1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
|
from __future__ import division
from itertools import product
import warnings
import numpy as np
from numpy.linalg import norm
from numpy.testing import (run_module_suite, assert_, assert_allclose,
assert_raises, assert_equal)
from scipy.sparse import issparse, lil_matrix
from scipy.sparse.linalg import aslinearoperator
from scipy.optimize import least_squares
from scipy.optimize._lsq.least_squares import IMPLEMENTED_LOSSES
from scipy.optimize._lsq.common import EPS, make_strictly_feasible
def fun_trivial(x, a=0):
return (x - a)**2 + 5.0
def jac_trivial(x, a=0.0):
return 2 * (x - a)
def fun_2d_trivial(x):
return np.array([x[0], x[1]])
def jac_2d_trivial(x):
return np.identity(2)
def fun_rosenbrock(x):
return np.array([10 * (x[1] - x[0]**2), (1 - x[0])])
def jac_rosenbrock(x):
return np.array([
[-20 * x[0], 10],
[-1, 0]
])
def jac_rosenbrock_bad_dim(x):
return np.array([
[-20 * x[0], 10],
[-1, 0],
[0.0, 0.0]
])
def fun_rosenbrock_cropped(x):
return fun_rosenbrock(x)[0]
def jac_rosenbrock_cropped(x):
return jac_rosenbrock(x)[0]
# When x is 1-d array, return is 2-d array.
def fun_wrong_dimensions(x):
return np.array([x, x**2, x**3])
def jac_wrong_dimensions(x, a=0.0):
return np.atleast_3d(jac_trivial(x, a=a))
def fun_bvp(x):
n = int(np.sqrt(x.shape[0]))
u = np.zeros((n + 2, n + 2))
x = x.reshape((n, n))
u[1:-1, 1:-1] = x
y = u[:-2, 1:-1] + u[2:, 1:-1] + u[1:-1, :-2] + u[1:-1, 2:] - 4 * x + x**3
return y.ravel()
class BroydenTridiagonal(object):
def __init__(self, n=100, mode='sparse'):
np.random.seed(0)
self.n = n
self.x0 = -np.ones(n)
self.lb = np.linspace(-2, -1.5, n)
self.ub = np.linspace(-0.8, 0.0, n)
self.lb += 0.1 * np.random.randn(n)
self.ub += 0.1 * np.random.randn(n)
self.x0 += 0.1 * np.random.randn(n)
self.x0 = make_strictly_feasible(self.x0, self.lb, self.ub)
if mode == 'sparse':
self.sparsity = lil_matrix((n, n), dtype=int)
i = np.arange(n)
self.sparsity[i, i] = 1
i = np.arange(1, n)
self.sparsity[i, i - 1] = 1
i = np.arange(n - 1)
self.sparsity[i, i + 1] = 1
self.jac = self._jac
elif mode == 'operator':
self.jac = lambda x: aslinearoperator(self._jac(x))
elif mode == 'dense':
self.sparsity = None
self.jac = lambda x: self._jac(x).toarray()
else:
assert_(False)
def fun(self, x):
f = (3 - x) * x + 1
f[1:] -= x[:-1]
f[:-1] -= 2 * x[1:]
return f
def _jac(self, x):
J = lil_matrix((self.n, self.n))
i = np.arange(self.n)
J[i, i] = 3 - 2 * x
i = np.arange(1, self.n)
J[i, i - 1] = -1
i = np.arange(self.n - 1)
J[i, i + 1] = -2
return J
class ExponentialFittingProblem(object):
"""Provide data and function for exponential fitting in the form
y = a + exp(b * x) + noise."""
