1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
|
"""
Unit tests for optimization routines from optimize.py
Authors:
Ed Schofield, Nov 2005
Andrew Straw, April 2008
To run it in its simplest form::
nosetests test_optimize.py
"""
from __future__ import division, print_function, absolute_import
import warnings
import itertools
import numpy as np
from numpy.testing import (assert_raises, assert_allclose, assert_equal,
assert_, TestCase, run_module_suite, dec,
assert_almost_equal, assert_warns,
assert_array_less)
from scipy._lib._testutils import suppressed_stdout
from scipy import optimize
def test_check_grad():
# Verify if check_grad is able to estimate the derivative of the
# logistic function.
def logit(x):
return 1 / (1 + np.exp(-x))
def der_logit(x):
return np.exp(-x) / (1 + np.exp(-x))**2
x0 = np.array([1.5])
r = optimize.check_grad(logit, der_logit, x0)
assert_almost_equal(r, 0)
r = optimize.check_grad(logit, der_logit, x0, epsilon=1e-6)
assert_almost_equal(r, 0)
# Check if the epsilon parameter is being considered.
r = abs(optimize.check_grad(logit, der_logit, x0, epsilon=1e-1) - 0)
assert_(r > 1e-7)
class CheckOptimize(object):
""" Base test case for a simple constrained entropy maximization problem
(the machine translation example of Berger et al in
Computational Linguistics, vol 22, num 1, pp 39--72, 1996.)
"""
def setUp(self):
self.F = np.array([[1,1,1],[1,1,0],[1,0,1],[1,0,0],[1,0,0]])
self.K = np.array([1., 0.3, 0.5])
self.startparams = np.zeros(3, np.float64)
self.solution = np.array([0., -0.524869316, 0.487525860])
self.maxiter = 1000
self.funccalls = 0
self.gradcalls = 0
self.trace = []
def func(self, x):
self.funccalls += 1
if self.funccalls > 6000:
raise RuntimeError("too many iterations in optimization routine")
log_pdot = np.dot(self.F, x)
logZ = np.log(sum(np.exp(log_pdot)))
f = logZ - np.dot(self.K, x)
self.trace.append(x)
return f
def grad(self, x):
self.gradcalls += 1
log_pdot = np.dot(self.F, x)
logZ = np.log(sum(np.exp(log_pdot)))
p = np.exp(log_pdot - logZ)
return np.dot(self.F.transpose(), p) - self.K
def hess(self, x):
log_pdot = np.dot(self.F, x)
logZ = np.log(sum(np.exp(log_pdot)))
p = np.exp(log_pdot - logZ)
return np.dot(self.F.T,
np.dot(np.diag(p), self.F - np.dot(self.F.T, p)))
def hessp(self, x, p):
return np.dot(self.hess(x), p)
class CheckOptimizeParameterized(CheckOptimize):
@suppressed_stdout
def test_cg(self):
# conjugate gradient optimization routine
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
res = optimize.minimize(self.func, self.startparams, args=(),
method='CG', jac=self.grad,
options=opts)
params, fopt, func_calls, grad_calls, warnflag = \
res['x'], res['fun'], res['nfev'], res['njev'], res['status']
else:
retval = optimize.fmin_cg(self.func, self.startparams,
self.grad, (), maxiter=self.maxiter,
full_output=True, disp=self.disp,
retall=False)
(params, fopt, func_calls, grad_calls, warnflag) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 9, self.funccalls)
assert_(self.gradcalls == 7, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[2:4],
[[0, -0.5, 0.5],
[0, -5.05700028e-01, 4.95985862e-01]],
atol=1e-14, rtol=1e-7)
@suppressed_stdout
def test_bfgs(self):
# Broyden-Fletcher-Goldfarb-Shanno optimization routine
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
res = optimize.minimize(self.func, self.startparams,
jac=self.grad, method='BFGS', args=(),
options=opts)
params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag = (
res['x'], res['fun'], res['jac'], res['hess_inv'],
res['nfev'], res['njev'], res['status'])
else:
retval = optimize.fmin_bfgs(self.func, self.startparams, self.grad,
args=(), maxiter=self.maxiter,
full_output=True, disp=self.disp,
retall=False)
(params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 10, self.funccalls)
assert_(self.gradcalls == 8, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[6:8],
[[0, -5.25060743e-01, 4.87748473e-01],
[0, -5.24885582e-01, 4.87530347e-01]],
atol=1e-14, rtol=1e-7)
@suppressed_stdout
def test_bfgs_infinite(self):
