File: signaltools.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (3095 lines) | stat: -rw-r--r-- 104,451 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
# Author: Travis Oliphant
# 1999 -- 2002

from __future__ import division, print_function, absolute_import

import warnings
import threading
import sys

from . import sigtools, dlti
from ._upfirdn import upfirdn, _UpFIRDn, _output_len
from scipy._lib.six import callable
from scipy._lib._version import NumpyVersion
from scipy import fftpack, linalg
from numpy import (allclose, angle, arange, argsort, array, asarray,
                   atleast_1d, atleast_2d, cast, dot, exp, expand_dims,
                   iscomplexobj, mean, ndarray, newaxis, ones, pi,
                   poly, polyadd, polyder, polydiv, polymul, polysub, polyval,
                   prod, product, r_, ravel, real_if_close, reshape,
                   roots, sort, sum, take, transpose, unique, where, zeros,
                   zeros_like)
import numpy as np
from scipy.special import factorial
from .windows import get_window
from ._arraytools import axis_slice, axis_reverse, odd_ext, even_ext, const_ext
from .filter_design import cheby1
from .fir_filter_design import firwin

if sys.version_info.major >= 3 and sys.version_info.minor >= 5:
    from math import gcd
else:
    from fractions import gcd


__all__ = ['correlate', 'fftconvolve', 'convolve', 'convolve2d', 'correlate2d',
           'order_filter', 'medfilt', 'medfilt2d', 'wiener', 'lfilter',
           'lfiltic', 'sosfilt', 'deconvolve', 'hilbert', 'hilbert2',
           'cmplx_sort', 'unique_roots', 'invres', 'invresz', 'residue',
           'residuez', 'resample', 'resample_poly', 'detrend',
           'lfilter_zi', 'sosfilt_zi', 'sosfiltfilt',
           'filtfilt', 'decimate', 'vectorstrength']


_modedict = {'valid': 0, 'same': 1, 'full': 2}

_boundarydict = {'fill': 0, 'pad': 0, 'wrap': 2, 'circular': 2, 'symm': 1,
                 'symmetric': 1, 'reflect': 4}


_rfft_mt_safe = (NumpyVersion(np.__version__) >= '1.9.0.dev-e24486e')

_rfft_lock = threading.Lock()


def _valfrommode(mode):
    try:
        val = _modedict[mode]
    except KeyError:
        if mode not in [0, 1, 2]:
            raise ValueError("Acceptable mode flags are 'valid' (0),"
                             " 'same' (1), or 'full' (2).")
        val = mode
    return val


def _bvalfromboundary(boundary):
    try:
        val = _boundarydict[boundary] << 2
    except KeyError:
        if val not in [0, 1, 2]:
            raise ValueError("Acceptable boundary flags are 'fill', 'wrap'"
                             " (or 'circular'), \n  and 'symm'"
                             " (or 'symmetric').")
        val = boundary << 2
    return val


def _inputs_swap_needed(mode, shape1, shape2):
    """
    If in 'valid' mode, checks whether or not one of the array shapes
    is at least as large as the other in every dimension. Returns whether
    or not the input arrays need to be swapped depending on whether shape2
    is larger than shape1. This is important for some of the correlation and
    convolution implementations in this module, where the larger array input
    needs to come before the smaller array input when operating in this mode.
    Note that if the mode provided is not 'valid', False is immediately
    returned.

    """
    if mode == 'valid':
        ok1, ok2 = True, True

        for d1, d2 in zip(shape1, shape2):
            if not d1 >= d2:
                ok1 = False
            if not d2 >= d1:
                ok2 = False

        if not (ok1 or ok2):
            raise ValueError("For 'valid' mode, one must be at least "
                             "as large as the other in every dimension")

        return not ok1

    return False


def correlate(in1, in2, mode='full'):
    """
    Cross-correlate two N-dimensional arrays.

    Cross-correlate `in1` and `in2`, with the output size determined by the
    `mode` argument.