def __init__(self, a, b, noise, n_outliers=1, x_range=(-1, 1),
n_points=11, random_seed=None):
np.random.seed(random_seed)
self.m = n_points
self.n = 2
self.p0 = np.zeros(2)
self.x = np.linspace(x_range[0], x_range[1], n_points)
self.y = a + np.exp(b * self.x)
self.y += noise * np.random.randn(self.m)
outliers = np.random.randint(0, self.m, n_outliers)
self.y[outliers] += 50 * noise * np.random.rand(n_outliers)
self.p_opt = np.array([a, b])
def fun(self, p):
return p[0] + np.exp(p[1] * self.x) - self.y
def jac(self, p):
J = np.empty((self.m, self.n))
J[:, 0] = 1
J[:, 1] = self.x * np.exp(p[1] * self.x)
return J
def cubic_soft_l1(z):
rho = np.empty((3, z.size))
t = 1 + z
rho[0] = 3 * (t**(1/3) - 1)
rho[1] = t ** (-2/3)
rho[2] = -2/3 * t**(-5/3)
return rho
LOSSES = list(IMPLEMENTED_LOSSES.keys()) + [cubic_soft_l1]
class BaseMixin(object):
def test_basic(self):
# Test that the basic calling sequence works.
res = least_squares(fun_trivial, 2., method=self.method)
assert_allclose(res.x, 0, atol=1e-4)
assert_allclose(res.fun, fun_trivial(res.x))
def test_args_kwargs(self):
# Test that args and kwargs are passed correctly to the functions.
a = 3.0
for jac in ['2-point', '3-point', 'cs', jac_trivial]:
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
res = least_squares(fun_trivial, 2.0, jac, args=(a,),
method=self.method)
assert_allclose(res.x, a, rtol=1e-4)
assert_raises(TypeError, least_squares, fun_trivial, 2.0,
args=(3, 4,), method=self.method)
res = least_squares(fun_trivial, 2.0, jac, kwargs={'a': a},
method=self.method)
assert_allclose(res.x, a, rtol=1e-4)
assert_raises(TypeError, least_squares, fun_trivial, 2.0,
kwargs={'kaboom': 3}, method=self.method)
def test_jac_options(self):
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
for jac in ['2-point', '3-point', 'cs', jac_trivial]:
res = least_squares(fun_trivial, 2.0, jac, method=self.method)
assert_allclose(res.x, 0, atol=1e-4)
assert_raises(ValueError, least_squares, fun_trivial, 2.0, jac='oops',
method=self.method)
def test_nfev_options(self):
for max_nfev in [None, 20]:
res = least_squares(fun_trivial, 2.0, max_nfev=max_nfev,
method=self.method)
assert_allclose(res.x, 0, atol=1e-4)
def test_x_scale_options(self):
for x_scale in [1.0, np.array([0.5]), 'jac']:
res = least_squares(fun_trivial, 2.0, x_scale=x_scale)
assert_allclose(res.x, 0)
assert_raises(ValueError, least_squares, fun_trivial,
2.0, x_scale='auto', method=self.method)
assert_raises(ValueError, least_squares, fun_trivial,
2.0, x_scale=-1.0, method=self.method)
assert_raises(ValueError, least_squares, fun_trivial,
2.0, x_scale=None, method=self.method)
assert_raises(ValueError, least_squares, fun_trivial,
2.0, x_scale=1.0+2.0j, method=self.method)
def test_diff_step(self):
# res1 and res2 should be equivalent.
# res2 and res3 should be different.
res1 = least_squares(fun_trivial, 2.0, diff_step=1e-1,
method=self.method)
res2 = least_squares(fun_trivial, 2.0, diff_step=-1e-1,
method=self.method)
res3 = least_squares(fun_trivial, 2.0,
diff_step=None, method=self.method)
assert_allclose(res1.x, 0, atol=1e-4)
assert_allclose(res2.x, 0, atol=1e-4)
assert_allclose(res3.x, 0, atol=1e-4)
assert_equal(res1.x, res2.x)
assert_equal(res1.nfev, res2.nfev)
assert_(res2.nfev != res3.nfev)
def test_incorrect_options_usage(self):
assert_raises(TypeError, least_squares, fun_trivial, 2.0,
method=self.method, options={'no_such_option': 100})
assert_raises(TypeError, least_squares, fun_trivial, 2.0,
method=self.method, options={'max_nfev': 100})
def test_full_result(self):
