,n
k = k + 1
h1 = h1 + l(k)*s(j)
280 CONTINUE
v(i) = s(i) + h1
290 CONTINUE
C D*L'*S
k = 1
DO 300 i=1,n
v(i) = l(k)*v(i)
k = k + n1 - i
300 CONTINUE
C L*D*L'*S
DO 320 i=n,1,-1
h1 = ZERO
k = i
DO 310 j=1,i - 1
h1 = h1 + l(k)*v(j)
k = k + n - j
310 CONTINUE
v(i) = v(i) + h1
320 CONTINUE
h1 = ddot_sl(n,s,1,u,1)
h2 = ddot_sl(n,s,1,v,1)
h3 = 0.2d0*h2
IF (h1.LT.h3) THEN
h4 = (h2-h3)/(h2-h1)
h1 = h3
CALL dscal_sl(n, h4, u, 1)
CALL daxpy_sl(n, one-h4, v, 1, u, 1)
ENDIF
CALL ldl(n, l, u, +one/h1, v)
CALL ldl(n, l, v, -one/h2, u)
C END OF MAIN ITERATION
GO TO 130
C END OF SLSQPB
330 END
SUBROUTINE lsq(m,meq,n,nl,la,l,g,a,b,xl,xu,x,y,w,jw,mode)
C MINIMIZE with respect to X
C ||E*X - F||
C 1/2 T
C WITH UPPER TRIANGULAR MATRIX E = +D *L ,
C -1/2 -1
C AND VECTOR F = -D *L *G,
C WHERE THE UNIT LOWER TRIDIANGULAR MATRIX L IS STORED COLUMNWISE
C DENSE IN THE N*(N+1)/2 ARRAY L WITH VECTOR D STORED IN ITS
C 'DIAGONAL' THUS SUBSTITUTING THE ONE-ELEMENTS OF L
C SUBJECT TO
C A(J)*X - B(J) = 0 , J=1,...,MEQ,
C A(J)*X - B(J) >=0, J=MEQ+1,...,M,
C XL(I) <= X(I) <= XU(I), I=1,...,N,
C ON ENTRY, THE USER HAS TO PROVIDE THE ARRAYS L, G, A, B, XL, XU.
C WITH DIMENSIONS: L(N*(N+1)/2), G(N), A(LA,N), B(M), XL(N), XU(N)
C THE WORKING ARRAY W MUST HAVE AT LEAST THE FOLLOWING DIMENSION:
c DIM(W) = (3*N+M)*(N+1) for LSQ
c +(N-MEQ+1)*(MINEQ+2) + 2*MINEQ for LSI
c +(N+MINEQ)*(N-MEQ) + 2*MEQ + N for LSEI
c with MINEQ = M - MEQ + 2*N
C ON RETURN, NO ARRAY WILL BE CHANGED BY THE SUBROUTINE.
C X STORES THE N-DIMENSIONAL SOLUTION VECTOR
C Y STORES THE VECTOR OF LAGRANGE MULTIPLIERS OF DIMENSION
C M+N+N (CONSTRAINTS+LOWER+UPPER BOUNDS)
C MODE IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANINGS:
C MODE=1: SUCCESSFUL COMPUTATION
C 2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N<1)
C 3: ITERATION COUNT EXCEEDED BY NNLS
C 4: INEQUALITY CONSTRAINTS INCOMPATIBLE
C 5: MATRIX E IS NOT OF FULL RANK
C 6: MATRIX C IS NOT OF FULL RANK
C 7: RANK DEFECT IN HFTI
c coded Dieter Kraft, april 1987
c revised march 1989
DOUBLE PRECISION l,g,a,b,w,xl,xu,x,y,
. diag,ZERO,one,ddot_sl,xnorm
INTEGER jw(*),i,ic,id,ie,IF,ig,ih,il,im,ip,iu,iw,
. i1,i2,i3,i4,la,m,meq,mineq,mode,m1,n,nl,n1,n2,n3,
. nancnt,j
DIMENSION a(la,n), b(la), g(n), l(nl),
. w(*), x(n), xl(n), xu(n), y(m+n+n)
DATA ZERO/0.0d0/, one/1.0d0/
n1 = n + 1
mineq = m - meq
m1 = mineq + n + n
c determine whether to solve problem
c with inconsistent linerarization (n2=1)
c or not (n2=0)
n2 = n1*n/2 + 1
IF (n2.EQ.nl) THEN
n2 = 0
ELSE
n2 = 1
ENDIF
n3 = n-n2
C RECOVER MATRIX E AND VECTOR F FROM L AND G
i2 = 1
i3 = 1
i4 = 1
ie = 1
IF = n*n+1
DO 10 i=1,n3
i1 = n1-i
diag = SQRT (l(i2))
w(i3) = ZERO
CALL dcopy_ (i1 , w(i3), 0, w(i3), 1)
CALL dcopy_ (i1-n2, l(i2), 1, w(i3), n)
CALL dscal_sl (i1-n2, diag, w(i3), n)
w(i3) = diag
w(IF-1+i) = (g(i) - ddot_sl (i-1, w(i4), 1, w(IF), 1))/diag
i2 = i2 + i1 - n2
i3 = i3 + n1
i4 = i4 + n
10 CONTINUE
IF (n2.EQ.1) THEN
w(i3) = l(nl)
w(i4) = ZERO
CALL dcopy_ (n3, w(i4), 0, w(i4), 1)
w(IF-1+n) = ZERO
ENDIF
CALL dscal_sl (n, - one, w(IF), 1)
ic = IF + n
id = ic + meq*n
IF (meq .GT. 0) THEN
C RECOVER MATRIX C FROM UPPER PART OF A
DO 20 i=1,meq
CALL dcopy_ (n, a(i,1), la, w(ic-1+i), meq)
20 CONTINUE
C RECOVER VECTOR D FROM UPPER PART OF B
CALL dcopy_ (meq, b(1), 1, w(id), 1)
CALL dscal_sl (meq, - one, w(id), 1)
ENDIF
ig = id + meq
C RECOVER MATRIX G FROM LOWER PART OF A
C The matrix G(mineq+2*n,m1) is stored at w(ig)
C Not all rows will be filled if some of the upper/lower
C bounds are unbounded.
IF (mineq .GT. 0) THEN
DO 30 i=1,mineq
CALL dcopy_ (n, a(meq+i,1), la, w(ig-1+i), m1)
30 CONTINUE
ENDIF
ih = ig + m1*n
iw = ih + mineq + 2*n
IF (mineq .GT. 0) THEN
C RECOVER H FROM LOWER PART OF B
C The vector H(mineq+2*n) is stored at w(ih)
CALL dcopy_ (mineq, b(meq+1), 1, w(ih), 1)
CALL dscal_sl (mineq, - one, w(ih), 1)
ENDIF
C AUGMENT MATRIX G BY +I AND -I, AND,
C AUGMENT VECTOR H BY XL AND XU
C NaN value indicates no bound
ip = ig + mineq
il = ih + mineq
nancnt = 0
DO 40 i=1,n
if (xl(i).eq.xl(i)) then
w(il) = xl(i)
do 41 j=1,n
w(ip + m1*(j-1)) = 0
41 continue
w(ip + m1*(i-1)) = 1
ip = ip + 1
il = il + 1
else
nancnt = nancnt + 1
end if
40 CONTINUE
DO 50 i=1,n
if (xu(i).eq.xu(i)) then
w(il) = -xu(i)
do 51 j=1,n
w(ip + m1*(j-1)) = 0
51 continue
w(ip + m1*(i-1)) = -1
ip = ip + 1
il = il + 1
else
nancnt = nancnt + 1
end if
50 CONTINUE
CALL lsei (w(ic), w(id), w(ie), w(IF), w(ig), w(ih), MAX(1,meq),
. meq, n, n, m1, m1-nancnt, n, x, xnorm, w(iw), jw, mode)
IF (mode .EQ. 1) THEN
c restore Lagrange multipliers (only for user-defined variables)
CALL dcopy_ (m, w(iw), 1, y(1), 1)
c set rest of the multipliers to nan (they are not used)
IF (n3 .GT. 0) THEN
y(m+1) = 0
y(m+1) = 0 / y(m+1)
do 60 i=m+2,m+n3+n3
y(i) = y(m+1)
60 continue
ENDIF
ENDIF
call bound(n, x, xl, xu)
C END OF SUBROUTINE LSQ
END
SUBROUTINE lsei(c,d,e,f,g,h,lc,mc,LE,me,lg,mg,n,x,xnrm,w,jw,mode)
C FOR MODE=1, THE SUBROUTINE RETURNS THE SOLUTION X OF
C EQUALITY & INEQUALITY CONSTRAINED LEAST SQUARES PROBLEM LSEI :
C MIN ||E*X - F||
C X
C S.T. C*X = D,
C G*X >= H.
