1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
"""
Unit test for Linear Programming via Simplex Algorithm.
"""
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import (assert_, assert_array_almost_equal, assert_allclose,
assert_almost_equal, assert_raises, assert_equal, run_module_suite)
from scipy.optimize import linprog, OptimizeWarning
from scipy._lib._numpy_compat import _assert_warns
def lpgen_2d(m,n):
""" -> A b c LP test: m*n vars, m+n constraints
row sums == n/m, col sums == 1
https://gist.github.com/denis-bz/8647461
"""
np.random.seed(0)
c = - np.random.exponential(size=(m,n))
Arow = np.zeros((m,m*n))
brow = np.zeros(m)
for j in range(m):
j1 = j + 1
Arow[j,j*n:j1*n] = 1
brow[j] = n/m
Acol = np.zeros((n,m*n))
bcol = np.zeros(n)
for j in range(n):
j1 = j + 1
Acol[j,j::n] = 1
bcol[j] = 1
A = np.vstack((Arow,Acol))
b = np.hstack((brow,bcol))
return A, b, c.ravel()
def _assert_infeasible(res):
# res: linprog result object
assert_(not res.success, "incorrectly reported success")
assert_equal(res.status, 2, "failed to report infeasible status")
def _assert_unbounded(res):
# res: linprog result object
assert_(not res.success, "incorrectly reported success")
assert_equal(res.status, 3, "failed to report unbounded status")
def _assert_success(res, desired_fun=None, desired_x=None):
# res: linprog result object
# desired_fun: desired objective function value or None
# desired_x: desired solution or None
assert_(res.success)
assert_equal(res.status, 0)
if desired_fun is not None:
assert_allclose(res.fun, desired_fun,
err_msg="converged to an unexpected objective value")
if desired_x is not None:
assert_allclose(res.x, desired_x,
err_msg="converged to an unexpected solution")
def test_aliasing_b_ub():
c = np.array([1.0])
A_ub = np.array([[1.0]])
b_ub_orig = np.array([3.0])
b_ub = b_ub_orig.copy()
bounds = (-4.0, np.inf)
res = linprog(c, A_ub=A_ub, b_ub=b_ub, bounds=bounds)
_assert_success(res, desired_fun=-4, desired_x=[-4])
assert_allclose(b_ub_orig, b_ub)
def test_aliasing_b_eq():
c = np.array([1.0])
A_eq = np.array([[1.0]])
b_eq_orig = np.array([3.0])
b_eq = b_eq_orig.copy()
bounds = (-4.0, np.inf)
res = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds)
_assert_success(res, desired_fun=3, desired_x=[3])
assert_allclose(b_eq_orig, b_eq)
def test_bounds_second_form_unbounded_below():
c = np.array([1.0])
A_eq = np.array([[1.0]])
b_eq = np.array([3.0])
bounds = (None, 10.0)
res = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds)
_assert_success(res, desired_fun=3, desired_x=[3])
def test_bounds_second_form_unbounded_above():
c = np.array([1.0])
A_eq = np.array([[1.0]])
b_eq = np.array([3.0])
bounds = (1.0, None)
res = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds)
_assert_success(res, desired_fun=3, desired_x=[3])
def test_non_ndarray_args():
c = [1.0]
A_ub = [[1.0]]
b_ub = [3.0]
A_eq = [[1.0]]
b_eq = [2.0]
bounds = (-1.0, 10.0)
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds)
_assert_success(res, desired_fun=2, desired_x=[2])
def test_linprog_upper_bound_constraints():
# Maximize a linear function subject to only linear upper bound constraints.
# http://www.dam.brown.edu/people/huiwang/classes/am121/Archive/simplex_121_c.pdf
c = np.array([3,2])*-1 # maximize
A_ub = [[2,1],
[1,1],
[1,0]]
b_ub = [10,8,4]
res = (linprog(c,A_ub=A_ub,b_ub=b_ub))
_assert_success(res, desired_fun=-18, desired_x=[2, 6])
def test_linprog_mixed_constraints():
