File: test__differential_evolution.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (445 lines) | stat: -rw-r--r-- 18,707 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
"""
Unit tests for the differential global minimization algorithm.
"""
from scipy.optimize import _differentialevolution
from scipy.optimize._differentialevolution import DifferentialEvolutionSolver
from scipy.optimize import differential_evolution
import numpy as np
from scipy.optimize import rosen
from numpy.testing import (assert_equal, TestCase, assert_allclose,
                           run_module_suite, assert_almost_equal,
                           assert_string_equal, assert_raises, assert_)


class TestDifferentialEvolutionSolver(TestCase):

    def setUp(self):
        self.old_seterr = np.seterr(invalid='raise')
        self.limits = np.array([[0., 0.],
                                [2., 2.]])
        self.bounds = [(0., 2.), (0., 2.)]

        self.dummy_solver = DifferentialEvolutionSolver(self.quadratic,
                                                        [(0, 100)])

        # dummy_solver2 will be used to test mutation strategies
        self.dummy_solver2 = DifferentialEvolutionSolver(self.quadratic,
                                                         [(0, 1)],
                                                         popsize=7,
                                                         mutation=0.5)
        # create a population that's only 7 members long
        # [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
        population = np.atleast_2d(np.arange(0.1, 0.8, 0.1)).T
        self.dummy_solver2.population = population

    def tearDown(self):
        np.seterr(**self.old_seterr)

    def quadratic(self, x):
        return x[0]**2

    def test__strategy_resolves(self):
        # test that the correct mutation function is resolved by
        # different requested strategy arguments
        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best1exp')
        assert_equal(solver.strategy, 'best1exp')
        assert_equal(solver.mutation_func.__name__, '_best1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best1bin')
        assert_equal(solver.strategy, 'best1bin')
        assert_equal(solver.mutation_func.__name__, '_best1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand1bin')
        assert_equal(solver.strategy, 'rand1bin')
        assert_equal(solver.mutation_func.__name__, '_rand1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand1exp')
        assert_equal(solver.strategy, 'rand1exp')
        assert_equal(solver.mutation_func.__name__, '_rand1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2exp')
        assert_equal(solver.strategy, 'rand2exp')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best2bin')
        assert_equal(solver.strategy, 'best2bin')
        assert_equal(solver.mutation_func.__name__, '_best2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2bin')
        assert_equal(solver.strategy, 'rand2bin')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2exp')
        assert_equal(solver.strategy, 'rand2exp')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='randtobest1bin')
        assert_equal(solver.strategy, 'randtobest1bin')
        assert_equal(solver.mutation_func.__name__, '_randtobest1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='randtobest1exp')
        assert_equal(solver.strategy, 'randtobest1exp')
        assert_equal(solver.mutation_func.__name__, '_randtobest1')

    def test__mutate1(self):
        # strategies */1/*, i.e. rand/1/bin, best/1/exp, etc.
        result = np.array([0.05])
        trial = self.dummy_solver2._best1((2, 3, 4, 5, 6))
        assert_allclose(trial, result)

        result = np.array([0.25])
        trial = self.dummy_solver2._rand1((2, 3, 4, 5, 6))
        assert_allclose(trial, result)

    def test__mutate2(self):
        # strategies */2/*, i.e. rand/2/bin, best/2/exp, etc.
        # [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]

        result = np.array([-0.1])
        trial = self.dummy_solver2._best2((2, 3, 4, 5, 6))
        assert_allclose(trial, result)

        result = np.array([0.1])
        trial = self.dummy_solver2._rand2((2, 3, 4, 5, 6))
        assert_allclose(trial, result)

    def test__randtobest1(self):
        # strategies randtobest/1/*
        result = np.array([0.1])
        trial = self.dummy_solver2._randtobest1(1, (2, 3, 4, 5, 6))
        assert_allclose(trial, result)

    def test_can_init_with_dithering(self):
        mutation = (0.5, 1)
        solver = DifferentialEvolutionSolver(self.quadratic,
                                             self.bounds,
                                             mutation=mutation)

        self.assertEqual(solver.dither, list(mutation))

    def test_invalid_mutation_values_arent_accepted(self):
        func = rosen
        mutation = (0.5, 3)
        self.assertRaises(ValueError,
                          DifferentialEvolutionSolver,
                          func,
                          self.bounds,
                          mutation=mutation)

        mutation = (-1, 1)
        self.assertRaises(ValueError,
                          DifferentialEvolutionSolver,
                          func,
                          self.bounds,
                          mutation=mutation)

        mutation = (0.1, np.nan)
        self.assertRaises(ValueError,
                          DifferentialEvolutionSolver,
                          func,
                          self.bounds,
                          mutation=mutation)

        mutation = 0.5
        solver = DifferentialEvolutionSolver(func,
                                             self.bounds,
                                             mutation=mutation)
        assert_equal(0.5, solver.scale)
        assert_equal(None, solver.dither)

    def test__scale_parameters(self):
        trial = np.array([0.3])
        assert_equal(30, self.dummy_solver._scale_parameters(trial))