C USING QR DECOMPOSITION & ORTHOGONAL BASIS OF NULLSPACE OF C
C CHAPTER 23.6 OF LAWSON & HANSON: SOLVING LEAST SQUARES PROBLEMS.
C THE FOLLOWING DIMENSIONS OF THE ARRAYS DEFINING THE PROBLEM
C ARE NECESSARY
C DIM(E) : FORMAL (LE,N), ACTUAL (ME,N)
C DIM(F) : FORMAL (LE ), ACTUAL (ME )
C DIM(C) : FORMAL (LC,N), ACTUAL (MC,N)
C DIM(D) : FORMAL (LC ), ACTUAL (MC )
C DIM(G) : FORMAL (LG,N), ACTUAL (MG,N)
C DIM(H) : FORMAL (LG ), ACTUAL (MG )
C DIM(X) : FORMAL (N ), ACTUAL (N )
C DIM(W) : 2*MC+ME+(ME+MG)*(N-MC) for LSEI
C +(N-MC+1)*(MG+2)+2*MG for LSI
C DIM(JW): MAX(MG,L)
C ON ENTRY, THE USER HAS TO PROVIDE THE ARRAYS C, D, E, F, G, AND H.
C ON RETURN, ALL ARRAYS WILL BE CHANGED BY THE SUBROUTINE.
C X STORES THE SOLUTION VECTOR
C XNORM STORES THE RESIDUUM OF THE SOLUTION IN EUCLIDIAN NORM
C W STORES THE VECTOR OF LAGRANGE MULTIPLIERS IN ITS FIRST
C MC+MG ELEMENTS
C MODE IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANINGS:
C MODE=1: SUCCESSFUL COMPUTATION
C 2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N<1)
C 3: ITERATION COUNT EXCEEDED BY NNLS
C 4: INEQUALITY CONSTRAINTS INCOMPATIBLE
C 5: MATRIX E IS NOT OF FULL RANK
C 6: MATRIX C IS NOT OF FULL RANK
C 7: RANK DEFECT IN HFTI
C 18.5.1981, DIETER KRAFT, DFVLR OBERPFAFFENHOFEN
C 20.3.1987, DIETER KRAFT, DFVLR OBERPFAFFENHOFEN
INTEGER jw(*),i,ie,IF,ig,iw,j,k,krank,l,lc,LE,lg,
. mc,mc1,me,mg,mode,n
DOUBLE PRECISION c(lc,n),e(LE,n),g(lg,n),d(lc),f(LE),h(lg),x(n),
. w(*),t,ddot_sl,xnrm,dnrm2_,epmach,ZERO
DATA epmach/2.22d-16/,ZERO/0.0d+00/
mode=2
IF(mc.GT.n) GOTO 75
l=n-mc
mc1=mc+1
iw=(l+1)*(mg+2)+2*mg+mc
ie=iw+mc+1
IF=ie+me*l
ig=IF+me
C TRIANGULARIZE C AND APPLY FACTORS TO E AND G
DO 10 i=1,mc
j=MIN(i+1,lc)
CALL h12(1,i,i+1,n,c(i,1),lc,w(iw+i),c(j,1),lc,1,mc-i)
CALL h12(2,i,i+1,n,c(i,1),lc,w(iw+i),e ,LE,1,me)
10 CALL h12(2,i,i+1,n,c(i,1),lc,w(iw+i),g ,lg,1,mg)
C SOLVE C*X=D AND MODIFY F
mode=6
DO 15 i=1,mc
IF(ABS(c(i,i)).LT.epmach) GOTO 75
x(i)=(d(i)-ddot_sl(i-1,c(i,1),lc,x,1))/c(i,i)
15 CONTINUE
mode=1
w(mc1) = ZERO
CALL dcopy_ (mg-mc,w(mc1),0,w(mc1),1)
IF(mc.EQ.n) GOTO 50
DO 20 i=1,me
20 w(IF-1+i)=f(i)-ddot_sl(mc,e(i,1),LE,x,1)
C STORE TRANSFORMED E & G
DO 25 i=1,me
25 CALL dcopy_(l,e(i,mc1),LE,w(ie-1+i),me)
DO 30 i=1,mg
30 CALL dcopy_(l,g(i,mc1),lg,w(ig-1+i),mg)
IF(mg.GT.0) GOTO 40
C SOLVE LS WITHOUT INEQUALITY CONSTRAINTS
mode=7
k=MAX(LE,n)
t=SQRT(epmach)
CALL hfti (w(ie),me,me,l,w(IF),k,1,t,krank,xnrm,w,w(l+1),jw)
CALL dcopy_(l,w(IF),1,x(mc1),1)
IF(krank.NE.l) GOTO 75
mode=1
GOTO 50
C MODIFY H AND SOLVE INEQUALITY CONSTRAINED LS PROBLEM
40 DO 45 i=1,mg
45 h(i)=h(i)-ddot_sl(mc,g(i,1),lg,x,1)
CALL lsi
. (w(ie),w(IF),w(ig),h,me,me,mg,mg,l,x(mc1),xnrm,w(mc1),jw,mode)
IF(mc.EQ.0) GOTO 75
t=dnrm2_(mc,x,1)
xnrm=SQRT(xnrm*xnrm+t*t)
IF(mode.NE.1) GOTO 75
C SOLUTION OF ORIGINAL PROBLEM AND LAGRANGE MULTIPLIERS
50 DO 55 i=1,me
55 f(i)=ddot_sl(n,e(i,1),LE,x,1)-f(i)
DO 60 i=1,mc
60 d(i)=ddot_sl(me,e(1,i),1,f,1)-ddot_sl(mg,g(1,i),1,w(mc1),1)
DO 65 i=mc,1,-1
65 CALL h12(2,i,i+1,n,c(i,1),lc,w(iw+i),x,1,1,1)
DO 70 i=mc,1,-1
j=MIN(i+1,lc)
w(i)=(d(i)-ddot_sl(mc-i,c(j,i),1,w(j),1))/c(i,i)
70 CONTINUE
C END OF SUBROUTINE LSEI
75 END
SUBROUTINE lsi(e,f,g,h,LE,me,lg,mg,n,x,xnorm,w,jw,mode)
C FOR MODE=1, THE SUBROUTINE RETURNS THE SOLUTION X OF
C INEQUALITY CONSTRAINED LINEAR LEAST SQUARES PROBLEM:
C MIN ||E*X-F||
C X
C S.T. G*X >= H
C THE ALGORITHM IS BASED ON QR DECOMPOSITION AS DESCRIBED IN
C CHAPTER 23.5 OF LAWSON & HANSON: SOLVING LEAST SQUARES PROBLEMS
C THE FOLLOWING DIMENSIONS OF THE ARRAYS DEFINING THE PROBLEM
C ARE NECESSARY
C DIM(E) : FORMAL (LE,N), ACTUAL (ME,N)
C DIM(F) : FORMAL (LE ), ACTUAL (ME )
C DIM(G) : FORMAL (LG,N), ACTUAL (MG,N)
C DIM(H) : FORMAL (LG ), ACTUAL (MG )
C DIM(X) : N
C DIM(W) : (N+1)*(MG+2) + 2*MG
C DIM(JW): LG
C ON ENTRY, THE USER HAS TO PROVIDE THE ARRAYS E, F, G, AND H.
