File: test_minpack.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (592 lines) | stat: -rw-r--r-- 21,708 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
"""
Unit tests for optimization routines from minpack.py.
"""
from __future__ import division, print_function, absolute_import

import warnings

from numpy.testing import (assert_, assert_almost_equal, assert_array_equal,
        assert_array_almost_equal, TestCase, run_module_suite, assert_raises,
        assert_allclose)
import numpy as np
from numpy import array, float64, matrix

from scipy import optimize
from scipy.special import lambertw
from scipy.optimize.minpack import leastsq, curve_fit, fixed_point
from scipy._lib._numpy_compat import _assert_warns
from scipy.optimize import OptimizeWarning


class ReturnShape(object):
    """This class exists to create a callable that does not have a '__name__' attribute.

    __init__ takes the argument 'shape', which should be a tuple of ints.  When an instance
    it called with a single argument 'x', it returns numpy.ones(shape).
    """
    def __init__(self, shape):
        self.shape = shape

    def __call__(self, x):
        return np.ones(self.shape)


def dummy_func(x, shape):
    """A function that returns an array of ones of the given shape.
    `x` is ignored.
    """
    return np.ones(shape)

# Function and jacobian for tests of solvers for systems of nonlinear
# equations


def pressure_network(flow_rates, Qtot, k):
    """Evaluate non-linear equation system representing
    the pressures and flows in a system of n parallel pipes::

        f_i = P_i - P_0, for i = 1..n
        f_0 = sum(Q_i) - Qtot

    Where Q_i is the flow rate in pipe i and P_i the pressure in that pipe.
    Pressure is modeled as a P=kQ**2 where k is a valve coefficient and
    Q is the flow rate.

    Parameters
    ----------
    flow_rates : float
        A 1D array of n flow rates [kg/s].
    k : float
        A 1D array of n valve coefficients [1/kg m].
    Qtot : float
        A scalar, the total input flow rate [kg/s].

    Returns
    -------
    F : float
        A 1D array, F[i] == f_i.

    """
    P = k * flow_rates**2
    F = np.hstack((P[1:] - P[0], flow_rates.sum() - Qtot))
    return F


def pressure_network_jacobian(flow_rates, Qtot, k):
    """Return the jacobian of the equation system F(flow_rates)
    computed by `pressure_network` with respect to
    *flow_rates*. See `pressure_network` for the detailed
    description of parrameters.

    Returns
    -------
    jac : float
        *n* by *n* matrix ``df_i/dQ_i`` where ``n = len(flow_rates)``
        and *f_i* and *Q_i* are described in the doc for `pressure_network`
    """
    n = len(flow_rates)
    pdiff = np.diag(flow_rates[1:] * 2 * k[1:] - 2 * flow_rates[0] * k[0])

    jac = np.empty((n, n))
    jac[:n-1, :n-1] = pdiff * 0
    jac[:n-1, n-1] = 0
    jac[n-1, :] = np.ones(n)

    return jac


def pressure_network_fun_and_grad(flow_rates, Qtot, k):
    return (pressure_network(flow_rates, Qtot, k),
            pressure_network_jacobian(flow_rates, Qtot, k))


class TestFSolve(TestCase):
    def test_pressure_network_no_gradient(self):
        # fsolve without gradient, equal pipes -> equal flows.
        k = np.ones(4) * 0.5
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows, info, ier, mesg = optimize.fsolve(
            pressure_network, initial_guess, args=(Qtot, k),
            full_output=True)
        assert_array_almost_equal(final_flows, np.ones(4))
        assert_(ier == 1, mesg)

    def test_pressure_network_with_gradient(self):
        # fsolve with gradient, equal pipes -> equal flows
        k = np.ones(4) * 0.5
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows = optimize.fsolve(
            pressure_network, initial_guess, args=(Qtot, k),
            fprime=pressure_network_jacobian)
        assert_array_almost_equal(final_flows, np.ones(4))

    def test_wrong_shape_func_callable(self):
        func = ReturnShape(1)
        # x0 is a list of two elements, but func will return an array with
        # length 1, so this should result in a TypeError.
        x0 = [1.5, 2.0]
        assert_raises(TypeError, optimize.fsolve, func, x0)

    def test_wrong_shape_func_function(self):
        # x0 is a list of two elements, but func will return an array with
        # length 1, so this should result in a TypeError.
        x0 = [1.5, 2.0]
        assert_raises(TypeError, optimize.fsolve, dummy_func, x0, args=((1,),))