        # it should also work with the limits reversed
        self.dummy_solver.limits = np.array([[100], [0.]])
        assert_equal(30, self.dummy_solver._scale_parameters(trial))

    def test__unscale_parameters(self):
        trial = np.array([30])
        assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))

        # it should also work with the limits reversed
        self.dummy_solver.limits = np.array([[100], [0.]])
        assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))

    def test__ensure_constraint(self):
        trial = np.array([1.1, -100, 2., 300., -0.00001])
        self.dummy_solver._ensure_constraint(trial)
        assert_equal(np.all(trial <= 1), True)

    def test_differential_evolution(self):
        # test that the Jmin of DifferentialEvolutionSolver
        # is the same as the function evaluation
        solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
        result = solver.solve()
        assert_almost_equal(result.fun, self.quadratic(result.x))

    def test_best_solution_retrieval(self):
        # test that the getter property method for the best solution works.
        solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
        result = solver.solve()
        assert_equal(result.x, solver.x)

    def test_callback_terminates(self):
        # test that if the callback returns true, then the minimization halts
        bounds = [(0, 2), (0, 2)]

        def callback(param, convergence=0.):
            return True

        result = differential_evolution(rosen, bounds, callback=callback)

        assert_string_equal(result.message,
                                'callback function requested stop early '
                                'by returning True')

    def test_args_tuple_is_passed(self):
        # test that the args tuple is passed to the cost function properly.
        bounds = [(-10, 10)]
        args = (1., 2., 3.)

        def quadratic(x, *args):
            if type(args) != tuple:
                raise ValueError('args should be a tuple')
            return args[0] + args[1] * x + args[2] * x**2.

        result = differential_evolution(quadratic,
                                        bounds,
                                        args=args,
                                        polish=True)
        assert_almost_equal(result.fun, 2 / 3.)

    def test_init_with_invalid_strategy(self):
        # test that passing an invalid strategy raises ValueError
        func = rosen
        bounds = [(-3, 3)]
        self.assertRaises(ValueError,
                          differential_evolution,
                          func,
                          bounds,
                          strategy='abc')

    def test_bounds_checking(self):
        # test that the bounds checking works
        func = rosen
        bounds = [(-3, None)]
        self.assertRaises(ValueError,
                          differential_evolution,
                          func,
                          bounds)
        bounds = [(-3)]
        self.assertRaises(ValueError,
                          differential_evolution,
                          func,
                          bounds)
        bounds = [(-3, 3), (3, 4, 5)]
        self.assertRaises(ValueError,
                          differential_evolution,
                          func,
                          bounds)

    def test_select_samples(self):
        # select_samples should return 5 separate random numbers.
        limits = np.arange(12., dtype='float64').reshape(2, 6)
        bounds = list(zip(limits[0, :], limits[1, :]))
        solver = DifferentialEvolutionSolver(None, bounds, popsize=1)
        candidate = 0
        r1, r2, r3, r4, r5 = solver._select_samples(candidate, 5)
        assert_equal(
            len(np.unique(np.array([candidate, r1, r2, r3, r4, r5]))), 6)

    def test_maxiter_stops_solve(self):
        # test that if the maximum number of iterations is exceeded
        # the solver stops.
        solver = DifferentialEvolutionSolver(rosen, self.bounds, maxiter=1)
        result = solver.solve()
        assert_equal(result.success, False)
        assert_equal(result.message,
                        'Maximum number of iterations has been exceeded.')

    def test_maxfun_stops_solve(self):
        # test that if the maximum number of function evaluations is exceeded
        # during initialisation the solver stops
        solver = DifferentialEvolutionSolver(rosen, self.bounds, maxfun=1,
                                             polish=False)
        result = solver.solve()

        assert_equal(result.nfev, 2)
        assert_equal(result.success, False)
        assert_equal(result.message,
                     'Maximum number of function evaluations has '
                     'been exceeded.')