C ON RETURN, ALL ARRAYS WILL BE CHANGED BY THE SUBROUTINE.
C X STORES THE SOLUTION VECTOR
C XNORM STORES THE RESIDUUM OF THE SOLUTION IN EUCLIDIAN NORM
C W STORES THE VECTOR OF LAGRANGE MULTIPLIERS IN ITS FIRST
C MG ELEMENTS
C MODE IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANINGS:
C MODE=1: SUCCESSFUL COMPUTATION
C 2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N<1)
C 3: ITERATION COUNT EXCEEDED BY NNLS
C 4: INEQUALITY CONSTRAINTS INCOMPATIBLE
C 5: MATRIX E IS NOT OF FULL RANK
C 03.01.1980, DIETER KRAFT: CODED
C 20.03.1987, DIETER KRAFT: REVISED TO FORTRAN 77
INTEGER i,j,LE,lg,me,mg,mode,n,jw(lg)
DOUBLE PRECISION e(LE,n),f(LE),g(lg,n),h(lg),x(n),w(*),
. ddot_sl,xnorm,dnrm2_,epmach,t,one
DATA epmach/2.22d-16/,one/1.0d+00/
C QR-FACTORS OF E AND APPLICATION TO F
DO 10 i=1,n
j=MIN(i+1,n)
CALL h12(1,i,i+1,me,e(1,i),1,t,e(1,j),1,LE,n-i)
10 CALL h12(2,i,i+1,me,e(1,i),1,t,f ,1,1 ,1 )
C TRANSFORM G AND H TO GET LEAST DISTANCE PROBLEM
mode=5
DO 30 i=1,mg
DO 20 j=1,n
IF (ABS(e(j,j)).LT.epmach) GOTO 50
20 g(i,j)=(g(i,j)-ddot_sl(j-1,g(i,1),lg,e(1,j),1))/e(j,j)
30 h(i)=h(i)-ddot_sl(n,g(i,1),lg,f,1)
C SOLVE LEAST DISTANCE PROBLEM
CALL ldp(g,lg,mg,n,h,x,xnorm,w,jw,mode)
IF (mode.NE.1) GOTO 50
C SOLUTION OF ORIGINAL PROBLEM
CALL daxpy_sl(n,one,f,1,x,1)
DO 40 i=n,1,-1
j=MIN(i+1,n)
40 x(i)=(x(i)-ddot_sl(n-i,e(i,j),LE,x(j),1))/e(i,i)
j=MIN(n+1,me)
t=dnrm2_(me-n,f(j),1)
xnorm=SQRT(xnorm*xnorm+t*t)
C END OF SUBROUTINE LSI
50 END
SUBROUTINE ldp(g,mg,m,n,h,x,xnorm,w,INDEX,mode)
C T
C MINIMIZE 1/2 X X SUBJECT TO G * X >= H.
C C.L. LAWSON, R.J. HANSON: 'SOLVING LEAST SQUARES PROBLEMS'
C PRENTICE HALL, ENGLEWOOD CLIFFS, NEW JERSEY, 1974.
C PARAMETER DESCRIPTION:
C G(),MG,M,N ON ENTRY G() STORES THE M BY N MATRIX OF
C LINEAR INEQUALITY CONSTRAINTS. G() HAS FIRST
C DIMENSIONING PARAMETER MG
C H() ON ENTRY H() STORES THE M VECTOR H REPRESENTING
C THE RIGHT SIDE OF THE INEQUALITY SYSTEM
C REMARK: G(),H() WILL NOT BE CHANGED DURING CALCULATIONS BY LDP
C X() ON ENTRY X() NEED NOT BE INITIALIZED.
C ON EXIT X() STORES THE SOLUTION VECTOR X IF MODE=1.
C XNORM ON EXIT XNORM STORES THE EUCLIDIAN NORM OF THE
C SOLUTION VECTOR IF COMPUTATION IS SUCCESSFUL
C W() W IS A ONE DIMENSIONAL WORKING SPACE, THE LENGTH
C OF WHICH SHOULD BE AT LEAST (M+2)*(N+1) + 2*M
C ON EXIT W() STORES THE LAGRANGE MULTIPLIERS
C ASSOCIATED WITH THE CONSTRAINTS
C AT THE SOLUTION OF PROBLEM LDP
C INDEX() INDEX() IS A ONE DIMENSIONAL INTEGER WORKING SPACE
C OF LENGTH AT LEAST M
C MODE MODE IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING
C MEANINGS:
C MODE=1: SUCCESSFUL COMPUTATION
C 2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N.LE.0)
C 3: ITERATION COUNT EXCEEDED BY NNLS
C 4: INEQUALITY CONSTRAINTS INCOMPATIBLE
DOUBLE PRECISION g,h,x,xnorm,w,u,v,
. ZERO,one,fac,rnorm,dnrm2_,ddot_sl,diff
INTEGER INDEX,i,IF,iw,iwdual,iy,iz,j,m,mg,mode,n,n1
DIMENSION g(mg,n),h(m),x(n),w(*),INDEX(m)
diff(u,v)= u-v
DATA ZERO,one/0.0d0,1.0d0/
mode=2
IF(n.LE.0) GOTO 50
C STATE DUAL PROBLEM
mode=1
x(1)=ZERO
CALL dcopy_(n,x(1),0,x,1)
xnorm=ZERO
IF(m.EQ.0) GOTO 50
iw=0
DO 20 j=1,m
DO 10 i=1,n
iw=iw+1
10 w(iw)=g(j,i)
iw=iw+1
20 w(iw)=h(j)
IF=iw+1
DO 30 i=1,n
iw=iw+1
30 w(iw)=ZERO
w(iw+1)=one
n1=n+1
iz=iw+2
iy=iz+n1
iwdual=iy+m
C SOLVE DUAL PROBLEM
CALL nnls (w,n1,n1,m,w(IF),w(iy),rnorm,w(iwdual),w(iz),INDEX,mode)
IF(mode.NE.1) GOTO 50
mode=4
IF(rnorm.LE.ZERO) GOTO 50
C COMPUTE SOLUTION OF PRIMAL PROBLEM
fac=one-ddot_sl(m,h,1,w(iy),1)
IF(diff(one+fac,one).LE.ZERO) GOTO 50
mode=1
fac=one/fac
DO 40 j=1,n
40 x(j)=fac*ddot_sl(m,g(1,j),1,w(iy),1)
xnorm=dnrm2_(n,x,1)
C COMPUTE LAGRANGE MULTIPLIERS FOR PRIMAL PROBLEM
w(1)=ZERO
CALL dcopy_(m,w(1),0,w,1)
CALL daxpy_sl(m,fac,w(iy),1,w,1)
C END OF SUBROUTINE LDP
50 END
SUBROUTINE nnls (a, mda, m, n, b, x, rnorm, w, z, INDEX, mode)
C C.L.LAWSON AND R.J.HANSON, JET PROPULSION LABORATORY:
C 'SOLVING LEAST SQUARES PROBLEMS'. PRENTICE-HALL.1974
C ********** NONNEGATIVE LEAST SQUARES **********
C GIVEN AN M BY N MATRIX, A, AND AN M-VECTOR, B, COMPUTE AN
C N-VECTOR, X, WHICH SOLVES THE LEAST SQUARES PROBLEM
C A*X = B SUBJECT TO X >= 0
C A(),MDA,M,N
C MDA IS THE FIRST DIMENSIONING PARAMETER FOR THE ARRAY,A().
C ON ENTRY A() CONTAINS THE M BY N MATRIX,A.
C ON EXIT A() CONTAINS THE PRODUCT Q*A,
C WHERE Q IS AN M BY M ORTHOGONAL MATRIX GENERATED
C IMPLICITLY BY THIS SUBROUTINE.