# MINPACK doesn't work very well with factor=100 on this problem,
# thus using low 'atol'.
res = least_squares(fun_trivial, 2.0, method=self.method)
assert_allclose(res.x, 0, atol=1e-4)
assert_allclose(res.cost, 12.5)
assert_allclose(res.fun, 5)
assert_allclose(res.jac, 0, atol=1e-4)
assert_allclose(res.grad, 0, atol=1e-2)
assert_allclose(res.optimality, 0, atol=1e-2)
assert_equal(res.active_mask, 0)
if self.method == 'lm':
assert_(res.nfev < 30)
assert_(res.njev is None)
else:
assert_(res.nfev < 10)
assert_(res.njev < 10)
assert_(res.status > 0)
assert_(res.success)
def test_full_result_single_fev(self):
# MINPACK checks the number of nfev after the iteration,
# so it's hard to tell what he is going to compute.
if self.method == 'lm':
return
res = least_squares(fun_trivial, 2.0, method=self.method,
max_nfev=1)
assert_equal(res.x, np.array([2]))
assert_equal(res.cost, 40.5)
assert_equal(res.fun, np.array([9]))
assert_equal(res.jac, np.array([[4]]))
assert_equal(res.grad, np.array([36]))
assert_equal(res.optimality, 36)
assert_equal(res.active_mask, np.array([0]))
assert_equal(res.nfev, 1)
assert_equal(res.njev, 1)
assert_equal(res.status, 0)
assert_equal(res.success, 0)
def test_rosenbrock(self):
x0 = [-2, 1]
x_opt = [1, 1]
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
for jac, x_scale, tr_solver in product(
['2-point', '3-point', 'cs', jac_rosenbrock],
[1.0, np.array([1.0, 0.2]), 'jac'],
['exact', 'lsmr']):
res = least_squares(fun_rosenbrock, x0, jac, x_scale=x_scale,
tr_solver=tr_solver, method=self.method)
assert_allclose(res.x, x_opt)
def test_rosenbrock_cropped(self):
x0 = [-2, 1]
if self.method == 'lm':
assert_raises(ValueError, least_squares, fun_rosenbrock_cropped,
x0, method='lm')
else:
for jac, x_scale, tr_solver in product(
['2-point', '3-point', 'cs', jac_rosenbrock_cropped],
[1.0, np.array([1.0, 0.2]), 'jac'],
['exact', 'lsmr']):
res = least_squares(
fun_rosenbrock_cropped, x0, jac, x_scale=x_scale,
tr_solver=tr_solver, method=self.method)
assert_allclose(res.cost, 0, atol=1e-14)
def test_fun_wrong_dimensions(self):
assert_raises(ValueError, least_squares, fun_wrong_dimensions,
2.0, method=self.method)
def test_jac_wrong_dimensions(self):
assert_raises(ValueError, least_squares, fun_trivial,
2.0, jac_wrong_dimensions, method=self.method)
def test_fun_and_jac_inconsistent_dimensions(self):
x0 = [1, 2]
assert_raises(ValueError, least_squares, fun_rosenbrock, x0,
jac_rosenbrock_bad_dim, method=self.method)
def test_x0_multidimensional(self):
x0 = np.ones(4).reshape(2, 2)
assert_raises(ValueError, least_squares, fun_trivial, x0,
method=self.method)
def test_bvp(self):
# This test was introduced with fix #5556. It turned out that
# dogbox solver had a bug with trust-region radius update, which
# could block its progress and create an infinite loop. And this
# discrete boundary value problem is the one which triggers it.
n = 10
x0 = np.ones(n**2)
if self.method == 'lm':
max_nfev = 5000 # To account for Jacobian estimation.