# Minimize linear function subject to non-negative variables.
# http://www.statslab.cam.ac.uk/~ff271/teaching/opt/notes/notes8.pdf
c = [6,3]
A_ub = [[0, 3],
[-1,-1],
[-2, 1]]
b_ub = [2,-1,-1]
res = linprog(c,A_ub=A_ub,b_ub=b_ub)
_assert_success(res, desired_fun=5, desired_x=[2/3, 1/3])
def test_linprog_cyclic_recovery():
# Test linprogs recovery from cycling using the Klee-Minty problem
# Klee-Minty http://www.math.ubc.ca/~israel/m340/kleemin3.pdf
c = np.array([100,10,1])*-1 # maximize
A_ub = [[1, 0, 0],
[20, 1, 0],
[200,20, 1]]
b_ub = [1,100,10000]
res = linprog(c,A_ub=A_ub,b_ub=b_ub)
_assert_success(res, desired_x=[0, 0, 10000])
def test_linprog_cyclic_bland():
# Test the effect of Bland's rule on a cycling problem
c = np.array([-10, 57, 9, 24.])
A_ub = np.array([[0.5, -5.5, -2.5, 9],
[0.5, -1.5, -0.5, 1],
[1, 0, 0, 0]])
b_ub = [0, 0, 1]
res = linprog(c, A_ub=A_ub, b_ub=b_ub, options=dict(maxiter=100))
assert_(not res.success)
res = linprog(c, A_ub=A_ub, b_ub=b_ub,
options=dict(maxiter=100, bland=True,))
_assert_success(res, desired_x=[1, 0, 1, 0])
def test_linprog_unbounded():
# Test linprog response to an unbounded problem
c = np.array([1,1])*-1 # maximize
A_ub = [[-1,1],
[-1,-1]]
b_ub = [-1,-2]
res = linprog(c,A_ub=A_ub,b_ub=b_ub)
_assert_unbounded(res)
def test_linprog_infeasible():
# Test linrpog response to an infeasible problem
c = [-1,-1]
A_ub = [[1,0],
[0,1],
[-1,-1]]
b_ub = [2,2,-5]
res = linprog(c,A_ub=A_ub,b_ub=b_ub)
_assert_infeasible(res)
def test_nontrivial_problem():
# Test linprog for a problem involving all constraint types,
# negative resource limits, and rounding issues.
c = [-1,8,4,-6]
A_ub = [[-7,-7,6,9],
[1,-1,-3,0],
[10,-10,-7,7],
[6,-1,3,4]]
b_ub = [-3,6,-6,6]
A_eq = [[-10,1,1,-8]]
b_eq = [-4]
res = linprog(c,A_ub=A_ub,b_ub=b_ub,A_eq=A_eq,b_eq=b_eq)
_assert_success(res, desired_fun=7083/1391,
desired_x=[101/1391,1462/1391,0,752/1391])
def test_negative_variable():
# Test linprog with a problem with one unbounded variable and
# another with a negative lower bound.
c = np.array([-1,4])*-1 # maximize
A_ub = np.array([[-3,1],
[1, 2]], dtype=np.float64)
A_ub_orig = A_ub.copy()
b_ub = [6,4]
x0_bounds = (-np.inf,np.inf)
x1_bounds = (-3,np.inf)
res = linprog(c,A_ub=A_ub,b_ub=b_ub,bounds=(x0_bounds,x1_bounds))
assert_equal(A_ub, A_ub_orig) # user input not overwritten
_assert_success(res, desired_fun=-80/7, desired_x=[-8/7, 18/7])
def test_large_problem():
# Test linprog simplex with a rather large problem (400 variables,
# 40 constraints) generated by https://gist.github.com/denis-bz/8647461
A,b,c = lpgen_2d(20,20)
res = linprog(c,A_ub=A,b_ub=b)
_assert_success(res, desired_fun=-64.049494229)
def test_network_flow():
# A network flow problem with supply and demand at nodes
# and with costs along directed edges.
# https://www.princeton.edu/~rvdb/542/lectures/lec10.pdf
c = [2, 4, 9, 11, 4, 3, 8, 7, 0, 15, 16, 18]
n, p = -1, 1
A_eq = [
[n, n, p, 0, p, 0, 0, 0, 0, p, 0, 0],
[p, 0, 0, p, 0, p, 0, 0, 0, 0, 0, 0],
[0, 0, n, n, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, p, p, 0, 0, p, 0],
[0, 0, 0, 0, n, n, n, 0, p, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, n, n, 0, 0, p],
[0, 0, 0, 0, 0, 0, 0, 0, 0, n, n, n]]
b_eq = [0, 19, -16, 33, 0, 0, -36]
res = linprog(c=c, A_eq=A_eq, b_eq=b_eq)
_assert_success(res, desired_fun=755)
def test_network_flow_limited_capacity():