    def test_wrong_shape_fprime_callable(self):
        func = ReturnShape(1)
        deriv_func = ReturnShape((2,2))
        assert_raises(TypeError, optimize.fsolve, func, x0=[0,1], fprime=deriv_func)

    def test_wrong_shape_fprime_function(self):
        func = lambda x: dummy_func(x, (2,))
        deriv_func = lambda x: dummy_func(x, (3,3))
        assert_raises(TypeError, optimize.fsolve, func, x0=[0,1], fprime=deriv_func)

    def test_float32(self):
        func = lambda x: np.array([x[0] - 100, x[1] - 1000], dtype=np.float32)**2
        p = optimize.fsolve(func, np.array([1, 1], np.float32))
        assert_allclose(func(p), [0, 0], atol=1e-3)


class TestRootHybr(TestCase):
    def test_pressure_network_no_gradient(self):
        # root/hybr without gradient, equal pipes -> equal flows
        k = np.ones(4) * 0.5
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows = optimize.root(pressure_network, initial_guess,
                                    method='hybr', args=(Qtot, k)).x
        assert_array_almost_equal(final_flows, np.ones(4))

    def test_pressure_network_with_gradient(self):
        # root/hybr with gradient, equal pipes -> equal flows
        k = np.ones(4) * 0.5
        Qtot = 4
        initial_guess = matrix([2., 0., 2., 0.])
        final_flows = optimize.root(pressure_network, initial_guess,
                                    args=(Qtot, k), method='hybr',
                                    jac=pressure_network_jacobian).x
        assert_array_almost_equal(final_flows, np.ones(4))

    def test_pressure_network_with_gradient_combined(self):
        # root/hybr with gradient and function combined, equal pipes -> equal
        # flows
        k = np.ones(4) * 0.5
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows = optimize.root(pressure_network_fun_and_grad,
                                    initial_guess, args=(Qtot, k),
                                    method='hybr', jac=True).x
        assert_array_almost_equal(final_flows, np.ones(4))


class TestRootLM(TestCase):
    def test_pressure_network_no_gradient(self):
        # root/lm without gradient, equal pipes -> equal flows
        k = np.ones(4) * 0.5
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows = optimize.root(pressure_network, initial_guess,
                                    method='lm', args=(Qtot, k)).x
        assert_array_almost_equal(final_flows, np.ones(4))


class TestLeastSq(TestCase):
    def setUp(self):
        x = np.linspace(0, 10, 40)
        a,b,c = 3.1, 42, -304.2
        self.x = x
        self.abc = a,b,c
        y_true = a*x**2 + b*x + c
        np.random.seed(0)
        self.y_meas = y_true + 0.01*np.random.standard_normal(y_true.shape)

    def residuals(self, p, y, x):
        a,b,c = p
        err = y-(a*x**2 + b*x + c)
        return err

    def test_basic(self):
        p0 = array([0,0,0])
        params_fit, ier = leastsq(self.residuals, p0,
                                  args=(self.y_meas, self.x))
        assert_(ier in (1,2,3,4), 'solution not found (ier=%d)' % ier)
        # low precision due to random
        assert_array_almost_equal(params_fit, self.abc, decimal=2)

    def test_full_output(self):
        p0 = matrix([0,0,0])
        full_output = leastsq(self.residuals, p0,
                              args=(self.y_meas, self.x),
                              full_output=True)
        params_fit, cov_x, infodict, mesg, ier = full_output
        assert_(ier in (1,2,3,4), 'solution not found: %s' % mesg)

    def test_input_untouched(self):
        p0 = array([0,0,0],dtype=float64)
        p0_copy = array(p0, copy=True)
        full_output = leastsq(self.residuals, p0,
                              args=(self.y_meas, self.x),
                              full_output=True)
        params_fit, cov_x, infodict, mesg, ier = full_output
        assert_(ier in (1,2,3,4), 'solution not found: %s' % mesg)
        assert_array_equal(p0, p0_copy)

    def test_wrong_shape_func_callable(self):
        func = ReturnShape(1)
        # x0 is a list of two elements, but func will return an array with
        # length 1, so this should result in a TypeError.
        x0 = [1.5, 2.0]
        assert_raises(TypeError, optimize.leastsq, func, x0)

    def test_wrong_shape_func_function(self):
        # x0 is a list of two elements, but func will return an array with
        # length 1, so this should result in a TypeError.
        x0 = [1.5, 2.0]
        assert_raises(TypeError, optimize.leastsq, dummy_func, x0, args=((1,),))