C EITHER M>=N OR M<N IS PERMISSIBLE.
C THERE IS NO RESTRICTION ON THE RANK OF A.
C B() ON ENTRY B() CONTAINS THE M-VECTOR, B.
C ON EXIT B() CONTAINS Q*B.
C X() ON ENTRY X() NEED NOT BE INITIALIZED.
C ON EXIT X() WILL CONTAIN THE SOLUTION VECTOR.
C RNORM ON EXIT RNORM CONTAINS THE EUCLIDEAN NORM OF THE
C RESIDUAL VECTOR.
C W() AN N-ARRAY OF WORKING SPACE.
C ON EXIT W() WILL CONTAIN THE DUAL SOLUTION VECTOR.
C W WILL SATISFY W(I)=0 FOR ALL I IN SET P
C AND W(I)<=0 FOR ALL I IN SET Z
C Z() AN M-ARRAY OF WORKING SPACE.
C INDEX()AN INTEGER WORKING ARRAY OF LENGTH AT LEAST N.
C ON EXIT THE CONTENTS OF THIS ARRAY DEFINE THE SETS
C P AND Z AS FOLLOWS:
C INDEX(1) THRU INDEX(NSETP) = SET P.
C INDEX(IZ1) THRU INDEX (IZ2) = SET Z.
C IZ1=NSETP + 1 = NPP1, IZ2=N.
C MODE THIS IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANING:
C 1 THE SOLUTION HAS BEEN COMPUTED SUCCESSFULLY.
C 2 THE DIMENSIONS OF THE PROBLEM ARE WRONG,
C EITHER M <= 0 OR N <= 0.
C 3 ITERATION COUNT EXCEEDED, MORE THAN 3*N ITERATIONS.
INTEGER i,ii,ip,iter,itmax,iz,izmax,iz1,iz2,j,jj,jz,
* k,l,m,mda,mode,n,npp1,nsetp,INDEX(n)
DOUBLE PRECISION a(mda,n),b(m),x(n),w(n),z(m),asave,diff,
* factor,ddot_sl,ZERO,one,wmax,alpha,
* c,s,t,u,v,up,rnorm,unorm,dnrm2_
diff(u,v)= u-v
DATA ZERO,one,factor/0.0d0,1.0d0,1.0d-2/
c revised Dieter Kraft, March 1983
mode=2
IF(m.LE.0.OR.n.LE.0) GOTO 290
mode=1
iter=0
itmax=3*n
C STEP ONE (INITIALIZE)
DO 100 i=1,n
100 INDEX(i)=i
iz1=1
iz2=n
nsetp=0
npp1=1
x(1)=ZERO
CALL dcopy_(n,x(1),0,x,1)
C STEP TWO (COMPUTE DUAL VARIABLES)
C .....ENTRY LOOP A
110 IF(iz1.GT.iz2.OR.nsetp.GE.m) GOTO 280
DO 120 iz=iz1,iz2
j=INDEX(iz)
120 w(j)=ddot_sl(m-nsetp,a(npp1,j),1,b(npp1),1)
C STEP THREE (TEST DUAL VARIABLES)
130 wmax=ZERO
DO 140 iz=iz1,iz2
j=INDEX(iz)
IF(w(j).LE.wmax) GOTO 140
wmax=w(j)
izmax=iz
140 CONTINUE
C .....EXIT LOOP A
IF(wmax.LE.ZERO) GOTO 280
iz=izmax
j=INDEX(iz)
C STEP FOUR (TEST INDEX J FOR LINEAR DEPENDENCY)
asave=a(npp1,j)
CALL h12(1,npp1,npp1+1,m,a(1,j),1,up,z,1,1,0)
unorm=dnrm2_(nsetp,a(1,j),1)
t=factor*ABS(a(npp1,j))
IF(diff(unorm+t,unorm).LE.ZERO) GOTO 150
CALL dcopy_(m,b,1,z,1)
CALL h12(2,npp1,npp1+1,m,a(1,j),1,up,z,1,1,1)
IF(z(npp1)/a(npp1,j).GT.ZERO) GOTO 160
150 a(npp1,j)=asave
w(j)=ZERO
GOTO 130
C STEP FIVE (ADD COLUMN)
160 CALL dcopy_(m,z,1,b,1)
INDEX(iz)=INDEX(iz1)
INDEX(iz1)=j
iz1=iz1+1
nsetp=npp1
npp1=npp1+1
DO 170 jz=iz1,iz2
jj=INDEX(jz)
170 CALL h12(2,nsetp,npp1,m,a(1,j),1,up,a(1,jj),1,mda,1)
k=MIN(npp1,mda)
w(j)=ZERO
CALL dcopy_(m-nsetp,w(j),0,a(k,j),1)
C STEP SIX (SOLVE LEAST SQUARES SUB-PROBLEM)
C .....ENTRY LOOP B
180 DO 200 ip=nsetp,1,-1
IF(ip.EQ.nsetp) GOTO 190
CALL daxpy_sl(ip,-z(ip+1),a(1,jj),1,z,1)
190 jj=INDEX(ip)
200 z(ip)=z(ip)/a(ip,jj)
iter=iter+1
IF(iter.LE.itmax) GOTO 220
210 mode=3
GOTO 280
C STEP SEVEN TO TEN (STEP LENGTH ALGORITHM)
220 alpha=one
jj=0
DO 230 ip=1,nsetp
IF(z(ip).GT.ZERO) GOTO 230
l=INDEX(ip)
t=-x(l)/(z(ip)-x(l))
IF(alpha.LT.t) GOTO 230
alpha=t
jj=ip
230 CONTINUE
DO 240 ip=1,nsetp
l=INDEX(ip)
240 x(l)=(one-alpha)*x(l) + alpha*z(ip)
C .....EXIT LOOP B
IF(jj.EQ.0) GOTO 110
C STEP ELEVEN (DELETE COLUMN)
i=INDEX(jj)
250 x(i)=ZERO
jj=jj+1
DO 260 j=jj,nsetp
ii=INDEX(j)
INDEX(j-1)=ii
CALL dsrotg(a(j-1,ii),a(j,ii),c,s)
t=a(j-1,ii)
CALL dsrot(n,a(j-1,1),mda,a(j,1),mda,c,s)
a(j-1,ii)=t
a(j,ii)=ZERO
260 CALL dsrot(1,b(j-1),1,b(j),1,c,s)
npp1=nsetp
nsetp=nsetp-1
iz1=iz1-1
INDEX(iz1)=i
IF(nsetp.LE.0) GOTO 210
DO 270 jj=1,nsetp
i=INDEX(jj)
IF(x(i).LE.ZERO) GOTO 250
270 CONTINUE
CALL dcopy_(m,b,1,z,1)
GOTO 180
C STEP TWELVE (SOLUTION)
280 k=MIN(npp1,m)
rnorm=dnrm2_(m-nsetp,b(k),1)
IF(npp1.GT.m) THEN
w(1)=ZERO
CALL dcopy_(n,w(1),0,w,1)
ENDIF
C END OF SUBROUTINE NNLS
290 END
SUBROUTINE hfti(a,mda,m,n,b,mdb,nb,tau,krank,rnorm,h,g,ip)
C RANK-DEFICIENT LEAST SQUARES ALGORITHM AS DESCRIBED IN:
C C.L.LAWSON AND R.J.HANSON, JET PROPULSION LABORATORY, 1973 JUN 12
C TO APPEAR IN 'SOLVING LEAST SQUARES PROBLEMS', PRENTICE-HALL, 1974
C A(*,*),MDA,M,N THE ARRAY A INITIALLY CONTAINS THE M x N MATRIX A
C OF THE LEAST SQUARES PROBLEM AX = B.
C THE FIRST DIMENSIONING PARAMETER MDA MUST SATISFY
C MDA >= M. EITHER M >= N OR M < N IS PERMITTED.
C THERE IS NO RESTRICTION ON THE RANK OF A.
C THE MATRIX A WILL BE MODIFIED BY THE SUBROUTINE.