# Test corner case where -Inf is the minimum. See gh-2019.
func = lambda x: -np.e**-x
fprime = lambda x: -func(x)
x0 = [0]
olderr = np.seterr(over='ignore')
try:
if self.use_wrapper:
opts = {'disp': self.disp}
x = optimize.minimize(func, x0, jac=fprime, method='BFGS',
args=(), options=opts)['x']
else:
x = optimize.fmin_bfgs(func, x0, fprime, disp=self.disp)
assert_(not np.isfinite(func(x)))
finally:
np.seterr(**olderr)
@suppressed_stdout
def test_powell(self):
# Powell (direction set) optimization routine
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
res = optimize.minimize(self.func, self.startparams, args=(),
method='Powell', options=opts)
params, fopt, direc, numiter, func_calls, warnflag = (
res['x'], res['fun'], res['direc'], res['nit'],
res['nfev'], res['status'])
else:
retval = optimize.fmin_powell(self.func, self.startparams,
args=(), maxiter=self.maxiter,
full_output=True, disp=self.disp,
retall=False)
(params, fopt, direc, numiter, func_calls, warnflag) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
#
# However, some leeway must be added: the exact evaluation
# count is sensitive to numerical error, and floating-point
# computations are not bit-for-bit reproducible across
# machines, and when using e.g. MKL, data alignment
# etc. affect the rounding error.
#
assert_(self.funccalls <= 116 + 20, self.funccalls)
assert_(self.gradcalls == 0, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[34:39],
[[0.72949016, -0.44156936, 0.47100962],
[0.72949016, -0.44156936, 0.48052496],
[1.45898031, -0.88313872, 0.95153458],
[0.72949016, -0.44156936, 0.47576729],
[1.72949016, -0.44156936, 0.47576729]],
atol=1e-14, rtol=1e-7)
@suppressed_stdout
def test_neldermead(self):
# Nelder-Mead simplex algorithm
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
res = optimize.minimize(self.func, self.startparams, args=(),
method='Nelder-mead', options=opts)
params, fopt, numiter, func_calls, warnflag, final_simplex = (
res['x'], res['fun'], res['nit'], res['nfev'],
res['status'], res['final_simplex'])
else:
retval = optimize.fmin(self.func, self.startparams,
args=(), maxiter=self.maxiter,
full_output=True, disp=self.disp,
retall=False)
(params, fopt, numiter, func_calls, warnflag) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 167, self.funccalls)
assert_(self.gradcalls == 0, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[76:78],
[[0.1928968, -0.62780447, 0.35166118],
[0.19572515, -0.63648426, 0.35838135]],
atol=1e-14, rtol=1e-7)
@suppressed_stdout
def test_neldermead_initial_simplex(self):
# Nelder-Mead simplex algorithm
simplex = np.zeros((4, 3))
simplex[...] = self.startparams
for j in range(3):
simplex[j+1,j] += 0.1
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': False,
'return_all': True, 'initial_simplex': simplex}
res = optimize.minimize(self.func, self.startparams, args=(),
method='Nelder-mead', options=opts)
params, fopt, numiter, func_calls, warnflag = \
res['x'], res['fun'], res['nit'], res['nfev'], \
res['status']
assert_allclose(res['allvecs'][0], simplex[0])
else:
retval = optimize.fmin(self.func, self.startparams,
args=(), maxiter=self.maxiter,
full_output=True, disp=False, retall=False,
initial_simplex=simplex)
(params, fopt, numiter, func_calls, warnflag) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.17.0. Don't allow them to increase.