else:
max_nfev = 100
res = least_squares(fun_bvp, x0, ftol=1e-2, method=self.method,
max_nfev=max_nfev)
assert_(res.nfev < max_nfev)
assert_(res.cost < 0.5)
class BoundsMixin(object):
def test_inconsistent(self):
assert_raises(ValueError, least_squares, fun_trivial, 2.0,
bounds=(10.0, 0.0), method=self.method)
def test_infeasible(self):
assert_raises(ValueError, least_squares, fun_trivial, 2.0,
bounds=(3., 4), method=self.method)
def test_wrong_number(self):
assert_raises(ValueError, least_squares, fun_trivial, 2.,
bounds=(1., 2, 3), method=self.method)
def test_inconsistent_shape(self):
assert_raises(ValueError, least_squares, fun_trivial, 2.0,
bounds=(1.0, [2.0, 3.0]), method=self.method)
# 1-D array wont't be broadcasted
assert_raises(ValueError, least_squares, fun_rosenbrock, [1.0, 2.0],
bounds=([0.0], [3.0, 4.0]), method=self.method)
def test_in_bounds(self):
for jac in ['2-point', '3-point', 'cs', jac_trivial]:
res = least_squares(fun_trivial, 2.0, jac=jac,
bounds=(-1.0, 3.0), method=self.method)
assert_allclose(res.x, 0.0, atol=1e-4)
assert_equal(res.active_mask, [0])
assert_(-1 <= res.x <= 3)
res = least_squares(fun_trivial, 2.0, jac=jac,
bounds=(0.5, 3.0), method=self.method)
assert_allclose(res.x, 0.5, atol=1e-4)
assert_equal(res.active_mask, [-1])
assert_(0.5 <= res.x <= 3)
def test_bounds_shape(self):
for jac in ['2-point', '3-point', 'cs', jac_2d_trivial]:
x0 = [1.0, 1.0]
res = least_squares(fun_2d_trivial, x0, jac=jac)
assert_allclose(res.x, [0.0, 0.0])
res = least_squares(fun_2d_trivial, x0, jac=jac,
bounds=(0.5, [2.0, 2.0]), method=self.method)
assert_allclose(res.x, [0.5, 0.5])
res = least_squares(fun_2d_trivial, x0, jac=jac,
bounds=([0.3, 0.2], 3.0), method=self.method)
assert_allclose(res.x, [0.3, 0.2])
res = least_squares(
fun_2d_trivial, x0, jac=jac, bounds=([-1, 0.5], [1.0, 3.0]),
method=self.method)
assert_allclose(res.x, [0.0, 0.5], atol=1e-5)
def test_rosenbrock_bounds(self):
x0_1 = np.array([-2.0, 1.0])
x0_2 = np.array([2.0, 2.0])
x0_3 = np.array([-2.0, 2.0])
x0_4 = np.array([0.0, 2.0])
x0_5 = np.array([-1.2, 1.0])
problems = [
(x0_1, ([-np.inf, -1.5], np.inf)),
(x0_2, ([-np.inf, 1.5], np.inf)),
(x0_3, ([-np.inf, 1.5], np.inf)),
(x0_4, ([-np.inf, 1.5], [1.0, np.inf])),
(x0_2, ([1.0, 1.5], [3.0, 3.0])),
(x0_5, ([-50.0, 0.0], [0.5, 100]))
]
for x0, bounds in problems:
for jac, x_scale, tr_solver in product(
['2-point', '3-point', 'cs', jac_rosenbrock],
[1.0, [1.0, 0.5], 'jac'],
['exact', 'lsmr']):
res = least_squares(fun_rosenbrock, x0, jac, bounds,
x_scale=x_scale, tr_solver=tr_solver,
method=self.method)
assert_allclose(res.optimality, 0.0, atol=1e-5)
class SparseMixin(object):
def test_exact_tr_solver(self):
p = BroydenTridiagonal()
assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac,
tr_solver='exact', method=self.method)
assert_raises(ValueError, least_squares, p.fun, p.x0,
tr_solver='exact', jac_sparsity=p.sparsity,
method=self.method)
def test_equivalence(self):
sparse = BroydenTridiagonal(mode='sparse')
dense = BroydenTridiagonal(mode='dense')
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
res_sparse = least_squares(
sparse.fun, sparse.x0, jac=sparse.jac,
method=self.method)
res_dense = least_squares(
dense.fun, dense.x0, jac=sparse.jac,
method=self.method)
assert_equal(res_sparse.nfev, res_dense.nfev)