C B(*,*),MDB,NB IF NB = 0 THE SUBROUTINE WILL MAKE NO REFERENCE
C TO THE ARRAY B. IF NB > 0 THE ARRAY B() MUST
C INITIALLY CONTAIN THE M x NB MATRIX B OF THE
C THE LEAST SQUARES PROBLEM AX = B AND ON RETURN
C THE ARRAY B() WILL CONTAIN THE N x NB SOLUTION X.
C IF NB>1 THE ARRAY B() MUST BE DOUBLE SUBSCRIPTED
C WITH FIRST DIMENSIONING PARAMETER MDB>=MAX(M,N),
C IF NB=1 THE ARRAY B() MAY BE EITHER SINGLE OR
C DOUBLE SUBSCRIPTED.
C TAU ABSOLUTE TOLERANCE PARAMETER FOR PSEUDORANK
C DETERMINATION, PROVIDED BY THE USER.
C KRANK PSEUDORANK OF A, SET BY THE SUBROUTINE.
C RNORM ON EXIT, RNORM(J) WILL CONTAIN THE EUCLIDIAN
C NORM OF THE RESIDUAL VECTOR FOR THE PROBLEM
C DEFINED BY THE J-TH COLUMN VECTOR OF THE ARRAY B.
C H(), G() ARRAYS OF WORKING SPACE OF LENGTH >= N.
C IP() INTEGER ARRAY OF WORKING SPACE OF LENGTH >= N
C RECORDING PERMUTATION INDICES OF COLUMN VECTORS
INTEGER i,j,jb,k,kp1,krank,l,ldiag,lmax,m,
. mda,mdb,n,nb,ip(n)
DOUBLE PRECISION a(mda,n),b(mdb,nb),h(n),g(n),rnorm(nb),factor,
. tau,ZERO,hmax,diff,tmp,ddot_sl,dnrm2_,u,v
diff(u,v)= u-v
DATA ZERO/0.0d0/, factor/1.0d-3/
k=0
ldiag=MIN(m,n)
IF(ldiag.LE.0) GOTO 270
C COMPUTE LMAX
DO 80 j=1,ldiag
IF(j.EQ.1) GOTO 20
lmax=j
DO 10 l=j,n
h(l)=h(l)-a(j-1,l)**2
10 IF(h(l).GT.h(lmax)) lmax=l
IF(diff(hmax+factor*h(lmax),hmax).GT.ZERO)
. GOTO 50
20 lmax=j
DO 40 l=j,n
h(l)=ZERO
DO 30 i=j,m
30 h(l)=h(l)+a(i,l)**2
40 IF(h(l).GT.h(lmax)) lmax=l
hmax=h(lmax)
C COLUMN INTERCHANGES IF NEEDED
50 ip(j)=lmax
IF(ip(j).EQ.j) GOTO 70
DO 60 i=1,m
tmp=a(i,j)
a(i,j)=a(i,lmax)
60 a(i,lmax)=tmp
h(lmax)=h(j)
C J-TH TRANSFORMATION AND APPLICATION TO A AND B
70 i=MIN(j+1,n)
CALL h12(1,j,j+1,m,a(1,j),1,h(j),a(1,i),1,mda,n-j)
80 CALL h12(2,j,j+1,m,a(1,j),1,h(j),b,1,mdb,nb)
C DETERMINE PSEUDORANK
DO 90 j=1,ldiag
90 IF(ABS(a(j,j)).LE.tau) GOTO 100
k=ldiag
GOTO 110
100 k=j-1
110 kp1=k+1
C NORM OF RESIDUALS
DO 130 jb=1,nb
130 rnorm(jb)=dnrm2_(m-k,b(kp1,jb),1)
IF(k.GT.0) GOTO 160
DO 150 jb=1,nb
DO 150 i=1,n
150 b(i,jb)=ZERO
GOTO 270
160 IF(k.EQ.n) GOTO 180
C HOUSEHOLDER DECOMPOSITION OF FIRST K ROWS
DO 170 i=k,1,-1
170 CALL h12(1,i,kp1,n,a(i,1),mda,g(i),a,mda,1,i-1)
180 DO 250 jb=1,nb
C SOLVE K*K TRIANGULAR SYSTEM
DO 210 i=k,1,-1
j=MIN(i+1,n)
210 b(i,jb)=(b(i,jb)-ddot_sl(k-i,a(i,j),mda,b(j,jb),1))/a(i,i)
C COMPLETE SOLUTION VECTOR
IF(k.EQ.n) GOTO 240
DO 220 j=kp1,n
220 b(j,jb)=ZERO
DO 230 i=1,k
230 CALL h12(2,i,kp1,n,a(i,1),mda,g(i),b(1,jb),1,mdb,1)
C REORDER SOLUTION ACCORDING TO PREVIOUS COLUMN INTERCHANGES
240 DO 250 j=ldiag,1,-1
IF(ip(j).EQ.j) GOTO 250
l=ip(j)
tmp=b(l,jb)
b(l,jb)=b(j,jb)
b(j,jb)=tmp
250 CONTINUE
270 krank=k
END
SUBROUTINE h12 (mode,lpivot,l1,m,u,iue,up,c,ice,icv,ncv)
C C.L.LAWSON AND R.J.HANSON, JET PROPULSION LABORATORY, 1973 JUN 12
C TO APPEAR IN 'SOLVING LEAST SQUARES PROBLEMS', PRENTICE-HALL, 1974
C CONSTRUCTION AND/OR APPLICATION OF A SINGLE
C HOUSEHOLDER TRANSFORMATION Q = I + U*(U**T)/B
C MODE = 1 OR 2 TO SELECT ALGORITHM H1 OR H2 .
C LPIVOT IS THE INDEX OF THE PIVOT ELEMENT.
C L1,M IF L1 <= M THE TRANSFORMATION WILL BE CONSTRUCTED TO
C ZERO ELEMENTS INDEXED FROM L1 THROUGH M.
C IF L1 > M THE SUBROUTINE DOES AN IDENTITY TRANSFORMATION.
C U(),IUE,UP
C ON ENTRY TO H1 U() STORES THE PIVOT VECTOR.
C IUE IS THE STORAGE INCREMENT BETWEEN ELEMENTS.
C ON EXIT FROM H1 U() AND UP STORE QUANTITIES DEFINING
C THE VECTOR U OF THE HOUSEHOLDER TRANSFORMATION.
C ON ENTRY TO H2 U() AND UP
C SHOULD STORE QUANTITIES PREVIOUSLY COMPUTED BY H1.
C THESE WILL NOT BE MODIFIED BY H2.
C C() ON ENTRY TO H1 OR H2 C() STORES A MATRIX WHICH WILL BE
C REGARDED AS A SET OF VECTORS TO WHICH THE HOUSEHOLDER
C TRANSFORMATION IS TO BE APPLIED.
C ON EXIT C() STORES THE SET OF TRANSFORMED VECTORS.
C ICE STORAGE INCREMENT BETWEEN ELEMENTS OF VECTORS IN C().
C ICV STORAGE INCREMENT BETWEEN VECTORS IN C().
C NCV NUMBER OF VECTORS IN C() TO BE TRANSFORMED.
C IF NCV <= 0 NO OPERATIONS WILL BE DONE ON C().