assert_(self.funccalls == 100, self.funccalls)
assert_(self.gradcalls == 0, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.15.0
assert_allclose(self.trace[50:52],
[[0.14687474, -0.5103282, 0.48252111],
[0.14474003, -0.5282084, 0.48743951]],
atol=1e-14, rtol=1e-7)
@suppressed_stdout
def test_neldermead_initial_simplex_bad(self):
# Check it fails with a bad simplices
bad_simplices = []
simplex = np.zeros((3, 2))
simplex[...] = self.startparams[:2]
for j in range(2):
simplex[j+1,j] += 0.1
bad_simplices.append(simplex)
simplex = np.zeros((3, 3))
bad_simplices.append(simplex)
for simplex in bad_simplices:
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': False,
'return_all': False, 'initial_simplex': simplex}
assert_raises(ValueError,
optimize.minimize, self.func, self.startparams, args=(),
method='Nelder-mead', options=opts)
else:
assert_raises(ValueError, optimize.fmin, self.func, self.startparams,
args=(), maxiter=self.maxiter,
full_output=True, disp=False, retall=False,
initial_simplex=simplex)
@suppressed_stdout
def test_ncg(self):
# line-search Newton conjugate gradient optimization routine
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
retval = optimize.minimize(self.func, self.startparams,
method='Newton-CG', jac=self.grad,
args=(), options=opts)['x']
else:
retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
args=(), maxiter=self.maxiter,
full_output=False, disp=self.disp,
retall=False)
params = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls <= 22, self.gradcalls) # 0.13.0
#assert_(self.gradcalls <= 18, self.gradcalls) # 0.9.0
#assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0
#assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[3:5],
[[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
[-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
atol=1e-6, rtol=1e-7)
@suppressed_stdout
def test_ncg_hess(self):
# Newton conjugate gradient with Hessian
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
retval = optimize.minimize(self.func, self.startparams,
method='Newton-CG', jac=self.grad,
hess=self.hess,
args=(), options=opts)['x']
else:
retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
fhess=self.hess,
args=(), maxiter=self.maxiter,
full_output=False, disp=self.disp,
retall=False)
params = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls <= 18, self.gradcalls) # 0.9.0
# assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0
# assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[3:5],
[[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
[-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
atol=1e-6, rtol=1e-7)
@suppressed_stdout
def test_ncg_hessp(self):
# Newton conjugate gradient with Hessian times a vector p.
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
retval = optimize.minimize(self.func, self.startparams,
method='Newton-CG', jac=self.grad,
hessp=self.hessp,
args=(), options=opts)['x']
else:
retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
fhess_p=self.hessp,
args=(), maxiter=self.maxiter,
full_output=False, disp=self.disp,
retall=False)
params = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls <= 18, self.gradcalls) # 0.9.0
# assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0
# assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[3:5],
[[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
[-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
atol=1e-6, rtol=1e-7)
def test_neldermead_xatol_fatol():
# gh4484
# test we can call with fatol, xatol specified
func = lambda x: x[0]**2 + x[1]**2
optimize._minimize._minimize_neldermead(func, [1, 1], maxiter=2,
xatol=1e-3, fatol=1e-3)
assert_warns(DeprecationWarning,
optimize._minimize._minimize_neldermead,
func, [1, 1], xtol=1e-3, ftol=1e-3, maxiter=2)
class TestOptimizeWrapperDisp(CheckOptimizeParameterized):
use_wrapper = True
disp = True
class TestOptimizeWrapperNoDisp(CheckOptimizeParameterized):
use_wrapper = True
disp = False
class TestOptimizeNoWrapperDisp(CheckOptimizeParameterized):
use_wrapper = False
disp = True
class TestOptimizeNoWrapperNoDisp(CheckOptimizeParameterized):
use_wrapper = False
disp = False
class TestOptimizeSimple(CheckOptimize):
def test_bfgs_nan(self):
# Test corner case where nan is fed to optimizer. See gh-2067.
func = lambda x: x
fprime = lambda x: np.ones_like(x)
x0 = [np.nan]
with np.errstate(over='ignore', invalid='ignore'):
x = optimize.fmin_bfgs(func, x0, fprime, disp=False)
assert_(np.isnan(func(x)))
def test_bfgs_nan_return(self):
# Test corner cases where fun returns NaN. See gh-4793.
# First case: NaN from first call.
func = lambda x: np.nan
with np.errstate(invalid='ignore'):
result = optimize.minimize(func, 0)
assert_(np.isnan(result['fun']))
assert_(result['success'] is False)
# Second case: NaN from second call.
func = lambda x: 0 if x == 0 else np.nan
fprime = lambda x: np.ones_like(x) # Steer away from zero.
with np.errstate(invalid='ignore'):
result = optimize.minimize(func, 0, jac=fprime)
assert_(np.isnan(result['fun']))
assert_(result['success'] is False)
def test_bfgs_numerical_jacobian(self):