    def test_wrong_shape_Dfun_callable(self):
        func = ReturnShape(1)
        deriv_func = ReturnShape((2,2))
        assert_raises(TypeError, optimize.leastsq, func, x0=[0,1], Dfun=deriv_func)

    def test_wrong_shape_Dfun_function(self):
        func = lambda x: dummy_func(x, (2,))
        deriv_func = lambda x: dummy_func(x, (3,3))
        assert_raises(TypeError, optimize.leastsq, func, x0=[0,1], Dfun=deriv_func)

    def test_float32(self):
        # Regression test for gh-1447
        def func(p,x,y):
            q = p[0]*np.exp(-(x-p[1])**2/(2.0*p[2]**2))+p[3]
            return q - y

        x = np.array([1.475,1.429,1.409,1.419,1.455,1.519,1.472, 1.368,1.286,
                       1.231], dtype=np.float32)
        y = np.array([0.0168,0.0193,0.0211,0.0202,0.0171,0.0151,0.0185,0.0258,
                      0.034,0.0396], dtype=np.float32)
        p0 = np.array([1.0,1.0,1.0,1.0])
        p1, success = optimize.leastsq(func, p0, args=(x,y))

        assert_(success in [1,2,3,4])
        assert_((func(p1,x,y)**2).sum() < 1e-4 * (func(p0,x,y)**2).sum())


class TestCurveFit(TestCase):
    def setUp(self):
        self.y = array([1.0, 3.2, 9.5, 13.7])
        self.x = array([1.0, 2.0, 3.0, 4.0])

    def test_one_argument(self):
        def func(x,a):
            return x**a
        popt, pcov = curve_fit(func, self.x, self.y)
        assert_(len(popt) == 1)
        assert_(pcov.shape == (1,1))
        assert_almost_equal(popt[0], 1.9149, decimal=4)
        assert_almost_equal(pcov[0,0], 0.0016, decimal=4)

        # Test if we get the same with full_output. Regression test for #1415.
        res = curve_fit(func, self.x, self.y, full_output=1)
        (popt2, pcov2, infodict, errmsg, ier) = res
        assert_array_almost_equal(popt, popt2)

    def test_two_argument(self):
        def func(x, a, b):
            return b*x**a
        popt, pcov = curve_fit(func, self.x, self.y)
        assert_(len(popt) == 2)
        assert_(pcov.shape == (2,2))
        assert_array_almost_equal(popt, [1.7989, 1.1642], decimal=4)
        assert_array_almost_equal(pcov, [[0.0852, -0.1260], [-0.1260, 0.1912]],
                                  decimal=4)

    def test_func_is_classmethod(self):
        class test_self(object):
            """This class tests if curve_fit passes the correct number of
               arguments when the model function is a class instance method.
            """
            def func(self, x, a, b):
                return b * x**a

        test_self_inst = test_self()
        popt, pcov = curve_fit(test_self_inst.func, self.x, self.y)
        assert_(pcov.shape == (2,2))
        assert_array_almost_equal(popt, [1.7989, 1.1642], decimal=4)
        assert_array_almost_equal(pcov, [[0.0852, -0.1260], [-0.1260, 0.1912]],
                                  decimal=4)

    def test_regression_2639(self):
        # This test fails if epsfcn in leastsq is too large.
        x = [574.14200000000005, 574.154, 574.16499999999996,
             574.17700000000002, 574.18799999999999, 574.19899999999996,
             574.21100000000001, 574.22199999999998, 574.23400000000004,
             574.245]
        y = [859.0, 997.0, 1699.0, 2604.0, 2013.0, 1964.0, 2435.0,
             1550.0, 949.0, 841.0]
        guess = [574.1861428571428, 574.2155714285715, 1302.0, 1302.0,
                 0.0035019999999983615, 859.0]
        good = [5.74177150e+02, 5.74209188e+02, 1.74187044e+03, 1.58646166e+03,
                1.0068462e-02, 8.57450661e+02]

        def f_double_gauss(x, x0, x1, A0, A1, sigma, c):
            return (A0*np.exp(-(x-x0)**2/(2.*sigma**2))
                    + A1*np.exp(-(x-x1)**2/(2.*sigma**2)) + c)
        popt, pcov = curve_fit(f_double_gauss, x, y, guess, maxfev=10000)
        assert_allclose(popt, good, rtol=1e-5)

    def test_pcov(self):
        xdata = np.array([0, 1, 2, 3, 4, 5])
        ydata = np.array([1, 1, 5, 7, 8, 12])
        sigma = np.array([1, 2, 1, 2, 1, 2])

        def f(x, a, b):
            return a*x + b

        for method in ['lm', 'trf', 'dogbox']:
            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=sigma,
                                   method=method)
            perr_scaled = np.sqrt(np.diag(pcov))
            assert_allclose(perr_scaled, [0.20659803, 0.57204404], rtol=1e-3)