assert_allclose(res_sparse.x, res_dense.x, atol=1e-20)
assert_allclose(res_sparse.cost, 0, atol=1e-20)
assert_allclose(res_dense.cost, 0, atol=1e-20)
def test_tr_options(self):
p = BroydenTridiagonal()
res = least_squares(p.fun, p.x0, p.jac, method=self.method,
tr_options={'btol': 1e-10})
assert_allclose(res.cost, 0, atol=1e-20)
def test_wrong_parameters(self):
p = BroydenTridiagonal()
assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac,
tr_solver='best', method=self.method)
assert_raises(TypeError, least_squares, p.fun, p.x0, p.jac,
tr_solver='lsmr', tr_options={'tol': 1e-10})
def test_solver_selection(self):
sparse = BroydenTridiagonal(mode='sparse')
dense = BroydenTridiagonal(mode='dense')
res_sparse = least_squares(sparse.fun, sparse.x0, jac=sparse.jac,
method=self.method)
res_dense = least_squares(dense.fun, dense.x0, jac=dense.jac,
method=self.method)
assert_allclose(res_sparse.cost, 0, atol=1e-20)
assert_allclose(res_dense.cost, 0, atol=1e-20)
assert_(issparse(res_sparse.jac))
assert_(isinstance(res_dense.jac, np.ndarray))
def test_numerical_jac(self):
p = BroydenTridiagonal()
with warnings.catch_warnings():
warnings.simplefilter('ignore', UserWarning)
for jac in ['2-point', '3-point', 'cs']:
res_dense = least_squares(p.fun, p.x0, jac, method=self.method)
res_sparse = least_squares(
p.fun, p.x0, jac,method=self.method,
jac_sparsity=p.sparsity)
assert_equal(res_dense.nfev, res_sparse.nfev)
assert_allclose(res_dense.x, res_sparse.x, atol=1e-20)
assert_allclose(res_dense.cost, 0, atol=1e-20)
assert_allclose(res_sparse.cost, 0, atol=1e-20)
def test_with_bounds(self):
p = BroydenTridiagonal()
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
for jac, jac_sparsity in product(
[p.jac, '2-point', '3-point', 'cs'], [None, p.sparsity]):
res_1 = least_squares(
p.fun, p.x0, jac, bounds=(p.lb, np.inf),
method=self.method,jac_sparsity=jac_sparsity)
res_2 = least_squares(
p.fun, p.x0, jac, bounds=(-np.inf, p.ub),
method=self.method, jac_sparsity=jac_sparsity)
res_3 = least_squares(
p.fun, p.x0, jac, bounds=(p.lb, p.ub),
method=self.method, jac_sparsity=jac_sparsity)
assert_allclose(res_1.optimality, 0, atol=1e-10)
assert_allclose(res_2.optimality, 0, atol=1e-10)
assert_allclose(res_3.optimality, 0, atol=1e-10)
def test_wrong_jac_sparsity(self):
p = BroydenTridiagonal()
sparsity = p.sparsity[:-1]
assert_raises(ValueError, least_squares, p.fun, p.x0,
jac_sparsity=sparsity, method=self.method)
def test_linear_operator(self):
p = BroydenTridiagonal(mode='operator')
res = least_squares(p.fun, p.x0, p.jac, method=self.method)
assert_allclose(res.cost, 0.0, atol=1e-20)
assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac,
method=self.method, tr_solver='exact')
def test_x_scale_jac_scale(self):
p = BroydenTridiagonal()
res = least_squares(p.fun, p.x0, p.jac, method=self.method,
x_scale='jac')
assert_allclose(res.cost, 0.0, atol=1e-20)
p = BroydenTridiagonal(mode='operator')
assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac,
method=self.method, x_scale='jac')
class LossFunctionMixin(object):
def test_options(self):
for loss in LOSSES:
res = least_squares(fun_trivial, 2.0, loss=loss,
method=self.method)
assert_allclose(res.x, 0, atol=1e-15)
assert_raises(ValueError, least_squares, fun_trivial, 2.0,
loss='hinge', method=self.method)
def test_fun(self):
