File: _arraytools.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (162 lines) | stat: -rw-r--r-- 5,145 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
Functions for acting on a axis of an array.
"""
from __future__ import division, print_function, absolute_import

import numpy as np


def axis_slice(a, start=None, stop=None, step=None, axis=-1):
    """Take a slice along axis 'axis' from 'a'.

    Parameters
    ----------
    a : numpy.ndarray
        The array to be sliced.
    start, stop, step : int or None
        The slice parameters.
    axis : int, optional
        The axis of `a` to be sliced.

    Examples
    --------
    >>> a = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    >>> axis_slice(a, start=0, stop=1, axis=1)
    array([[1],
           [4],
           [7]])
    >>> axis_slice(a, start=1, axis=0)
    array([[4, 5, 6],
           [7, 8, 9]])

    Notes
    -----
    The keyword arguments start, stop and step are used by calling
    slice(start, stop, step).  This implies axis_slice() does not
    handle its arguments the exacty the same as indexing.  To select
    a single index k, for example, use
        axis_slice(a, start=k, stop=k+1)
    In this case, the length of the axis 'axis' in the result will
    be 1; the trivial dimension is not removed. (Use numpy.squeeze()
    to remove trivial axes.)
    """
    a_slice = [slice(None)] * a.ndim
    a_slice[axis] = slice(start, stop, step)
    b = a[a_slice]
    return b


def axis_reverse(a, axis=-1):
    """Reverse the 1-d slices of `a` along axis `axis`.

    Returns axis_slice(a, step=-1, axis=axis).
    """
    return axis_slice(a, step=-1, axis=axis)


def odd_ext(x, n, axis=-1):
    """Generate a new ndarray by making an odd extension of x along an axis.

    Parameters
    ----------
    x : ndarray
        The array to be extended.
    n : int
        The number of elements by which to extend x at each end of the axis.
    axis : int, optional
        The axis along which to extend x.  Default is -1.

    Examples
    --------
    >>> a = array([[1.0,2.0,3.0,4.0,5.0], [0.0, 1.0, 4.0, 9.0, 16.0]])
    >>> _odd_ext(a, 2)
    array([[-1.,  0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.],
           [-4., -1,   0.,  1.,  4.,  9., 16., 23., 28.]])
    """
    if n < 1:
        return x
    if n > x.shape[axis] - 1:
        raise ValueError(("The extension length n (%d) is too big. " +
                         "It must not exceed x.shape[axis]-1, which is %d.")
                         % (n, x.shape[axis] - 1))
    left_end = axis_slice(x, start=0, stop=1, axis=axis)
    left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
    right_end = axis_slice(x, start=-1, axis=axis)
    right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
    ext = np.concatenate((2 * left_end - left_ext,
                          x,
                          2 * right_end - right_ext),
                         axis=axis)
    return ext


def even_ext(x, n, axis=-1):
    """Create an ndarray that is an even extension of x along an axis.

    Parameters
    ----------
    x : ndarray
        The array to be extended.
    n : int
        The number of elements by which to extend x at each end of the axis.
    axis : int, optional
        The axis along which to extend x.  Default is -1.

    Examples
    --------
    >>> a = array([[1.0,2.0,3.0,4.0,5.0], [0.0, 1.0, 4.0, 9.0, 16.0]])
    >>> _even_ext(a, 2)
    array([[  3.,   2.,   1.,   2.,   3.,   4.,   5.,   4.,   3.],
           [  4.,   1.,   0.,   1.,   4.,   9.,  16.,   9.,   4.]])
    """
    if n < 1:
        return x
    if n > x.shape[axis] - 1:
        raise ValueError(("The extension length n (%d) is too big. " +
                         "It must not exceed x.shape[axis]-1, which is %d.")
                         % (n, x.shape[axis] - 1))
    left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
    right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
    ext = np.concatenate((left_ext,
                          x,
                          right_ext),
                         axis=axis)
    return ext


def const_ext(x, n, axis=-1):
    """Create an ndarray that is a constant extension of x along an axis.

    The extension repeats the values at the first and last element of
    the axis.

    Parameters
    ----------
    x : ndarray
        The array to be extended.
    n : int
        The number of elements by which to extend x at each end of the axis.
    axis : int, optional
        The axis along which to extend x.  Default is -1.

    Examples
    --------
    >>> a = array([[1.0,2.0,3.0,4.0,5.0], [0.0, 1.0, 4.0, 9.0, 16.0]])
    >>> _const_ext(a, 2)
    array([[  1.,   1.,   1.,   2.,   3.,   4.,   5.,   5.,   5.],
           [  0.,   0.,   0.,   1.,   4.,   9.,  16.,  16.,  16.]])
    """
    if n < 1:
        return x
    left_end = axis_slice(x, start=0, stop=1, axis=axis)
    ones_shape = [1] * x.ndim
    ones_shape[axis] = n
    ones = np.ones(ones_shape, dtype=x.dtype)
    left_ext = ones * left_end
    right_end = axis_slice(x, start=-1, axis=axis)
    right_ext = ones * right_end
    ext = np.concatenate((left_ext,
                          x,
                          right_ext),
                         axis=axis)
    return ext