# A network flow problem with supply and demand at nodes
# and with costs and capacities along directed edges.
# http://blog.sommer-forst.de/2013/04/10/
cost = [2, 2, 1, 3, 1]
bounds = [
[0, 4],
[0, 2],
[0, 2],
[0, 3],
[0, 5]]
n, p = -1, 1
A_eq = [
[n, n, 0, 0, 0],
[p, 0, n, n, 0],
[0, p, p, 0, n],
[0, 0, 0, p, p]]
b_eq = [-4, 0, 0, 4]
# Including the callback here ensures the solution can be
# calculated correctly, even when phase 1 terminated
# with some of the artificial variables as pivots
# (i.e. basis[:m] contains elements corresponding to
# the artificial variables)
res = linprog(c=cost, A_eq=A_eq, b_eq=b_eq, bounds=bounds,
callback=lambda x, **kwargs: None)
_assert_success(res, desired_fun=14)
def test_simplex_algorithm_wikipedia_example():
# http://en.wikipedia.org/wiki/Simplex_algorithm#Example
Z = [-2, -3, -4]
A_ub = [
[3, 2, 1],
[2, 5, 3]]
b_ub = [10, 15]
res = linprog(c=Z, A_ub=A_ub, b_ub=b_ub)
_assert_success(res, desired_fun=-20)
def test_enzo_example():
# http://projects.scipy.org/scipy/attachment/ticket/1252/lp2.py
#
# Translated from Octave code at:
# http://www.ecs.shimane-u.ac.jp/~kyoshida/lpeng.htm
# and placed under MIT licence by Enzo Michelangeli
# with permission explicitly granted by the original author,
# Prof. Kazunobu Yoshida
c = [4, 8, 3, 0, 0, 0]
A_eq = [
[2, 5, 3, -1, 0, 0],
[3, 2.5, 8, 0, -1, 0],
[8, 10, 4, 0, 0, -1]]
b_eq = [185, 155, 600]
res = linprog(c=c, A_eq=A_eq, b_eq=b_eq)
_assert_success(res, desired_fun=317.5,
desired_x=[66.25, 0, 17.5, 0, 183.75, 0])
def test_enzo_example_b():
# rescued from https://github.com/scipy/scipy/pull/218
c = [2.8, 6.3, 10.8, -2.8, -6.3, -10.8]
A_eq = [[-1, -1, -1, 0, 0, 0],
[0, 0, 0, 1, 1, 1],
[1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1]]
b_eq = [-0.5, 0.4, 0.3, 0.3, 0.3]
# Including the callback here ensures the solution can be
# calculated correctly.
res = linprog(c=c, A_eq=A_eq, b_eq=b_eq,
callback=lambda x, **kwargs: None)
_assert_success(res, desired_fun=-1.77,
desired_x=[0.3, 0.2, 0.0, 0.0, 0.1, 0.3])
def test_enzo_example_c_with_degeneracy():
# rescued from https://github.com/scipy/scipy/pull/218
m = 20
c = -np.ones(m)
tmp = 2*np.pi*np.arange(1, m+1)/(m+1)
A_eq = np.vstack((np.cos(tmp)-1, np.sin(tmp)))
b_eq = [0, 0]
res = linprog(c=c, A_eq=A_eq, b_eq=b_eq)
_assert_success(res, desired_fun=0, desired_x=np.zeros(m))
def test_enzo_example_c_with_unboundedness():
# rescued from https://github.com/scipy/scipy/pull/218
m = 50
c = -np.ones(m)
tmp = 2*np.pi*np.arange(m)/(m+1)
A_eq = np.vstack((np.cos(tmp)-1, np.sin(tmp)))
b_eq = [0, 0]
res = linprog(c=c, A_eq=A_eq, b_eq=b_eq)
_assert_unbounded(res)
def test_enzo_example_c_with_infeasibility():
# rescued from https://github.com/scipy/scipy/pull/218
m = 50
c = -np.ones(m)
tmp = 2*np.pi*np.arange(m)/(m+1)
A_eq = np.vstack((np.cos(tmp)-1, np.sin(tmp)))