            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=3*sigma,
                                   method=method)
            perr_scaled = np.sqrt(np.diag(pcov))
            assert_allclose(perr_scaled, [0.20659803, 0.57204404], rtol=1e-3)

            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=sigma,
                                   absolute_sigma=True, method=method)
            perr = np.sqrt(np.diag(pcov))
            assert_allclose(perr, [0.30714756, 0.85045308], rtol=1e-3)

            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=3*sigma,
                                   absolute_sigma=True, method=method)
            perr = np.sqrt(np.diag(pcov))
            assert_allclose(perr, [3*0.30714756, 3*0.85045308], rtol=1e-3)

        # infinite variances

        def f_flat(x, a, b):
            return a*x

        with warnings.catch_warnings():
            # suppress warnings when testing with inf's
            warnings.filterwarnings('ignore', category=OptimizeWarning)
            popt, pcov = curve_fit(f_flat, xdata, ydata, p0=[2, 0],
                                   sigma=sigma)
            assert_(pcov.shape == (2, 2))
            pcov_expected = np.array([np.inf]*4).reshape(2, 2)
            assert_array_equal(pcov, pcov_expected)

            popt, pcov = curve_fit(f, xdata[:2], ydata[:2], p0=[2, 0])
            assert_(pcov.shape == (2, 2))
            assert_array_equal(pcov, pcov_expected)

    def test_array_like(self):
        # Test sequence input.  Regression test for gh-3037.
        def f_linear(x, a, b):
            return a*x + b

        x = [1, 2, 3, 4]
        y = [3, 5, 7, 9]
        assert_allclose(curve_fit(f_linear, x, y)[0], [2, 1], atol=1e-10)

    def test_indeterminate_covariance(self):
        # Test that a warning is returned when pcov is indeterminate
        xdata = np.array([1, 2, 3, 4, 5, 6])
        ydata = np.array([1, 2, 3, 4, 5.5, 6])
        _assert_warns(OptimizeWarning, curve_fit,
                      lambda x, a, b: a*x, xdata, ydata)

    def test_NaN_handling(self):
        # Test for correct handling of NaNs in input data: gh-3422

        # create input with NaNs
        xdata = np.array([1, np.nan, 3])
        ydata = np.array([1, 2, 3])

        assert_raises(ValueError, curve_fit,
                      lambda x, a, b: a*x + b, xdata, ydata)
        assert_raises(ValueError, curve_fit,
                      lambda x, a, b: a*x + b, ydata, xdata)

        assert_raises(ValueError, curve_fit, lambda x, a, b: a*x + b,
                      xdata, ydata, **{"check_finite": True})

    def test_method_argument(self):
        def f(x, a, b):
            return a * np.exp(-b*x)

        xdata = np.linspace(0, 1, 11)
        ydata = f(xdata, 2., 2.)

        for method in ['trf', 'dogbox', 'lm', None]:
            popt, pcov = curve_fit(f, xdata, ydata, method=method)
            assert_allclose(popt, [2., 2.])

        assert_raises(ValueError, curve_fit, f, xdata, ydata, method='unknown')

    def test_bounds(self):
        def f(x, a, b):
            return a * np.exp(-b*x)

        xdata = np.linspace(0, 1, 11)
        ydata = f(xdata, 2., 2.)

        # The minimum w/out bounds is at [2., 2.],
        # and with bounds it's at [1.5, smth].
        bounds = ([1., 0], [1.5, 3.])
        for method in [None, 'trf', 'dogbox']:
            popt, pcov = curve_fit(f, xdata, ydata, bounds=bounds,
                                   method=method)
            assert_allclose(popt[0], 1.5)

        # With bounds, the starting estimate is feasible.
        popt, pcov = curve_fit(f, xdata, ydata, method='trf',
                               bounds=([0., 0], [0.6, np.inf]))
        assert_allclose(popt[0], 0.6)

        # method='lm' doesn't support bounds.
        assert_raises(ValueError, curve_fit, f, xdata, ydata, bounds=bounds,
                      method='lm')

    def test_bounds_p0(self):
        # This test is for issue #5719. The problem was that an initial guess
        # was ignored when 'trf' or 'dogbox' methods were invoked.
        def f(x, a):
            return np.sin(x + a)

        xdata = np.linspace(-2*np.pi, 2*np.pi, 40)
        ydata = np.sin(xdata)
        bounds = (-3 * np.pi, 3 * np.pi)
        for method in ['trf', 'dogbox']:
            popt_1, _ = curve_fit(f, xdata, ydata, p0=2.1*np.pi)
            popt_2, _ = curve_fit(f, xdata, ydata, p0=2.1*np.pi,
                                  bounds=bounds, method=method)

