File: test_slsqp.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (359 lines) | stat: -rw-r--r-- 14,213 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
"""
Unit test for SLSQP optimization.
"""
from __future__ import division, print_function, absolute_import

from numpy.testing import (assert_, assert_array_almost_equal, TestCase,
                           assert_allclose, assert_equal, run_module_suite)
import numpy as np

from scipy._lib._testutils import knownfailure_overridable
from scipy.optimize import fmin_slsqp, minimize


class MyCallBack(object):
    """pass a custom callback function

    This makes sure it's being used.
    """
    def __init__(self):
        self.been_called = False
        self.ncalls = 0

    def __call__(self, x):
        self.been_called = True
        self.ncalls += 1


class TestSLSQP(TestCase):
    """
    Test SLSQP algorithm using Example 14.4 from Numerical Methods for
    Engineers by Steven Chapra and Raymond Canale.
    This example maximizes the function f(x) = 2*x*y + 2*x - x**2 - 2*y**2,
    which has a maximum at x=2, y=1.
    """
    def setUp(self):
        self.opts = {'disp': False}

    def fun(self, d, sign=1.0):
        """
        Arguments:
        d     - A list of two elements, where d[0] represents x and d[1] represents y
                 in the following equation.
        sign - A multiplier for f.  Since we want to optimize it, and the scipy
               optimizers can only minimize functions, we need to multiply it by
               -1 to achieve the desired solution
        Returns:
        2*x*y + 2*x - x**2 - 2*y**2

        """
        x = d[0]
        y = d[1]
        return sign*(2*x*y + 2*x - x**2 - 2*y**2)

    def jac(self, d, sign=1.0):
        """
        This is the derivative of fun, returning a numpy array
        representing df/dx and df/dy.

        """
        x = d[0]
        y = d[1]
        dfdx = sign*(-2*x + 2*y + 2)
        dfdy = sign*(2*x - 4*y)
        return np.array([dfdx, dfdy], float)

    def fun_and_jac(self, d, sign=1.0):
        return self.fun(d, sign), self.jac(d, sign)

    def f_eqcon(self, x, sign=1.0):
        """ Equality constraint """
        return np.array([x[0] - x[1]])

    def fprime_eqcon(self, x, sign=1.0):
        """ Equality constraint, derivative """
        return np.array([[1, -1]])

    def f_eqcon_scalar(self, x, sign=1.0):
        """ Scalar equality constraint """
        return self.f_eqcon(x, sign)[0]

    def fprime_eqcon_scalar(self, x, sign=1.0):
        """ Scalar equality constraint, derivative """
        return self.fprime_eqcon(x, sign)[0].tolist()

    def f_ieqcon(self, x, sign=1.0):
        """ Inequality constraint """
        return np.array([x[0] - x[1] - 1.0])

    def fprime_ieqcon(self, x, sign=1.0):
        """ Inequality constraint, derivative """
        return np.array([[1, -1]])

    def f_ieqcon2(self, x):
        """ Vector inequality constraint """
        return np.asarray(x)

    def fprime_ieqcon2(self, x):
        """ Vector inequality constraint, derivative """
        return np.identity(x.shape[0])

    # minimize
    def test_minimize_unbounded_approximated(self):
        # Minimize, method='SLSQP': unbounded, approximated jacobian.
        res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                       method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1])

    def test_minimize_unbounded_given(self):
        # Minimize, method='SLSQP': unbounded, given jacobian.
        res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                       jac=self.jac, method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1])

    def test_minimize_bounded_approximated(self):
        # Minimize, method='SLSQP': bounded, approximated jacobian.
        with np.errstate(invalid='ignore'):
            res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                           bounds=((2.5, None), (None, 0.5)),
                           method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2.5, 0.5])
        assert_(2.5 <= res.x[0])
        assert_(res.x[1] <= 0.5)

    def test_minimize_unbounded_combined(self):
        # Minimize, method='SLSQP': unbounded, combined function and jacobian.
        res = minimize(self.fun_and_jac, [-1.0, 1.0], args=(-1.0, ),
                       jac=True, method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1])

    def test_minimize_equality_approximated(self):
        # Minimize with method='SLSQP': equality constraint, approx. jacobian.
        res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                       constraints={'type': 'eq',
                                    'fun': self.f_eqcon,
                                    'args': (-1.0, )},
                       method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [1, 1])

    def test_minimize_equality_given(self):
        # Minimize with method='SLSQP': equality constraint, given jacobian.
        res = minimize(self.fun, [-1.0, 1.0], jac=self.jac,
                       method='SLSQP', args=(-1.0,),
                       constraints={'type': 'eq', 'fun':self.f_eqcon,
                                    'args': (-1.0, )},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [1, 1])

    def test_minimize_equality_given2(self):
        # Minimize with method='SLSQP': equality constraint, given jacobian
        # for fun and const.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0,),
                       constraints={'type': 'eq',
                                    'fun': self.f_eqcon,
                                    'args': (-1.0, ),
                                    'jac': self.fprime_eqcon},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [1, 1])

    def test_minimize_equality_given_cons_scalar(self):
        # Minimize with method='SLSQP': scalar equality constraint, given
        # jacobian for fun and const.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0,),
                       constraints={'type': 'eq',
                                    'fun': self.f_eqcon_scalar,
                                    'args': (-1.0, ),
                                    'jac': self.fprime_eqcon_scalar},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [1, 1])