# BFGS with numerical jacobian and a vector epsilon parameter.
# define the epsilon parameter using a random vector
epsilon = np.sqrt(np.finfo(float).eps) * np.random.rand(len(self.solution))
params = optimize.fmin_bfgs(self.func, self.startparams,
epsilon=epsilon, args=(),
maxiter=self.maxiter, disp=False)
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
def test_bfgs_gh_2169(self):
def f(x):
if x < 0:
return 1.79769313e+308
else:
return x + 1./x
xs = optimize.fmin_bfgs(f, [10.], disp=False)
assert_allclose(xs, 1.0, rtol=1e-4, atol=1e-4)
def test_l_bfgs_b(self):
# limited-memory bound-constrained BFGS algorithm
retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
self.grad, args=(),
maxiter=self.maxiter)
(params, fopt, d) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls == 5, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[3:5],
[[0., -0.52489628, 0.48753042],
[0., -0.52489628, 0.48753042]],
atol=1e-14, rtol=1e-7)
def test_l_bfgs_b_numjac(self):
# L-BFGS-B with numerical jacobian
retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
approx_grad=True,
maxiter=self.maxiter)
(params, fopt, d) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
def test_l_bfgs_b_funjac(self):
# L-BFGS-B with combined objective function and jacobian
def fun(x):
return self.func(x), self.grad(x)
retval = optimize.fmin_l_bfgs_b(fun, self.startparams,
maxiter=self.maxiter)
(params, fopt, d) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
def test_minimize_l_bfgs_b(self):
# Minimize with L-BFGS-B method
opts = {'disp': False, 'maxiter': self.maxiter}
r = optimize.minimize(self.func, self.startparams,
method='L-BFGS-B', jac=self.grad,
options=opts)
assert_allclose(self.func(r.x), self.func(self.solution),
atol=1e-6)
# approximate jacobian
ra = optimize.minimize(self.func, self.startparams,
method='L-BFGS-B', options=opts)
assert_allclose(self.func(ra.x), self.func(self.solution),
atol=1e-6)
# check that function evaluations in approximate jacobian are counted
assert_(ra.nfev > r.nfev)
def test_minimize_l_bfgs_b_ftol(self):
# Check that the `ftol` parameter in l_bfgs_b works as expected
v0 = None
for tol in [1e-1, 1e-4, 1e-7, 1e-10]:
opts = {'disp': False, 'maxiter': self.maxiter, 'ftol': tol}
sol = optimize.minimize(self.func, self.startparams,
method='L-BFGS-B', jac=self.grad,
options=opts)
v = self.func(sol.x)
if v0 is None:
v0 = v
else:
assert_(v < v0)
assert_allclose(v, self.func(self.solution), rtol=tol)
def test_minimize_l_bfgs_maxls(self):
# check that the maxls is passed down to the Fortran routine
sol = optimize.minimize(optimize.rosen, np.array([-1.2,1.0]),
method='L-BFGS-B', jac=optimize.rosen_der,
options={'disp': False, 'maxls': 1})
assert_(not sol.success)
def test_minimize_l_bfgs_b_maxfun_interruption(self):
# gh-6162
f = optimize.rosen
g = optimize.rosen_der
values = []
x0 = np.ones(7) * 1000
def objfun(x):
value = f(x)
values.append(value)
return value
# Look for an interesting test case.
# Request a maxfun that stops at a particularly bad function
# evaluation somewhere between 100 and 300 evaluations.
low, medium, high = 30, 100, 300
optimize.fmin_l_bfgs_b(objfun, x0, fprime=g, maxfun=high)
v, k = max((y, i) for i, y in enumerate(values[medium:]))
maxfun = medium + k
# If the minimization strategy is reasonable,
# the minimize() result should not be worse than the best
# of the first 30 function evaluations.
target = min(values[:low])
xmin, fmin, d = optimize.fmin_l_bfgs_b(f, x0, fprime=g, maxfun=maxfun)
assert_array_less(fmin, target)
def test_custom(self):
# This function comes from the documentation example.
def custmin(fun, x0, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, **options):
bestx = x0
besty = fun(x0)
funcalls = 1
niter = 0
improved = True
stop = False
while improved and not stop and niter < maxiter:
improved = False
niter += 1
for dim in range(np.size(x0)):
for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
testx = np.copy(bestx)
testx[dim] = s
testy = fun(testx, *args)
funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback(bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break
return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter,
nfev=funcalls, success=(niter > 1))
x0 = [1.35, 0.9, 0.8, 1.1, 1.2]
res = optimize.minimize(optimize.rosen, x0, method=custmin,
options=dict(stepsize=0.05))
assert_allclose(res.x, 1.0, rtol=1e-4, atol=1e-4)
def test_minimize_tol_parameter(self):
# Check that the minimize() tol= argument does something
def func(z):
x, y = z
return x**2*y**2 + x**4 + 1
def dfunc(z):
x, y = z
return np.array([2*x*y**2 + 4*x**3, 2*x**2*y])
for method in ['nelder-mead', 'powell', 'cg', 'bfgs',
'newton-cg', 'l-bfgs-b', 'tnc',
'cobyla', 'slsqp']:
if method in ('nelder-mead', 'powell', 'cobyla'):
jac = None
else:
jac = dfunc
sol1 = optimize.minimize(func, [1, 1], jac=jac, tol=1e-10,
method=method)
sol2 = optimize.minimize(func, [1, 1], jac=jac, tol=1.0,
method=method)
assert_(func(sol1.x) < func(sol2.x),
"%s: %s vs. %s" % (method, func(sol1.x), func(sol2.x)))
def test_no_increase(self):