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
        If operating in 'valid' mode, either `in1` or `in2` must be
        at least as large as the other in every dimension.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear cross-correlation
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.

    Returns
    -------
    correlate : array
        An N-dimensional array containing a subset of the discrete linear
        cross-correlation of `in1` with `in2`.

    Notes
    -----
    The correlation z of two d-dimensional arrays x and y is defined as:

      z[...,k,...] = sum[..., i_l, ...]
                         x[..., i_l,...] * conj(y[..., i_l + k,...])

    Examples
    --------
    Implement a matched filter using cross-correlation, to recover a signal
    that has passed through a noisy channel.

    >>> from scipy import signal
    >>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128)
    >>> sig_noise = sig + np.random.randn(len(sig))
    >>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128

    >>> import matplotlib.pyplot as plt
    >>> clock = np.arange(64, len(sig), 128)
    >>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True)
    >>> ax_orig.plot(sig)
    >>> ax_orig.plot(clock, sig[clock], 'ro')
    >>> ax_orig.set_title('Original signal')
    >>> ax_noise.plot(sig_noise)
    >>> ax_noise.set_title('Signal with noise')
    >>> ax_corr.plot(corr)
    >>> ax_corr.plot(clock, corr[clock], 'ro')
    >>> ax_corr.axhline(0.5, ls=':')
    >>> ax_corr.set_title('Cross-correlated with rectangular pulse')
    >>> ax_orig.margins(0, 0.1)
    >>> fig.tight_layout()
    >>> fig.show()

    """
    in1 = asarray(in1)
    in2 = asarray(in2)

    # Don't use _valfrommode, since correlate should not accept numeric modes
    try:
        val = _modedict[mode]
    except KeyError:
        raise ValueError("Acceptable mode flags are 'valid',"
                         " 'same', or 'full'.")

    if in1.ndim == in2.ndim == 0:
        return in1 * in2
    elif not in1.ndim == in2.ndim:
        raise ValueError("in1 and in2 should have the same dimensionality")

    # numpy is significantly faster for 1d (but numpy's 'same' mode uses
    # the size of the larger input, not the first.)
    if in1.ndim == in2.ndim == 1 and (in1.size >= in2.size or mode != 'same'):
        return np.correlate(in1, in2, mode)

    # _correlateND is far slower when in2.size > in1.size, so swap them
    # and then undo the effect afterward if mode == 'full'.  Also, it fails
    # with 'valid' mode if in2 is larger than in1, so swap those, too.
    # Don't swap inputs for 'same' mode, since shape of in1 matters.
    swapped_inputs = ((mode == 'full') and (in2.size > in1.size) or
                      _inputs_swap_needed(mode, in1.shape, in2.shape))

    if swapped_inputs:
        in1, in2 = in2, in1

    if mode == 'valid':
        ps = [i - j + 1 for i, j in zip(in1.shape, in2.shape)]
        out = np.empty(ps, in1.dtype)

        z = sigtools._correlateND(in1, in2, out, val)

    else:
        ps = [i + j - 1 for i, j in zip(in1.shape, in2.shape)]

        # zero pad input
        in1zpadded = np.zeros(ps, in1.dtype)
        sc = [slice(0, i) for i in in1.shape]
        in1zpadded[sc] = in1.copy()

        if mode == 'full':
            out = np.empty(ps, in1.dtype)
        elif mode == 'same':
            out = np.empty(in1.shape, in1.dtype)

        z = sigtools._correlateND(in1zpadded, in2, out, val)

    if swapped_inputs:
        # Reverse in all dimensions and conjugate to undo the effect of
        # swapping inputs
        reverse = [slice(None, None, -1)] * z.ndim
        z = z[reverse].conj()

    return z


def _centered(arr, newshape):
    # Return the center newshape portion of the array.
    newshape = asarray(newshape)
    currshape = array(arr.shape)
    startind = (currshape - newshape) // 2
    endind = startind + newshape
    myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
    return arr[tuple(myslice)]


def fftconvolve(in1, in2, mode="full"):
    """Convolve two N-dimensional arrays using FFT.