INTEGER incr, ice, icv, iue, lpivot, l1, mode, ncv
INTEGER i, i2, i3, i4, j, m
DOUBLE PRECISION u,up,c,cl,clinv,b,sm,one,ZERO
DIMENSION u(iue,*), c(*)
DATA one/1.0d+00/, ZERO/0.0d+00/
IF (0.GE.lpivot.OR.lpivot.GE.l1.OR.l1.GT.m) GOTO 80
cl=ABS(u(1,lpivot))
IF (mode.EQ.2) GOTO 30
C ****** CONSTRUCT THE TRANSFORMATION ******
DO 10 j=l1,m
sm=ABS(u(1,j))
10 cl=MAX(sm,cl)
IF (cl.LE.ZERO) GOTO 80
clinv=one/cl
sm=(u(1,lpivot)*clinv)**2
DO 20 j=l1,m
20 sm=sm+(u(1,j)*clinv)**2
cl=cl*SQRT(sm)
IF (u(1,lpivot).GT.ZERO) cl=-cl
up=u(1,lpivot)-cl
u(1,lpivot)=cl
GOTO 40
C ****** APPLY THE TRANSFORMATION I+U*(U**T)/B TO C ******
30 IF (cl.LE.ZERO) GOTO 80
40 IF (ncv.LE.0) GOTO 80
b=up*u(1,lpivot)
IF (b.GE.ZERO) GOTO 80
b=one/b
i2=1-icv+ice*(lpivot-1)
incr=ice*(l1-lpivot)
DO 70 j=1,ncv
i2=i2+icv
i3=i2+incr
i4=i3
sm=c(i2)*up
DO 50 i=l1,m
sm=sm+c(i3)*u(1,i)
50 i3=i3+ice
IF (sm.EQ.ZERO) GOTO 70
sm=sm*b
c(i2)=c(i2)+sm*up
DO 60 i=l1,m
c(i4)=c(i4)+sm*u(1,i)
60 i4=i4+ice
70 CONTINUE
80 END
SUBROUTINE ldl (n,a,z,sigma,w)
C LDL LDL' - RANK-ONE - UPDATE
C PURPOSE:
C UPDATES THE LDL' FACTORS OF MATRIX A BY RANK-ONE MATRIX
C SIGMA*Z*Z'
C INPUT ARGUMENTS: (* MEANS PARAMETERS ARE CHANGED DURING EXECUTION)
C N : ORDER OF THE COEFFICIENT MATRIX A
C * A : POSITIVE DEFINITE MATRIX OF DIMENSION N;
C ONLY THE LOWER TRIANGLE IS USED AND IS STORED COLUMN BY
C COLUMN AS ONE DIMENSIONAL ARRAY OF DIMENSION N*(N+1)/2.
C * Z : VECTOR OF DIMENSION N OF UPDATING ELEMENTS
C SIGMA : SCALAR FACTOR BY WHICH THE MODIFYING DYADE Z*Z' IS
C MULTIPLIED
C OUTPUT ARGUMENTS:
C A : UPDATED LDL' FACTORS
C WORKING ARRAY:
C W : VECTOR OP DIMENSION N (USED ONLY IF SIGMA .LT. ZERO)
C METHOD:
C THAT OF FLETCHER AND POWELL AS DESCRIBED IN :
C FLETCHER,R.,(1974) ON THE MODIFICATION OF LDL' FACTORIZATION.
C POWELL,M.J.D. MATH.COMPUTATION 28, 1067-1078.
C IMPLEMENTED BY:
C KRAFT,D., DFVLR - INSTITUT FUER DYNAMIK DER FLUGSYSTEME
C D-8031 OBERPFAFFENHOFEN
C STATUS: 15. JANUARY 1980
C SUBROUTINES REQUIRED: NONE
INTEGER i, ij, j, n
DOUBLE PRECISION a(*), t, v, w(*), z(*), u, tp, one, beta, four,
* ZERO, alpha, delta, gamma, sigma, epmach
DATA ZERO, one, four, epmach /0.0d0, 1.0d0, 4.0d0, 2.22d-16/
IF(sigma.EQ.ZERO) GOTO 280
ij=1
t=one/sigma
IF(sigma.GT.ZERO) GOTO 220
C PREPARE NEGATIVE UPDATE
DO 150 i=1,n
150 w(i)=z(i)
DO 170 i=1,n
v=w(i)
t=t+v*v/a(ij)
DO 160 j=i+1,n
ij=ij+1
160 w(j)=w(j)-v*a(ij)
170 ij=ij+1
IF(t.GE.ZERO) t=epmach/sigma
DO 210 i=1,n
j=n+1-i
ij=ij-i
u=w(j)
w(j)=t
210 t=t-u*u/a(ij)
220 CONTINUE
C HERE UPDATING BEGINS
DO 270 i=1,n
v=z(i)
delta=v/a(ij)
IF(sigma.LT.ZERO) tp=w(i)
IF(sigma.GT.ZERO) tp=t+delta*v
alpha=tp/t
a(ij)=alpha*a(ij)
IF(i.EQ.n) GOTO 280
beta=delta/tp
IF(alpha.GT.four) GOTO 240
DO 230 j=i+1,n
ij=ij+1
z(j)=z(j)-v*a(ij)
230 a(ij)=a(ij)+beta*z(j)
GOTO 260
240 gamma=t/tp
DO 250 j=i+1,n
ij=ij+1
u=a(ij)
a(ij)=gamma*u+beta*z(j)
250 z(j)=z(j)-v*u
260 ij=ij+1
270 t=tp
280 RETURN
C END OF LDL
END
DOUBLE PRECISION FUNCTION linmin (mode, ax, bx, f, tol)
C LINMIN LINESEARCH WITHOUT DERIVATIVES
C PURPOSE:
C TO FIND THE ARGUMENT LINMIN WHERE THE FUNCTION F TAKES IT'S MINIMUM
C ON THE INTERVAL AX, BX.
C COMBINATION OF GOLDEN SECTION AND SUCCESSIVE QUADRATIC INTERPOLATION.
C INPUT ARGUMENTS: (* MEANS PARAMETERS ARE CHANGED DURING EXECUTION)
C *MODE SEE OUTPUT ARGUMENTS
C AX LEFT ENDPOINT OF INITIAL INTERVAL
C BX RIGHT ENDPOINT OF INITIAL INTERVAL
C F FUNCTION VALUE AT LINMIN WHICH IS TO BE BROUGHT IN BY
C REVERSE COMMUNICATION CONTROLLED BY MODE
C TOL DESIRED LENGTH OF INTERVAL OF UNCERTAINTY OF FINAL RESULT
C OUTPUT ARGUMENTS:
C LINMIN ABSCISSA APPROXIMATING THE POINT WHERE F ATTAINS A MINIMUM
C MODE CONTROLS REVERSE COMMUNICATION
C MUST BE SET TO 0 INITIALLY, RETURNS WITH INTERMEDIATE
C VALUES 1 AND 2 WHICH MUST NOT BE CHANGED BY THE USER,
C ENDS WITH CONVERGENCE WITH VALUE 3.
C WORKING ARRAY:
C NONE
C METHOD:
C THIS FUNCTION SUBPROGRAM IS A SLIGHTLY MODIFIED VERSION OF THE
C ALGOL 60 PROCEDURE LOCALMIN GIVEN IN
C R.P. BRENT: ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES,
C PRENTICE-HALL (1973).
C IMPLEMENTED BY:
C KRAFT, D., DFVLR - INSTITUT FUER DYNAMIK DER FLUGSYSTEME
C D-8031 OBERPFAFFENHOFEN
C STATUS: 31. AUGUST 1984
C SUBROUTINES REQUIRED: NONE
INTEGER mode
DOUBLE PRECISION f, tol, a, b, c, d, e, p, q, r, u, v, w, x, m,
& fu, fv, fw, fx, eps, tol1, tol2, ZERO, ax, bx
DATA c /0.381966011d0/, eps /1.5d-8/, ZERO /0.0d0/
C EPS = SQUARE - ROOT OF MACHINE PRECISION
C C = GOLDEN SECTION RATIO = (3-SQRT(5))/2
GOTO (10, 55), mode
C INITIALIZATION
a = ax
b = bx
e = ZERO
v = a + c*(b - a)
w = v
x = w
linmin = x
mode = 1
GOTO 100
C MAIN LOOP STARTS HERE
10 fx = f
fv = fx
fw = fv
20 m = 0.5d0*(a + b)
tol1 = eps*ABS(x) + tol
tol2 = tol1 + tol1
C TEST CONVERGENCE
IF (ABS(x - m) .LE. tol2 - 0.5d0*(b - a)) GOTO 90
r = ZERO
q = r
p = q
IF (ABS(e) .LE. tol1) GOTO 30
C FIT PARABOLA
r = (x - w)*(fx - fv)
q = (x - v)*(fx - fw)