# Test that res.fun is actual residuals, and not modified by loss
# function stuff.
for loss in LOSSES:
res = least_squares(fun_trivial, 2.0, loss=loss,
method=self.method)
assert_equal(res.fun, fun_trivial(res.x))
def test_grad(self):
# Test that res.grad is true gradient of loss function at the
# solution. Use max_nfev = 1, to avoid reaching minimum.
x = np.array([2.0]) # res.x will be this.
res = least_squares(fun_trivial, x, jac_trivial, loss='linear',
max_nfev=1, method=self.method)
assert_equal(res.grad, 2 * x * (x**2 + 5))
res = least_squares(fun_trivial, x, jac_trivial, loss='huber',
max_nfev=1, method=self.method)
assert_equal(res.grad, 2 * x)
res = least_squares(fun_trivial, x, jac_trivial, loss='soft_l1',
max_nfev=1, method=self.method)
assert_allclose(res.grad,
2 * x * (x**2 + 5) / (1 + (x**2 + 5)**2)**0.5)
res = least_squares(fun_trivial, x, jac_trivial, loss='cauchy',
max_nfev=1, method=self.method)
assert_allclose(res.grad, 2 * x * (x**2 + 5) / (1 + (x**2 + 5)**2))
res = least_squares(fun_trivial, x, jac_trivial, loss='arctan',
max_nfev=1, method=self.method)
assert_allclose(res.grad, 2 * x * (x**2 + 5) / (1 + (x**2 + 5)**4))
res = least_squares(fun_trivial, x, jac_trivial, loss=cubic_soft_l1,
max_nfev=1, method=self.method)
assert_allclose(res.grad,
2 * x * (x**2 + 5) / (1 + (x**2 + 5)**2)**(2/3))
def test_jac(self):
# Test that res.jac.T.dot(res.jac) gives Gauss-Newton approximation
# of Hessian. This approximation is computed by doubly differentiating
# the cost function and dropping the part containing second derivative
# of f. For a scalar function it is computed as
# H = (rho' + 2 * rho'' * f**2) * f'**2, if the expression inside the
# brackets is less than EPS it is replaced by EPS. Here we check
# against the root of H.
x = 2.0 # res.x will be this.
f = x**2 + 5 # res.fun will be this.
res = least_squares(fun_trivial, x, jac_trivial, loss='linear',
max_nfev=1, method=self.method)
assert_equal(res.jac, 2 * x)
# For `huber` loss the Jacobian correction is identically zero
# in outlier region, in such cases it is modified to be equal EPS**0.5.
res = least_squares(fun_trivial, x, jac_trivial, loss='huber',
max_nfev=1, method=self.method)
assert_equal(res.jac, 2 * x * EPS**0.5)
# Now let's apply `loss_scale` to turn the residual into an inlier.
# The loss function becomes linear.
res = least_squares(fun_trivial, x, jac_trivial, loss='huber',
f_scale=10, max_nfev=1)
assert_equal(res.jac, 2 * x)
# 'soft_l1' always gives a positive scaling.
res = least_squares(fun_trivial, x, jac_trivial, loss='soft_l1',
max_nfev=1, method=self.method)
assert_allclose(res.jac, 2 * x * (1 + f**2)**-0.75)
# For 'cauchy' the correction term turns out to be negative, and it
# replaced by EPS**0.5.
res = least_squares(fun_trivial, x, jac_trivial, loss='cauchy',
max_nfev=1, method=self.method)
assert_allclose(res.jac, 2 * x * EPS**0.5)