# Check that the solver doesn't return a value worse than the
# initial point.
def func(x):
return (x - 1)**2
def bad_grad(x):
# purposefully invalid gradient function, simulates a case
# where line searches start failing
return 2*(x - 1) * (-1) - 2
def check(method):
x0 = np.array([2.0])
f0 = func(x0)
jac = bad_grad
if method in ['nelder-mead', 'powell', 'cobyla']:
jac = None
sol = optimize.minimize(func, x0, jac=jac, method=method,
options=dict(maxiter=20))
assert_equal(func(sol.x), sol.fun)
dec.knownfailureif(method == 'slsqp', "SLSQP returns slightly worse")(lambda: None)()
assert_(func(sol.x) <= f0)
for method in ['nelder-mead', 'powell', 'cg', 'bfgs',
'newton-cg', 'l-bfgs-b', 'tnc',
'cobyla', 'slsqp']:
yield check, method
def test_slsqp_respect_bounds(self):
# Regression test for gh-3108
def f(x):
return sum((x - np.array([1., 2., 3., 4.]))**2)
def cons(x):
a = np.array([[-1, -1, -1, -1], [-3, -3, -2, -1]])
return np.concatenate([np.dot(a, x) + np.array([5, 10]), x])
x0 = np.array([0.5, 1., 1.5, 2.])
res = optimize.minimize(f, x0, method='slsqp',
constraints={'type': 'ineq', 'fun': cons})
assert_allclose(res.x, np.array([0., 2, 5, 8])/3, atol=1e-12)
def test_minimize_automethod(self):
def f(x):
return x**2
def cons(x):
return x - 2
x0 = np.array([10.])
sol_0 = optimize.minimize(f, x0)
sol_1 = optimize.minimize(f, x0, constraints=[{'type': 'ineq', 'fun': cons}])
sol_2 = optimize.minimize(f, x0, bounds=[(5, 10)])
sol_3 = optimize.minimize(f, x0, constraints=[{'type': 'ineq', 'fun': cons}], bounds=[(5, 10)])
sol_4 = optimize.minimize(f, x0, constraints=[{'type': 'ineq', 'fun': cons}], bounds=[(1, 10)])
for sol in [sol_0, sol_1, sol_2, sol_3, sol_4]:
assert_(sol.success)
assert_allclose(sol_0.x, 0, atol=1e-7)
assert_allclose(sol_1.x, 2, atol=1e-7)
assert_allclose(sol_2.x, 5, atol=1e-7)
assert_allclose(sol_3.x, 5, atol=1e-7)
assert_allclose(sol_4.x, 2, atol=1e-7)
def test_minimize_coerce_args_param(self):
# Regression test for gh-3503
def Y(x, c):
return np.sum((x-c)**2)
def dY_dx(x, c=None):
return 2*(x-c)
c = np.array([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5])
xinit = np.random.randn(len(c))
optimize.minimize(Y, xinit, jac=dY_dx, args=(c), method="BFGS")
def test_initial_step_scaling(self):
# Check that optimizer initial step is not huge even if the
# function and gradients are
scales = [1e-50, 1, 1e50]
methods = ['CG', 'BFGS', 'L-BFGS-B', 'Newton-CG']
def f(x):
if first_step_size[0] is None and x[0] != x0[0]:
first_step_size[0] = abs(x[0] - x0[0])
if abs(x).max() > 1e4:
raise AssertionError("Optimization stepped far away!")