        # test that if the maximum number of function evaluations is exceeded
        # during the actual minimisation, then the solver stops.
        # Have to turn polishing off, as this will still occur even if maxfun
        # is reached. For popsize=5 and len(bounds)=2, then there are only 10
        # function evaluations during initialisation.
        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             popsize=5,
                                             polish=False,
                                             maxfun=40)
        result = solver.solve()

        assert_equal(result.nfev, 41)
        assert_equal(result.success, False)
        assert_equal(result.message,
                         'Maximum number of function evaluations has '
                              'been exceeded.')

    def test_quadratic(self):
        # test the quadratic function from object
        solver = DifferentialEvolutionSolver(self.quadratic,
                                             [(-100, 100)],
                                             tol=0.02)
        solver.solve()
        assert_equal(np.argmin(solver.population_energies), 0)

    def test_quadratic_from_diff_ev(self):
        # test the quadratic function from differential_evolution function
        differential_evolution(self.quadratic,
                               [(-100, 100)],
                               tol=0.02)

    def test_seed_gives_repeatability(self):
        result = differential_evolution(self.quadratic,
                                        [(-100, 100)],
                                        polish=False,
                                        seed=1,
                                        tol=0.5)
        result2 = differential_evolution(self.quadratic,
                                        [(-100, 100)],
                                        polish=False,
                                        seed=1,
                                        tol=0.5)
        assert_equal(result.x, result2.x)

    def test_exp_runs(self):
        # test whether exponential mutation loop runs
        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best1exp',
                                             maxiter=1)

        solver.solve()

    def test__make_random_gen(self):
        # If seed is None, return the RandomState singleton used by np.random.
        # If seed is an int, return a new RandomState instance seeded with seed.
        # If seed is already a RandomState instance, return it.
        # Otherwise raise ValueError.
        rsi = _differentialevolution._make_random_gen(1)
        assert_equal(type(rsi), np.random.RandomState)
        rsi = _differentialevolution._make_random_gen(rsi)
        assert_equal(type(rsi), np.random.RandomState)
        rsi = _differentialevolution._make_random_gen(None)
        assert_equal(type(rsi), np.random.RandomState)
        self.assertRaises(
            ValueError, _differentialevolution._make_random_gen, 'a')

    def test_gh_4511_regression(self):
        # This modification of the differential evolution docstring example
        # uses a custom popsize that had triggered an off-by-one error.
        # Because we do not care about solving the optimization problem in
        # this test, we use maxiter=1 to reduce the testing time.
        bounds = [(-5, 5), (-5, 5)]
        result = differential_evolution(rosen, bounds, popsize=1815, maxiter=1)

    def test_calculate_population_energies(self):
        # if popsize is 2 then the overall generation has size (4,)
        solver = DifferentialEvolutionSolver(rosen, self.bounds, popsize=2)
        solver._calculate_population_energies()

        assert_equal(np.argmin(solver.population_energies), 0)

        # initial calculation of the energies should require 4 nfev.
        assert_equal(solver._nfev, 4)

    def test_iteration(self):
        # test that DifferentialEvolutionSolver is iterable
        # if popsize is 2 then the overall generation has size (4,)
        solver = DifferentialEvolutionSolver(rosen, self.bounds, popsize=2,
                                             maxfun=8)
        x, fun = next(solver)
        assert_equal(np.size(x, 0), 2)

        # 4 nfev are required for initial calculation of energies, 4 nfev are
        # required for the evolution of the 4 population members.
        assert_equal(solver._nfev, 8)

        # the next generation should halt because it exceeds maxfun
        assert_raises(StopIteration, next, solver)

        # check a proper minimisation can be done by an iterable solver
        solver = DifferentialEvolutionSolver(rosen, self.bounds)
        for i, soln in enumerate(solver):
            x_current, fun_current = soln
            # need to have this otherwise the solver would never stop.
            if i == 1000:
                break

        assert_almost_equal(fun_current, 0)

    def test_convergence(self):
        solver = DifferentialEvolutionSolver(rosen, self.bounds, tol=0.2,
                                             polish=False)
        solver.solve()
        assert_(solver.convergence < 0.2)

    def test_maxiter_none_GH5731(self):
        # Pre 0.17 the previous default for maxiter and maxfun was None.
        # the numerical defaults are now 1000 and np.inf. However, some scripts
        # will still supply None for both of those, this will raise a TypeError
        # in the solve method.
        solver = DifferentialEvolutionSolver(rosen, self.bounds, maxiter=None,
                                             maxfun=None)
        solver.solve()

    def test_population_initiation(self):
        # test the different modes of population initiation

        # init must be either 'latinhypercube' or 'random'
        # raising ValueError is something else is passed in
        assert_raises(ValueError,
                      DifferentialEvolutionSolver,
                      *(rosen, self.bounds),
                      **{'init': 'rubbish'})

        solver = DifferentialEvolutionSolver(rosen, self.bounds)

        # check that population initiation:
        # 1) resets _nfev to 0
        # 2) all population energies are np.inf
        solver.init_population_random()
        assert_equal(solver._nfev, 0)
        assert_(np.all(np.isinf(solver.population_energies)))

        solver.init_population_lhs()
        assert_equal(solver._nfev, 0)
        assert_(np.all(np.isinf(solver.population_energies)))


if __name__ == '__main__':
    run_module_suite()