# Now use scaling to turn the residual to inlier.
res = least_squares(fun_trivial, x, jac_trivial, loss='cauchy',
f_scale=10, max_nfev=1, method=self.method)
fs = f / 10
assert_allclose(res.jac, 2 * x * (1 - fs**2)**0.5 / (1 + fs**2))
# 'arctan' gives an outlier.
res = least_squares(fun_trivial, x, jac_trivial, loss='arctan',
max_nfev=1, method=self.method)
assert_allclose(res.jac, 2 * x * EPS**0.5)
# Turn to inlier.
res = least_squares(fun_trivial, x, jac_trivial, loss='arctan',
f_scale=20.0, max_nfev=1, method=self.method)
fs = f / 20
assert_allclose(res.jac, 2 * x * (1 - 3 * fs**4)**0.5 / (1 + fs**4))
# cubic_soft_l1 will give an outlier.
res = least_squares(fun_trivial, x, jac_trivial, loss=cubic_soft_l1,
max_nfev=1)
assert_allclose(res.jac, 2 * x * EPS**0.5)
# Turn to inlier.
res = least_squares(fun_trivial, x, jac_trivial,
loss=cubic_soft_l1, f_scale=6, max_nfev=1)
fs = f / 6
assert_allclose(res.jac,
2 * x * (1 - fs**2 / 3)**0.5 * (1 + fs**2)**(-5/6))
def test_robustness(self):
for noise in [0.1, 1.0]:
p = ExponentialFittingProblem(1, 0.1, noise, random_seed=0)
for jac in ['2-point', '3-point', 'cs', p.jac]:
res_lsq = least_squares(p.fun, p.p0, jac=jac,
method=self.method)
assert_allclose(res_lsq.optimality, 0, atol=1e-2)
for loss in LOSSES:
if loss == 'linear':
continue
res_robust = least_squares(
p.fun, p.p0, jac=jac, loss=loss, f_scale=noise,
method=self.method)
assert_allclose(res_robust.optimality, 0, atol=1e-2)
assert_(norm(res_robust.x - p.p_opt) <
norm(res_lsq.x - p.p_opt))
class TestDogbox(BaseMixin, BoundsMixin, SparseMixin, LossFunctionMixin):
method = 'dogbox'
class TestTRF(BaseMixin, BoundsMixin, SparseMixin, LossFunctionMixin):
method = 'trf'
def test_lsmr_regularization(self):
p = BroydenTridiagonal()
for regularize in [True, False]:
res = least_squares(p.fun, p.x0, p.jac, method='trf',
tr_options={'regularize': regularize})
assert_allclose(res.cost, 0, atol=1e-20)
class TestLM(BaseMixin):
method = 'lm'
def test_bounds_not_supported(self):
assert_raises(ValueError, least_squares, fun_trivial,
2.0, bounds=(-3.0, 3.0), method='lm')
def test_m_less_n_not_supported(self):
x0 = [-2, 1]
assert_raises(ValueError, least_squares, fun_rosenbrock_cropped, x0,
method='lm')
def test_sparse_not_supported(self):
p = BroydenTridiagonal()
assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac,
method='lm')
def test_jac_sparsity_not_supported(self):
assert_raises(ValueError, least_squares, fun_trivial, 2.0,
jac_sparsity=[1], method='lm')
def test_LinearOperator_not_supported(self):
p = BroydenTridiagonal(mode="operator")
assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac,
method='lm')
def test_loss(self):
res = least_squares(fun_trivial, 2.0, loss='linear', method='lm')
assert_allclose(res.x, 0.0, atol=1e-4)
assert_raises(ValueError, least_squares, fun_trivial, 2.0,
method='lm', loss='huber')
def test_basic():
# test that 'method' arg is really optional
res = least_squares(fun_trivial, 2.0)
assert_allclose(res.x, 0, atol=1e-10)
if __name__ == "__main__":
run_module_suite()
|