return scale*(x[0] - 1)**2
def g(x):
return np.array([scale*(x[0] - 1)])
for scale, method in itertools.product(scales, methods):
if method in ('CG', 'BFGS'):
options = dict(gtol=scale*1e-8)
else:
options = dict()
if scale < 1e-10 and method in ('L-BFGS-B', 'Newton-CG'):
# XXX: return initial point if they see small gradient
continue
x0 = [-1.0]
first_step_size = [None]
res = optimize.minimize(f, x0, jac=g, method=method,
options=options)
err_msg = "{0} {1}: {2}: {3}".format(method, scale, first_step_size,
res)
assert_(res.success, err_msg)
assert_allclose(res.x, [1.0], err_msg=err_msg)
assert_(res.nit <= 3, err_msg)
if scale > 1e-10:
if method in ('CG', 'BFGS'):
assert_allclose(first_step_size[0], 1.01, err_msg=err_msg)
else:
# Newton-CG and L-BFGS-B use different logic for the first step,
# but are both scaling invariant with step sizes ~ 1
assert_(first_step_size[0] > 0.5 and first_step_size[0] < 3,
err_msg)
else:
# step size has upper bound of ||grad||, so line
# search makes many small steps
pass
class TestLBFGSBBounds(TestCase):
def setUp(self):
self.bounds = ((1, None), (None, None))
self.solution = (1, 0)
def fun(self, x, p=2.0):
return 1.0 / p * (x[0]**p + x[1]**p)
def jac(self, x, p=2.0):
return x**(p - 1)
def fj(self, x, p=2.0):
return self.fun(x, p), self.jac(x, p)
def test_l_bfgs_b_bounds(self):
x, f, d = optimize.fmin_l_bfgs_b(self.fun, [0, -1],
fprime=self.jac,
bounds=self.bounds)
assert_(d['warnflag'] == 0, d['task'])
assert_allclose(x, self.solution, atol=1e-6)
def test_l_bfgs_b_funjac(self):
# L-BFGS-B with fun and jac combined and extra arguments
x, f, d = optimize.fmin_l_bfgs_b(self.fj, [0, -1], args=(2.0, ),
bounds=self.bounds)
assert_(d['warnflag'] == 0, d['task'])
assert_allclose(x, self.solution, atol=1e-6)
def test_minimize_l_bfgs_b_bounds(self):
# Minimize with method='L-BFGS-B' with bounds
res = optimize.minimize(self.fun, [0, -1], method='L-BFGS-B',
jac=self.jac, bounds=self.bounds)
assert_(res['success'], res['message'])
assert_allclose(res.x, self.solution, atol=1e-6)
class TestOptimizeScalar(TestCase):
def setUp(self):
self.solution = 1.5
def fun(self, x, a=1.5):
"""Objective function"""
return (x - a)**2 - 0.8
def test_brent(self):
x = optimize.brent(self.fun)
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.brent(self.fun, brack=(-3, -2))
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.brent(self.fun, full_output=True)
assert_allclose(x[0], self.solution, atol=1e-6)
x = optimize.brent(self.fun, brack=(-15, -1, 15))
assert_allclose(x, self.solution, atol=1e-6)
def test_golden(self):
x = optimize.golden(self.fun)
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.golden(self.fun, brack=(-3, -2))
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.golden(self.fun, full_output=True)
assert_allclose(x[0], self.solution, atol=1e-6)
x = optimize.golden(self.fun, brack=(-15, -1, 15))
assert_allclose(x, self.solution, atol=1e-6)
def test_fminbound(self):
x = optimize.fminbound(self.fun, 0, 1)
assert_allclose(x, 1, atol=1e-4)
x = optimize.fminbound(self.fun, 1, 5)
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.fminbound(self.fun, np.array([1]), np.array([5]))
assert_allclose(x, self.solution, atol=1e-6)
assert_raises(ValueError, optimize.fminbound, self.fun, 5, 1)
def test_fminbound_scalar(self):
try:
optimize.fminbound(self.fun, np.zeros((1, 2)), 1)
self.fail("exception not raised")
except ValueError as e:
assert_('must be scalar' in str(e))
x = optimize.fminbound(self.fun, 1, np.array(5))
assert_allclose(x, self.solution, atol=1e-6)
def test_minimize_scalar(self):
# combine all tests above for the minimize_scalar wrapper
x = optimize.minimize_scalar(self.fun).x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, method='Brent')
assert_(x.success)
x = optimize.minimize_scalar(self.fun, method='Brent',
options=dict(maxiter=3))
assert_(not x.success)
x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
args=(1.5, ), method='Brent').x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, method='Brent',
args=(1.5,)).x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
args=(1.5, ), method='Brent').x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
args=(1.5, ), method='golden').x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, method='golden',
args=(1.5,)).x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
args=(1.5, ), method='golden').x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, bounds=(0, 1), args=(1.5,),
method='Bounded').x
assert_allclose(x, 1, atol=1e-4)
x = optimize.minimize_scalar(self.fun, bounds=(1, 5), args=(1.5, ),
method='bounded').x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, bounds=(np.array([1]),
np.array([5])),
args=(np.array([1.5]), ),
method='bounded').x
assert_allclose(x, self.solution, atol=1e-6)
assert_raises(ValueError, optimize.minimize_scalar, self.fun,
bounds=(5, 1), method='bounded', args=(1.5, ))
assert_raises(ValueError, optimize.minimize_scalar, self.fun,
bounds=(np.zeros(2), 1), method='bounded', args=(1.5, ))
x = optimize.minimize_scalar(self.fun, bounds=(1, np.array(5)),
method='bounded').x
assert_allclose(x, self.solution, atol=1e-6)
def test_minimize_scalar_custom(self):