            # If the initial guess is ignored, then popt_2 would be close 0.
            assert_allclose(popt_1, popt_2)

    def test_jac(self):
        # Test that Jacobian callable is handled correctly and
        # weighted if sigma is provided.
        def f(x, a, b):
            return a * np.exp(-b*x)

        def jac(x, a, b):
            e = np.exp(-b*x)
            return np.vstack((e, -a * x * e)).T

        xdata = np.linspace(0, 1, 11)
        ydata = f(xdata, 2., 2.)

        # Test numerical options for least_squares backend.
        for method in ['trf', 'dogbox']:
            for scheme in ['2-point', '3-point', 'cs']:
                popt, pcov = curve_fit(f, xdata, ydata, jac=scheme,
                                       method=method)
                assert_allclose(popt, [2, 2])

        # Test the analytic option.
        for method in ['lm', 'trf', 'dogbox']:
            popt, pcov = curve_fit(f, xdata, ydata, method=method, jac=jac)
            assert_allclose(popt, [2, 2])

        # Now add an outlier and provide sigma.
        ydata[5] = 100
        sigma = np.ones(xdata.shape[0])
        sigma[5] = 200
        for method in ['lm', 'trf', 'dogbox']:
            popt, pcov = curve_fit(f, xdata, ydata, sigma=sigma, method=method,
                                   jac=jac)
            # Still the optimization process is influenced somehow,
            # have to set rtol=1e-3.
            assert_allclose(popt, [2, 2], rtol=1e-3)


class TestFixedPoint(TestCase):

    def test_scalar_trivial(self):
        # f(x) = 2x; fixed point should be x=0
        def func(x):
            return 2.0*x
        x0 = 1.0
        x = fixed_point(func, x0)
        assert_almost_equal(x, 0.0)

    def test_scalar_basic1(self):
        # f(x) = x**2; x0=1.05; fixed point should be x=1
        def func(x):
            return x**2
        x0 = 1.05
        x = fixed_point(func, x0)
        assert_almost_equal(x, 1.0)

    def test_scalar_basic2(self):
        # f(x) = x**0.5; x0=1.05; fixed point should be x=1
        def func(x):
            return x**0.5
        x0 = 1.05
        x = fixed_point(func, x0)
        assert_almost_equal(x, 1.0)

    def test_array_trivial(self):
        def func(x):
            return 2.0*x
        x0 = [0.3, 0.15]
        olderr = np.seterr(all='ignore')
        try:
            x = fixed_point(func, x0)
        finally:
            np.seterr(**olderr)
        assert_almost_equal(x, [0.0, 0.0])

    def test_array_basic1(self):
        # f(x) = c * x**2; fixed point should be x=1/c
        def func(x, c):
            return c * x**2
        c = array([0.75, 1.0, 1.25])
        x0 = [1.1, 1.15, 0.9]
        olderr = np.seterr(all='ignore')
        try:
            x = fixed_point(func, x0, args=(c,))
        finally:
            np.seterr(**olderr)
        assert_almost_equal(x, 1.0/c)

    def test_array_basic2(self):
        # f(x) = c * x**0.5; fixed point should be x=c**2
        def func(x, c):
            return c * x**0.5
        c = array([0.75, 1.0, 1.25])
        x0 = [0.8, 1.1, 1.1]
        x = fixed_point(func, x0, args=(c,))
        assert_almost_equal(x, c**2)

    def test_lambertw(self):
        # python-list/2010-December/594592.html
        xxroot = fixed_point(lambda xx: np.exp(-2.0*xx)/2.0, 1.0,
                args=(), xtol=1e-12, maxiter=500)
        assert_allclose(xxroot, np.exp(-2.0*xxroot)/2.0)
        assert_allclose(xxroot, lambertw(1)/2)

    def test_no_acceleration(self):
        # github issue 5460
        ks = 2
        kl = 6
        m = 1.3
        n0 = 1.001
        i0 = ((m-1)/m)*(kl/ks/m)**(1/(m-1))

        def func(n):
            return np.log(kl/ks/n) / np.log((i0*n/(n - 1))) + 1

        n = fixed_point(func, n0, method='iteration')
        assert_allclose(n, m)


if __name__ == "__main__":
    run_module_suite()