p = (x - v)*q - (x - w)*r
q = q - r
q = q + q
IF (q .GT. ZERO) p = -p
IF (q .LT. ZERO) q = -q
r = e
e = d
C IS PARABOLA ACCEPTABLE
30 IF (ABS(p) .GE. 0.5d0*ABS(q*r) .OR.
& p .LE. q*(a - x) .OR. p .GE. q*(b-x)) GOTO 40
C PARABOLIC INTERPOLATION STEP
d = p/q
C F MUST NOT BE EVALUATED TOO CLOSE TO A OR B
IF (u - a .LT. tol2) d = SIGN(tol1, m - x)
IF (b - u .LT. tol2) d = SIGN(tol1, m - x)
GOTO 50
C GOLDEN SECTION STEP
40 IF (x .GE. m) e = a - x
IF (x .LT. m) e = b - x
d = c*e
C F MUST NOT BE EVALUATED TOO CLOSE TO X
50 IF (ABS(d) .LT. tol1) d = SIGN(tol1, d)
u = x + d
linmin = u
mode = 2
GOTO 100
55 fu = f
C UPDATE A, B, V, W, AND X
IF (fu .GT. fx) GOTO 60
IF (u .GE. x) a = x
IF (u .LT. x) b = x
v = w
fv = fw
w = x
fw = fx
x = u
fx = fu
GOTO 85
60 IF (u .LT. x) a = u
IF (u .GE. x) b = u
IF (fu .LE. fw .OR. w .EQ. x) GOTO 70
IF (fu .LE. fv .OR. v .EQ. x .OR. v .EQ. w) GOTO 80
GOTO 85
70 v = w
fv = fw
w = u
fw = fu
GOTO 85
80 v = u
fv = fu
85 GOTO 20
C END OF MAIN LOOP
90 linmin = x
mode = 3
100 RETURN
C END OF LINMIN
END
C## Following a selection from BLAS Level 1
SUBROUTINE daxpy_sl(n,da,dx,incx,dy,incy)
C CONSTANT TIMES A VECTOR PLUS A VECTOR.
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
DOUBLE PRECISION dx(*),dy(*),da
INTEGER i,incx,incy,ix,iy,m,mp1,n
IF(n.LE.0)RETURN
IF(da.EQ.0.0d0)RETURN
IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C NOT EQUAL TO 1
ix = 1
iy = 1
IF(incx.LT.0)ix = (-n+1)*incx + 1
IF(incy.LT.0)iy = (-n+1)*incy + 1
DO 10 i = 1,n
dy(iy) = dy(iy) + da*dx(ix)
ix = ix + incx
iy = iy + incy
10 CONTINUE
RETURN
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C CLEAN-UP LOOP
20 m = MOD(n,4)
IF( m .EQ. 0 ) GO TO 40
DO 30 i = 1,m
dy(i) = dy(i) + da*dx(i)
30 CONTINUE
IF( n .LT. 4 ) RETURN
40 mp1 = m + 1
DO 50 i = mp1,n,4
dy(i) = dy(i) + da*dx(i)
dy(i + 1) = dy(i + 1) + da*dx(i + 1)
dy(i + 2) = dy(i + 2) + da*dx(i + 2)
dy(i + 3) = dy(i + 3) + da*dx(i + 3)
50 CONTINUE
RETURN
END
SUBROUTINE dcopy_(n,dx,incx,dy,incy)
C COPIES A VECTOR, X, TO A VECTOR, Y.
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
DOUBLE PRECISION dx(*),dy(*)
INTEGER i,incx,incy,ix,iy,m,mp1,n
IF(n.LE.0)RETURN
IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C NOT EQUAL TO 1
ix = 1
iy = 1
IF(incx.LT.0)ix = (-n+1)*incx + 1
IF(incy.LT.0)iy = (-n+1)*incy + 1
DO 10 i = 1,n
dy(iy) = dx(ix)
ix = ix + incx
iy = iy + incy
10 CONTINUE
RETURN
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C CLEAN-UP LOOP
20 m = MOD(n,7)
IF( m .EQ. 0 ) GO TO 40
DO 30 i = 1,m
dy(i) = dx(i)
30 CONTINUE
IF( n .LT. 7 ) RETURN
40 mp1 = m + 1
DO 50 i = mp1,n,7
dy(i) = dx(i)
dy(i + 1) = dx(i + 1)
dy(i + 2) = dx(i + 2)
dy(i + 3) = dx(i + 3)
dy(i + 4) = dx(i + 4)
dy(i + 5) = dx(i + 5)
dy(i + 6) = dx(i + 6)
50 CONTINUE
RETURN
END
DOUBLE PRECISION FUNCTION ddot_sl(n,dx,incx,dy,incy)
C FORMS THE DOT PRODUCT OF TWO VECTORS.
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
DOUBLE PRECISION dx(*),dy(*),dtemp
INTEGER i,incx,incy,ix,iy,m,mp1,n
ddot_sl = 0.0d0
dtemp = 0.0d0
IF(n.LE.0)RETURN
IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C NOT EQUAL TO 1
ix = 1
iy = 1
IF(incx.LT.0)ix = (-n+1)*incx + 1
IF(incy.LT.0)iy = (-n+1)*incy + 1
DO 10 i = 1,n
dtemp = dtemp + dx(ix)*dy(iy)
ix = ix + incx
iy = iy + incy
10 CONTINUE
ddot_sl = dtemp
RETURN
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C CLEAN-UP LOOP
20 m = MOD(n,5)
IF( m .EQ. 0 ) GO TO 40
DO 30 i = 1,m
dtemp = dtemp + dx(i)*dy(i)
30 CONTINUE
IF( n .LT. 5 ) GO TO 60
40 mp1 = m + 1
DO 50 i = mp1,n,5
dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
* dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
50 CONTINUE
60 ddot_sl = dtemp
RETURN
END
DOUBLE PRECISION FUNCTION dnrm1(n,x,i,j)
INTEGER n, i, j, k
DOUBLE PRECISION snormx, sum, x(n), ZERO, one, scale, temp
DATA ZERO/0.0d0/, one/1.0d0/
C DNRM1 - COMPUTES THE I-NORM OF A VECTOR
C BETWEEN THE ITH AND THE JTH ELEMENTS
C INPUT -
C N LENGTH OF VECTOR
C X VECTOR OF LENGTH N
C I INITIAL ELEMENT OF VECTOR TO BE USED
C J FINAL ELEMENT TO USE
C OUTPUT -
C DNRM1 NORM
snormx=ZERO
DO 10 k=i,j
10 snormx=MAX(snormx,ABS(x(k)))
dnrm1 = snormx
IF (snormx.EQ.ZERO) RETURN
scale = snormx
IF (snormx.GE.one) scale=SQRT(snormx)
sum=ZERO
DO 20 k=i,j
temp=ZERO
IF (ABS(x(k))+scale .NE. scale) temp = x(k)/snormx
IF (one+temp.NE.one) sum = sum+temp*temp
20 CONTINUE
sum=SQRT(sum)
dnrm1=snormx*sum
RETURN
END
DOUBLE PRECISION FUNCTION dnrm2_ ( n, dx, incx)
INTEGER n, i, j, nn, next, incx
DOUBLE PRECISION dx(*), cutlo, cuthi, hitest, sum, xmax, ZERO, one
DATA ZERO, one /0.0d0, 1.0d0/
C EUCLIDEAN NORM OF THE N-VECTOR STORED IN DX() WITH STORAGE
C INCREMENT INCX .
C IF N .LE. 0 RETURN WITH RESULT = 0.
C IF N .GE. 1 THEN INCX MUST BE .GE. 1
C C.L.LAWSON, 1978 JAN 08
C FOUR PHASE METHOD USING TWO BUILT-IN CONSTANTS THAT ARE
C HOPEFULLY APPLICABLE TO ALL MACHINES.