# This function comes from the documentation example.
def custmin(fun, bracket, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, **options):
bestx = (bracket[1] + bracket[0]) / 2.0
besty = fun(bestx)
funcalls = 1
niter = 0
improved = True
stop = False
while improved and not stop and niter < maxiter:
improved = False
niter += 1
for testx in [bestx - stepsize, bestx + stepsize]:
testy = fun(testx, *args)
funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback(bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break
return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter,
nfev=funcalls, success=(niter > 1))
res = optimize.minimize_scalar(self.fun, bracket=(0, 4), method=custmin,
options=dict(stepsize=0.05))
assert_allclose(res.x, self.solution, atol=1e-6)
def test_minimize_scalar_coerce_args_param(self):
# Regression test for gh-3503
optimize.minimize_scalar(self.fun, args=1.5)
def test_brent_negative_tolerance():
assert_raises(ValueError, optimize.brent, np.cos, tol=-.01)
class TestNewtonCg(object):
def test_rosenbrock(self):
x0 = np.array([-1.2, 1.0])
sol = optimize.minimize(optimize.rosen, x0,
jac=optimize.rosen_der,
hess=optimize.rosen_hess,
tol=1e-5,
method='Newton-CG')
assert_(sol.success, sol.message)
assert_allclose(sol.x, np.array([1, 1]), rtol=1e-4)
def test_himmelblau(self):
x0 = np.array(himmelblau_x0)
sol = optimize.minimize(himmelblau,
x0,
jac=himmelblau_grad,
hess=himmelblau_hess,
method='Newton-CG',
tol=1e-6)
assert_(sol.success, sol.message)
assert_allclose(sol.x, himmelblau_xopt, rtol=1e-4)
assert_allclose(sol.fun, himmelblau_min, atol=1e-4)
class TestRosen(TestCase):
def test_hess(self):
# Compare rosen_hess(x) times p with rosen_hess_prod(x,p). See gh-1775
x = np.array([3, 4, 5])
p = np.array([2, 2, 2])
hp = optimize.rosen_hess_prod(x, p)
dothp = np.dot(optimize.rosen_hess(x), p)
assert_equal(hp, dothp)
def himmelblau(p):
"""
R^2 -> R^1 test function for optimization. The function has four local
minima where himmelblau(xopt) == 0.
"""
x, y = p
a = x*x + y - 11
b = x + y*y - 7
return a*a + b*b
def himmelblau_grad(p):
x, y = p
return np.array([4*x**3 + 4*x*y - 42*x + 2*y**2 - 14,
2*x**2 + 4*x*y + 4*y**3 - 26*y - 22])
def himmelblau_hess(p):
x, y = p
return np.array([[12*x**2 + 4*y - 42, 4*x + 4*y],
[4*x + 4*y, 4*x + 12*y**2 - 26]])
himmelblau_x0 = [-0.27, -0.9]
himmelblau_xopt = [3, 2]
himmelblau_min = 0.0
def test_minimize_multiple_constraints():
# Regression test for gh-4240.
def func(x):
return np.array([25 - 0.2 * x[0] - 0.4 * x[1] - 0.33 * x[2]])
def func1(x):
return np.array([x[1]])
def func2(x):
return np.array([x[2]])
cons = ({'type': 'ineq', 'fun': func},
{'type': 'ineq', 'fun': func1},
{'type': 'ineq', 'fun': func2})
f = lambda x: -1 * (x[0] + x[1] + x[2])
res = optimize.minimize(f, [0, 0, 0], method='SLSQP', constraints=cons)
assert_allclose(res.x, [125, 0, 0], atol=1e-10)
class TestOptimizeResultAttributes(TestCase):
# Test that all minimizers return an OptimizeResult containing
# all the OptimizeResult attributes
def setUp(self):
self.x0 = [5, 5]
self.func = optimize.rosen
self.jac = optimize.rosen_der
self.hess = optimize.rosen_hess
self.hessp = optimize.rosen_hess_prod
self.bounds = [(0., 10.), (0., 10.)]