    def test_minimize_inequality_given(self):
        # Minimize with method='SLSQP': inequality constraint, given jacobian.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0, ),
                       constraints={'type': 'ineq',
                                    'fun': self.f_ieqcon,
                                    'args': (-1.0, )},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1], atol=1e-3)

    def test_minimize_inequality_given_vector_constraints(self):
        # Minimize with method='SLSQP': vector inequality constraint, given
        # jacobian.
        res = minimize(self.fun, [-1.0, 1.0], jac=self.jac,
                       method='SLSQP', args=(-1.0,),
                       constraints={'type': 'ineq',
                                    'fun': self.f_ieqcon2,
                                    'jac': self.fprime_ieqcon2},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1])

    def test_minimize_bound_equality_given2(self):
        # Minimize with method='SLSQP': bounds, eq. const., given jac. for
        # fun. and const.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0, ),
                       bounds=[(-0.8, 1.), (-1, 0.8)],
                       constraints={'type': 'eq',
                                    'fun': self.f_eqcon,
                                    'args': (-1.0, ),
                                    'jac': self.fprime_eqcon},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [0.8, 0.8], atol=1e-3)
        assert_(-0.8 <= res.x[0] <= 1)
        assert_(-1 <= res.x[1] <= 0.8)

    # fmin_slsqp
    def test_unbounded_approximated(self):
        # SLSQP: unbounded, approximated jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0], args=(-1.0, ),
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [2, 1])

    def test_unbounded_given(self):
        # SLSQP: unbounded, given jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0], args=(-1.0, ),
                         fprime = self.jac, iprint = 0,
                         full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [2, 1])

    def test_equality_approximated(self):
        # SLSQP: equality constraint, approximated jacobian.
        res = fmin_slsqp(self.fun,[-1.0,1.0], args=(-1.0,),
                         eqcons = [self.f_eqcon],
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [1, 1])

    def test_equality_given(self):
        # SLSQP: equality constraint, given jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0,),
                         eqcons = [self.f_eqcon], iprint = 0,
                         full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [1, 1])

    def test_equality_given2(self):
        # SLSQP: equality constraint, given jacobian for fun and const.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0,),
                         f_eqcons = self.f_eqcon,
                         fprime_eqcons = self.fprime_eqcon,
                         iprint = 0,
                         full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [1, 1])

    def test_inequality_given(self):
        # SLSQP: inequality constraint, given jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0, ),
                         ieqcons = [self.f_ieqcon],
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [2, 1], decimal=3)

    def test_bound_equality_given2(self):
        # SLSQP: bounds, eq. const., given jac. for fun. and const.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0, ),
                         bounds = [(-0.8, 1.), (-1, 0.8)],
                         f_eqcons = self.f_eqcon,
                         fprime_eqcons = self.fprime_eqcon,
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [0.8, 0.8], decimal=3)
        assert_(-0.8 <= x[0] <= 1)
        assert_(-1 <= x[1] <= 0.8)

    def test_scalar_constraints(self):
        # Regression test for gh-2182
        x = fmin_slsqp(lambda z: z**2, [3.],
                       ieqcons=[lambda z: z[0] - 1],
                       iprint=0)
        assert_array_almost_equal(x, [1.])

        x = fmin_slsqp(lambda z: z**2, [3.],
                       f_ieqcons=lambda z: [z[0] - 1],
                       iprint=0)
        assert_array_almost_equal(x, [1.])

    def test_integer_bounds(self):
        # This should not raise an exception
        fmin_slsqp(lambda z: z**2 - 1, [0], bounds=[[0, 1]], iprint=0)

    def test_callback(self):
        # Minimize, method='SLSQP': unbounded, approximated jacobian. Check for callback
        callback = MyCallBack()
        res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                       method='SLSQP', callback=callback, options=self.opts)
        assert_(res['success'], res['message'])
        assert_(callback.been_called)
        assert_equal(callback.ncalls, res['nit'])

    def test_inconsistent_linearization(self):
        # SLSQP must be able to solve this problem, even if the
        # linearized problem at the starting point is infeasible.

        # Linearized constraints are
        #
        #    2*x0[0]*x[0] >= 1
        #
        # At x0 = [0, 1], the second constraint is clearly infeasible.
        # This triggers a call with n2==1 in the LSQ subroutine.
        x = [0, 1]
        f1 = lambda x: x[0] + x[1] - 2
        f2 = lambda x: x[0]**2 - 1
        sol = minimize(
            lambda x: x[0]**2 + x[1]**2,
            x,
            constraints=({'type':'eq','fun': f1},
                         {'type':'ineq','fun': f2}),
            bounds=((0,None), (0,None)),
            method='SLSQP')
        x = sol.x

        assert_allclose(f1(x), 0, atol=1e-8)
        assert_(f2(x) >= -1e-8)
        assert_(sol.success, sol)

    @knownfailure_overridable("This bug is not fixed")
    def test_regression_5743(self):
        # SLSQP must not indicate success for this problem,
        # which is infeasible.
        x = [1, 2]
        sol = minimize(
            lambda x: x[0]**2 + x[1]**2,
            x,
            constraints=({'type':'eq','fun': lambda x: x[0]+x[1]-1},
                         {'type':'ineq','fun': lambda x: x[0]-2}),
            bounds=((0,None), (0,None)),
            method='SLSQP')
        assert_(not sol.success, sol)


if __name__ == "__main__":
    run_module_suite()