C CUTLO = MAXIMUM OF SQRT(U/EPS) OVER ALL KNOWN MACHINES.
C CUTHI = MINIMUM OF SQRT(V) OVER ALL KNOWN MACHINES.
C WHERE
C EPS = SMALLEST NO. SUCH THAT EPS + 1. .GT. 1.
C U = SMALLEST POSITIVE NO. (UNDERFLOW LIMIT)
C V = LARGEST NO. (OVERFLOW LIMIT)
C BRIEF OUTLINE OF ALGORITHM..
C PHASE 1 SCANS ZERO COMPONENTS.
C MOVE TO PHASE 2 WHEN A COMPONENT IS NONZERO AND .LE. CUTLO
C MOVE TO PHASE 3 WHEN A COMPONENT IS .GT. CUTLO
C MOVE TO PHASE 4 WHEN A COMPONENT IS .GE. CUTHI/M
C WHERE M = N FOR X() REAL AND M = 2*N FOR COMPLEX.
C VALUES FOR CUTLO AND CUTHI..
C FROM THE ENVIRONMENTAL PARAMETERS LISTED IN THE IMSL CONVERTER
C DOCUMENT THE LIMITING VALUES ARE AS FOLLOWS..
C CUTLO, S.P. U/EPS = 2**(-102) FOR HONEYWELL. CLOSE SECONDS ARE
C UNIVAC AND DEC AT 2**(-103)
C THUS CUTLO = 2**(-51) = 4.44089E-16
C CUTHI, S.P. V = 2**127 FOR UNIVAC, HONEYWELL, AND DEC.
C THUS CUTHI = 2**(63.5) = 1.30438E19
C CUTLO, D.P. U/EPS = 2**(-67) FOR HONEYWELL AND DEC.
C THUS CUTLO = 2**(-33.5) = 8.23181D-11
C CUTHI, D.P. SAME AS S.P. CUTHI = 1.30438D19
C DATA CUTLO, CUTHI / 8.232D-11, 1.304D19 /
C DATA CUTLO, CUTHI / 4.441E-16, 1.304E19 /
DATA cutlo, cuthi / 8.232d-11, 1.304d19 /
IF(n .GT. 0) GO TO 10
dnrm2_ = ZERO
GO TO 300
10 assign 30 to next
sum = ZERO
nn = n * incx
C BEGIN MAIN LOOP
i = 1
20 GO TO next,(30, 50, 70, 110)
30 IF( ABS(dx(i)) .GT. cutlo) GO TO 85
assign 50 to next
xmax = ZERO
C PHASE 1. SUM IS ZERO
50 IF( dx(i) .EQ. ZERO) GO TO 200
IF( ABS(dx(i)) .GT. cutlo) GO TO 85
C PREPARE FOR PHASE 2.
assign 70 to next
GO TO 105
C PREPARE FOR PHASE 4.
100 i = j
assign 110 to next
sum = (sum / dx(i)) / dx(i)
105 xmax = ABS(dx(i))
GO TO 115
C PHASE 2. SUM IS SMALL.
C SCALE TO AVOID DESTRUCTIVE UNDERFLOW.
70 IF( ABS(dx(i)) .GT. cutlo ) GO TO 75
C COMMON CODE FOR PHASES 2 AND 4.
C IN PHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW.
110 IF( ABS(dx(i)) .LE. xmax ) GO TO 115
sum = one + sum * (xmax / dx(i))**2
xmax = ABS(dx(i))
GO TO 200
115 sum = sum + (dx(i)/xmax)**2
GO TO 200
C PREPARE FOR PHASE 3.
75 sum = (sum * xmax) * xmax
C FOR REAL OR D.P. SET HITEST = CUTHI/N
C FOR COMPLEX SET HITEST = CUTHI/(2*N)
85 hitest = cuthi/float( n )
C PHASE 3. SUM IS MID-RANGE. NO SCALING.
DO 95 j =i,nn,incx
IF(ABS(dx(j)) .GE. hitest) GO TO 100
95 sum = sum + dx(j)**2
dnrm2_ = SQRT( sum )
GO TO 300
200 CONTINUE
i = i + incx
IF ( i .LE. nn ) GO TO 20
C END OF MAIN LOOP.
C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING.
dnrm2_ = xmax * SQRT(sum)
300 CONTINUE
RETURN
END
SUBROUTINE dsrot (n,dx,incx,dy,incy,c,s)
C APPLIES A PLANE ROTATION.
C JACK DONGARRA, LINPACK, 3/11/78.
DOUBLE PRECISION dx(*),dy(*),dtemp,c,s
INTEGER i,incx,incy,ix,iy,n
IF(n.LE.0)RETURN
IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL
C TO 1
ix = 1
iy = 1
IF(incx.LT.0)ix = (-n+1)*incx + 1
IF(incy.LT.0)iy = (-n+1)*incy + 1
DO 10 i = 1,n
dtemp = c*dx(ix) + s*dy(iy)
dy(iy) = c*dy(iy) - s*dx(ix)
dx(ix) = dtemp
ix = ix + incx
iy = iy + incy
10 CONTINUE
RETURN
C CODE FOR BOTH INCREMENTS EQUAL TO 1
20 DO 30 i = 1,n
dtemp = c*dx(i) + s*dy(i)
dy(i) = c*dy(i) - s*dx(i)
dx(i) = dtemp
30 CONTINUE
RETURN
END
SUBROUTINE dsrotg(da,db,c,s)
C CONSTRUCT GIVENS PLANE ROTATION.
C JACK DONGARRA, LINPACK, 3/11/78.
C MODIFIED 9/27/86.
DOUBLE PRECISION da,db,c,s,roe,scale,r,z,one,ZERO
DATA one, ZERO /1.0d+00, 0.0d+00/
roe = db
IF( ABS(da) .GT. ABS(db) ) roe = da
scale = ABS(da) + ABS(db)
IF( scale .NE. ZERO ) GO TO 10
c = one
s = ZERO
r = ZERO
GO TO 20
10 r = scale*SQRT((da/scale)**2 + (db/scale)**2)
r = SIGN(one,roe)*r
c = da/r
s = db/r
20 z = s
IF( ABS(c) .GT. ZERO .AND. ABS(c) .LE. s ) z = one/c
da = r
db = z
RETURN
END
SUBROUTINE dscal_sl(n,da,dx,incx)
C SCALES A VECTOR BY A CONSTANT.
C USES UNROLLED LOOPS FOR INCREMENT EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
DOUBLE PRECISION da,dx(*)
INTEGER i,incx,m,mp1,n,nincx
IF(n.LE.0)RETURN
IF(incx.EQ.1)GO TO 20
C CODE FOR INCREMENT NOT EQUAL TO 1
nincx = n*incx
DO 10 i = 1,nincx,incx
dx(i) = da*dx(i)
10 CONTINUE
RETURN
C CODE FOR INCREMENT EQUAL TO 1
C CLEAN-UP LOOP
20 m = MOD(n,5)
IF( m .EQ. 0 ) GO TO 40
DO 30 i = 1,m
dx(i) = da*dx(i)
30 CONTINUE
IF( n .LT. 5 ) RETURN
40 mp1 = m + 1
DO 50 i = mp1,n,5
dx(i) = da*dx(i)
dx(i + 1) = da*dx(i + 1)
dx(i + 2) = da*dx(i + 2)
dx(i + 3) = da*dx(i + 3)
dx(i + 4) = da*dx(i + 4)
50 CONTINUE
RETURN
END
subroutine bound(n, x, xl, xu)
integer n, i
double precision x(n), xl(n), xu(n)
do i = 1, n
C Note that xl(i) and xu(i) may be NaN to indicate no bound
if(xl(i).eq.xl(i).and.x(i) < xl(i))then
x(i) = xl(i)
else if(xu(i).eq.xu(i).and.x(i) > xu(i))then
x(i) = xu(i)
end if
end do
end subroutine bound
|