1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
#include "Python.h"
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#define NO_IMPORT_ARRAY
#include "numpy/arrayobject.h"
void compute_root_from_lambda(double, double *, double *);
#define CONJ(a) (~(a))
#define ABSQ(a) (__real__ (a*CONJ(a)))
#ifdef __GNUC__
/* Implement the following difference equation */
/* y[n] = a1 * x[n] + a2 * y[n-1] */
/* with a given starting value loaded into the array */
void C_IIR_order1 (__complex__ float,__complex__ float,__complex__ float*,__complex__ float*,int,int,int);
void C_IIR_order2 (__complex__ float,__complex__ float,__complex__ float,__complex__ float*,__complex__ float*,int,int,int);
void C_IIR_order2_cascade (__complex__ float,__complex__ float,__complex__ float,__complex__ float,__complex__ float*,__complex__ float*,int,int,int);
int C_IIR_forback1(__complex__ float,__complex__ float,__complex__ float*,__complex__ float*,int,int,int,float);
void C_FIR_mirror_symmetric(__complex__ float*,__complex__ float*,int,__complex__ float*,int,int,int);
int C_separable_2Dconvolve_mirror(__complex__ float*,__complex__ float*,int,int,__complex__ float*,__complex__ float*,int,int,npy_intp*,npy_intp*);
void
C_IIR_order1 (a1, a2, x, y, N, stridex, stridey)
__complex__ float a1;
__complex__ float a2;
__complex__ float *x;
__complex__ float *y;
int N, stridex, stridey;
{
__complex__ float *yvec = y+stridey;
__complex__ float *xvec = x+stridex;
int n;
for (n=1; n < N; n++) {
*yvec = *xvec * a1 + *(yvec-stridey) * a2;
yvec += stridey;
xvec += stridex;
}
}
/* Implement the following difference equation */
/* y[n] = a1 * x[n] + a2 * y[n-1] + a3 * y[n-2] */
/* with two starting values loaded into the array */
void
C_IIR_order2 (a1, a2, a3, x, y, N, stridex, stridey)
__complex__ float a1;
__complex__ float a2;
__complex__ float a3;
__complex__ float *x;
__complex__ float *y;
int N, stridex, stridey;
{
__complex__ float *yvec = y+2*stridey;
__complex__ float *xvec = x+2*stridex;
int n;
for (n=2; n < N; n++) {
*yvec = *xvec * a1 + *(yvec-stridey) * a2 + *(yvec-2*stridey) * a3;
yvec += stridey;
xvec += stridex;
}
}
/* Implement a second order IIR difference equation using a cascade
of first order sections. Suppose the transfer function is
cs
H(z) = -------------------
(1-z1/z) ( 1-z2/z)
then the following pair is implemented with one starting value loaded in
the output array and the starting value for the intermediate array
passed in as yp0.
y1[n] = x[n] + z1 y1[n-1]
yp[n] = cs y1[n] + z2 yp[n-1]
*/
void
C_IIR_order2_cascade (cs, z1, z2, y1_0, x, yp, N, stridex, stridey)
__complex__ float cs;
__complex__ float z1;
__complex__ float z2;
__complex__ float y1_0;
__complex__ float *x;
__complex__ float *yp;
int N, stridex, stridey;
{
__complex__ float *yvec = yp+stridey;
__complex__ float *xvec = x+stridex;
int n;
for (n=1; n < N; n++) {
y1_0 = *xvec + y1_0 * z1;
*yvec = cs * y1_0 + *(yvec-stridey) * z2;
yvec += stridey;
xvec += stridex;
}
}
/* Implement a smoothing IIR filter with mirror-symmetric boundary conditions
using a cascade of first-order sections. The second section uses a
reversed sequence. This implements the following transfer function:
c0
H(z) = ---------------------------
(1-z1/z) (1 - z1 z)
with the following difference equations:
yp[n] = x[n] + z1 yp[n-1]
with starting condition:
yp[0] = x[0] + Sum(z1^(k+1) x[k],k=0..Infinity)
and
y[n] = z1 y[n+1] + c0 yp[n]
with starting condition:
y[N-1] = z1 / (z1-1) yp[N-1]
The resulting signal will have mirror symmetric boundary conditions as well.