def test_attributes_present(self):
methods = ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'Newton-CG',
'L-BFGS-B', 'TNC', 'COBYLA', 'SLSQP', 'dogleg',
'trust-ncg']
attributes = ['nit', 'nfev', 'x', 'success', 'status', 'fun',
'message']
skip = {'COBYLA': ['nit']}
for method in methods:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
res = optimize.minimize(self.func, self.x0, method=method,
jac=self.jac, hess=self.hess,
hessp=self.hessp)
for attribute in attributes:
if method in skip and attribute in skip[method]:
continue
assert_(hasattr(res, attribute))
assert_(attribute in dir(res))
class TestBrute:
# Test the "brute force" method
def setUp(self):
self.params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)
self.rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25))
self.solution = np.array([-1.05665192, 1.80834843])
def f1(self, z, *params):
x, y = z
a, b, c, d, e, f, g, h, i, j, k, l, scale = params
return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f)
def f2(self, z, *params):
x, y = z
a, b, c, d, e, f, g, h, i, j, k, l, scale = params
return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale))
def f3(self, z, *params):
x, y = z
a, b, c, d, e, f, g, h, i, j, k, l, scale = params
return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale))
def func(self, z, *params):
return self.f1(z, *params) + self.f2(z, *params) + self.f3(z, *params)
@suppressed_stdout
def test_brute(self):
# test fmin
resbrute = optimize.brute(self.func, self.rranges, args=self.params,
full_output=True, finish=optimize.fmin)
assert_allclose(resbrute[0], self.solution, atol=1e-3)
assert_allclose(resbrute[1], self.func(self.solution, *self.params),
atol=1e-3)
# test minimize
resbrute = optimize.brute(self.func, self.rranges, args=self.params,
full_output=True,
finish=optimize.minimize)
assert_allclose(resbrute[0], self.solution, atol=1e-3)
assert_allclose(resbrute[1], self.func(self.solution, *self.params),
atol=1e-3)
class TestIterationLimits(TestCase):
# Tests that optimisation does not give up before trying requested
# number of iterations or evaluations. And that it does not succeed
# by exceeding the limits.
def setUp(self):
self.funcalls = 0
def slow_func(self, v):
self.funcalls += 1
r,t = np.sqrt(v[0]**2+v[1]**2), np.arctan2(v[0],v[1])
return np.sin(r*20 + t)+r*0.5
def test_neldermead_limit(self):
self.check_limits("Nelder-Mead", 200)
def test_powell_limit(self):
self.check_limits("powell", 1000)
def check_limits(self, method, default_iters):
for start_v in [[0.1,0.1], [1,1], [2,2]]:
for mfev in [50, 500, 5000]:
self.funcalls = 0
res = optimize.minimize(self.slow_func, start_v,
method=method, options={"maxfev":mfev})
assert_(self.funcalls == res["nfev"])
if res["success"]:
assert_(res["nfev"] < mfev)
else:
assert_(res["nfev"] >= mfev)
for mit in [50, 500,5000]:
res = optimize.minimize(self.slow_func, start_v,
method=method, options={"maxiter":mit})
if res["success"]:
assert_(res["nit"] <= mit)
else:
assert_(res["nit"] >= mit)
for mfev,mit in [[50,50], [5000,5000],[5000,np.inf]]:
self.funcalls = 0
res = optimize.minimize(self.slow_func, start_v,
method=method, options={"maxiter":mit, "maxfev":mfev})
assert_(self.funcalls == res["nfev"])
if res["success"]:
assert_(res["nfev"] < mfev and res["nit"] <= mit)
else:
assert_(res["nfev"] >= mfev or res["nit"] >= mit)
for mfev,mit in [[np.inf,None], [None,np.inf]]:
self.funcalls = 0
res = optimize.minimize(self.slow_func, start_v,
method=method, options={"maxiter":mit, "maxfev":mfev})
assert_(self.funcalls == res["nfev"])
if res["success"]:
if mfev is None:
assert_(res["nfev"] < default_iters*2)
else:
assert_(res["nit"] <= default_iters*2)
else:
assert_(res["nfev"] >= default_iters*2 or
res["nit"] >= default_iters*2)
if __name__ == "__main__":
run_module_suite()
|