b_eq = [1, 1]
res = linprog(c=c, A_eq=A_eq, b_eq=b_eq)
_assert_infeasible(res)
def test_callback():
# Check that callback is as advertised
callback_complete = [False]
last_xk = []
def cb(xk, **kwargs):
kwargs.pop('tableau')
assert_(isinstance(kwargs.pop('phase'), int))
assert_(isinstance(kwargs.pop('nit'), int))
i, j = kwargs.pop('pivot')
assert_(np.isscalar(i))
assert_(np.isscalar(j))
basis = kwargs.pop('basis')
assert_(isinstance(basis, np.ndarray))
assert_(basis.dtype == np.int_)
complete = kwargs.pop('complete')
assert_(isinstance(complete, bool))
if complete:
last_xk.append(xk)
callback_complete[0] = True
else:
assert_(not callback_complete[0])
# no more kwargs
assert_(not kwargs)
c = np.array([-3,-2])
A_ub = [[2,1], [1,1], [1,0]]
b_ub = [10,8,4]
res = linprog(c,A_ub=A_ub,b_ub=b_ub, callback=cb)
assert_(callback_complete[0])
assert_allclose(last_xk[0], res.x)
def test_unknown_options_or_solver():
c = np.array([-3,-2])
A_ub = [[2,1], [1,1], [1,0]]
b_ub = [10,8,4]
_assert_warns(OptimizeWarning, linprog,
c, A_ub=A_ub, b_ub=b_ub, options=dict(spam='42'))
assert_raises(ValueError, linprog,
c, A_ub=A_ub, b_ub=b_ub, method='ekki-ekki-ekki')
def test_no_constraints():
res = linprog([-1, -2])
assert_equal(res.x, [0, 0])
_assert_unbounded(res)
def test_simple_bounds():
res = linprog([1, 2], bounds=(1, 2))
_assert_success(res, desired_x=[1, 1])
res = linprog([1, 2], bounds=[(1, 2), (1, 2)])
_assert_success(res, desired_x=[1, 1])
def test_invalid_inputs():
for bad_bound in [[(5, 0), (1, 2), (3, 4)],
[(1, 2), (3, 4)],
[(1, 2), (3, 4), (3, 4, 5)],
[(1, 2), (np.inf, np.inf), (3, 4)],
[(1, 2), (-np.inf, -np.inf), (3, 4)],
]:
assert_raises(ValueError, linprog, [1, 2, 3], bounds=bad_bound)
assert_raises(ValueError, linprog, [1,2], A_ub=[[1,2]], b_ub=[1,2])
assert_raises(ValueError, linprog, [1,2], A_ub=[[1]], b_ub=[1])
assert_raises(ValueError, linprog, [1,2], A_eq=[[1,2]], b_eq=[1,2])
assert_raises(ValueError, linprog, [1,2], A_eq=[[1]], b_eq=[1])
assert_raises(ValueError, linprog, [1,2], A_eq=[1], b_eq=1)
assert_raises(ValueError, linprog, [1,2], A_ub=np.zeros((1,1,3)), b_eq=1)
def test_basic_artificial_vars():
# Test if linprog succeeds when at the end of Phase 1 some artificial
# variables remain basic, and the row in T corresponding to the
# artificial variables is not all zero.
c = np.array([-0.1, -0.07, 0.004, 0.004, 0.004, 0.004])
A_ub = np.array([[1.0, 0, 0, 0, 0, 0], [-1.0, 0, 0, 0, 0, 0],
[0, -1.0, 0, 0, 0, 0], [0, 1.0, 0, 0, 0, 0],
[1.0, 1.0, 0, 0, 0, 0]])
b_ub = np.array([3.0, 3.0, 3.0, 3.0, 20.0])
A_eq = np.array([[1.0, 0, -1, 1, -1, 1], [0, -1.0, -1, 1, -1, 1]])
b_eq = np.array([0, 0])
res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq,
callback=lambda x, **kwargs: None)
_assert_success(res, desired_fun=0, desired_x=np.zeros_like(c))
if __name__ == '__main__':
run_module_suite()
|