If memory could not be allocated for the temporary vector yp, the
function returns -1 otherwise it returns 0.
z1 should be less than 1;
*/
int
C_IIR_forback1 (c0, z1, x, y, N, stridex, stridey, precision)
__complex__ float c0;
__complex__ float z1;
__complex__ float *x;
__complex__ float *y;
int N, stridex, stridey;
float precision;
{
__complex__ float *yp = NULL;
__complex__ float *xptr = x;
__complex__ float yp0;
__complex__ float powz1;
__complex__ float diff;
float err;
int k;
if (ABSQ(z1) >= 1.0) return -2; /* z1 not less than 1 */
/* Initialize memory for loop */
if ((yp = malloc(N*sizeof(__complex__ float)))==NULL) return -1;
/* Fix starting value assuming mirror-symmetric boundary conditions. */
yp0 = x[0];
powz1 = 1.0;
k = 0;
precision *= precision;
do {
yp[0] = yp0;
powz1 *= z1;
yp0 += powz1 * (*xptr);
diff = powz1;
err = ABSQ(diff);
xptr += stridex;
k++;
} while((err > precision) && (k < N));
if (k >= N) return -3; /* sum did not converge */
yp[0] = yp0;
C_IIR_order1(1.0, z1, x, yp, N, stridex, 1);
*(y + (N-1)*stridey) = -c0 / (z1 - 1.0) * yp[N-1];
C_IIR_order1(c0, z1, yp+N-1, y+(N-1)*stridey, N, -1, -stridey);
free(yp);
return 0;
}
/* h must be odd length */
/* strides in units of sizeof(__complex__ float) bytes */
void
C_FIR_mirror_symmetric (in, out, N, h, Nh, instride, outstride)
__complex__ float *in;
__complex__ float *out;
int N, Nh;
__complex__ float *h;
int instride, outstride;
{
int n, k;
int Nhdiv2 = Nh >> 1;
__complex__ float *outptr;
__complex__ float *inptr;
__complex__ float *hptr;
/* first part boundary conditions */
outptr = out;
for (n=0; n < Nhdiv2; n++) {
*outptr = 0.0;
hptr = h;
inptr = in + (n+Nhdiv2)*instride;
for (k=-Nhdiv2; k <= n; k++) {
*outptr += *hptr++ * *inptr;
inptr -= instride;
}
inptr += instride;
for (k=n+1; k <= Nhdiv2; k++) {
*outptr += *hptr++ * *inptr;
inptr += instride;
}
outptr += outstride;
}
/* middle section */
outptr = out + Nhdiv2*outstride;
for (n=Nhdiv2; n < N-Nhdiv2; n++) {
*outptr = 0.0;
hptr = h;
inptr = in + (n+Nhdiv2)*instride;
for (k=-Nhdiv2; k <= Nhdiv2; k++) {
*outptr += *hptr++ * *inptr;
inptr -= instride;
}
outptr += outstride;
}
/* end boundary conditions */
outptr = out + (N-Nhdiv2)*outstride;
for (n=N-Nhdiv2; n < N; n++) {
*outptr = 0.0;
hptr = h;
inptr = in + (2*N-1-n-Nhdiv2)*instride;
for (k=-Nhdiv2; k <= n-N; k++) {
*outptr += *hptr++ * *inptr;
inptr += instride;
}
inptr -= instride;
for (k=n+1-N; k <= Nhdiv2; k++) {
*outptr += *hptr++ * *inptr;
inptr -= instride;
}
outptr += outstride;
}
}
int
C_separable_2Dconvolve_mirror(in, out, M, N, hr, hc, Nhr,
Nhc, instrides, outstrides)
__complex__ float *in;
__complex__ float *out;
int M, N;
__complex__ float *hr, *hc;
int Nhr, Nhc;
npy_intp *instrides, *outstrides;
{
int m, n;
__complex__ float *tmpmem;
__complex__ float *inptr=NULL, *outptr=NULL;
tmpmem = malloc(M*N*sizeof(__complex__ float));
if (tmpmem == NULL) return -1;
if (Nhr > 0) {
/* filter across rows */
inptr = in;
outptr = tmpmem;
for (m = 0; m < M; m++) {
C_FIR_mirror_symmetric (inptr, outptr, N, hr, Nhr, instrides[1], 1);
inptr += instrides[0];
outptr += N;
}
}
else
memmove(tmpmem, inptr, M*N*sizeof(__complex__ float));
if (Nhc > 0) {
/* filter down columns */
inptr = tmpmem;
outptr = out;
for (n = 0; n < N; n++) {
C_FIR_mirror_symmetric (inptr, outptr, M, hc, Nhc, N, outstrides[0]);
outptr += outstrides[1];
inptr += 1;
}
}
else
memmove(outptr, tmpmem, M*N*sizeof(__complex__ float));
free(tmpmem);
return 0;
}
#endif
|