    Convolve `in1` and `in2` using the fast Fourier transform method, with
    the output size determined by the `mode` argument.

    This is generally much faster than `convolve` for large arrays (n > ~500),
    but can be slower when only a few output values are needed, and can only
    output float arrays (int or object array inputs will be cast to float).

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
        If operating in 'valid' mode, either `in1` or `in2` must be
        at least as large as the other in every dimension.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear convolution
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.

    Returns
    -------
    out : array
        An N-dimensional array containing a subset of the discrete linear
        convolution of `in1` with `in2`.

    Examples
    --------
    Autocorrelation of white noise is an impulse.  (This is at least 100 times
    as fast as `convolve`.)

    >>> from scipy import signal
    >>> sig = np.random.randn(1000)
    >>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full')

    >>> import matplotlib.pyplot as plt
    >>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
    >>> ax_orig.plot(sig)
    >>> ax_orig.set_title('White noise')
    >>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr)
    >>> ax_mag.set_title('Autocorrelation')
    >>> fig.tight_layout()
    >>> fig.show()

    Gaussian blur implemented using FFT convolution.  Notice the dark borders
    around the image, due to the zero-padding beyond its boundaries.
    The `convolve2d` function allows for other types of image boundaries,
    but is far slower.

    >>> from scipy import misc
    >>> face = misc.face(gray=True)
    >>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8))
    >>> blurred = signal.fftconvolve(face, kernel, mode='same')

    >>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1,
    ...                                                      figsize=(6, 15))
    >>> ax_orig.imshow(face, cmap='gray')
    >>> ax_orig.set_title('Original')
    >>> ax_orig.set_axis_off()
    >>> ax_kernel.imshow(kernel, cmap='gray')
    >>> ax_kernel.set_title('Gaussian kernel')
    >>> ax_kernel.set_axis_off()
    >>> ax_blurred.imshow(blurred, cmap='gray')
    >>> ax_blurred.set_title('Blurred')
    >>> ax_blurred.set_axis_off()
    >>> fig.show()

    """
    in1 = asarray(in1)
    in2 = asarray(in2)

    if in1.ndim == in2.ndim == 0:  # scalar inputs
        return in1 * in2
    elif not in1.ndim == in2.ndim:
        raise ValueError("in1 and in2 should have the same dimensionality")
    elif in1.size == 0 or in2.size == 0:  # empty arrays
        return array([])

    s1 = array(in1.shape)
    s2 = array(in2.shape)
    complex_result = (np.issubdtype(in1.dtype, complex) or
                      np.issubdtype(in2.dtype, complex))
    shape = s1 + s2 - 1

    # Check that input sizes are compatible with 'valid' mode
    if _inputs_swap_needed(mode, s1, s2):
        # Convolution is commutative; order doesn't have any effect on output
        in1, s1, in2, s2 = in2, s2, in1, s1

    # Speed up FFT by padding to optimal size for FFTPACK
    fshape = [fftpack.helper.next_fast_len(int(d)) for d in shape]
    fslice = tuple([slice(0, int(sz)) for sz in shape])
    # Pre-1.9 NumPy FFT routines are not threadsafe.  For older NumPys, make
    # sure we only call rfftn/irfftn from one thread at a time.
    if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)):
        try:
            sp1 = np.fft.rfftn(in1, fshape)
            sp2 = np.fft.rfftn(in2, fshape)
            ret = (np.fft.irfftn(sp1 * sp2, fshape)[fslice].copy())
        finally:
            if not _rfft_mt_safe:
                _rfft_lock.release()
    else:
        # If we're here, it's either because we need a complex result, or we
        # failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and
        # is already in use by another thread).  In either case, use the
        # (threadsafe but slower) SciPy complex-FFT routines instead.
        sp1 = fftpack.fftn(in1, fshape)
        sp2 = fftpack.fftn(in2, fshape)
        ret = fftpack.ifftn(sp1 * sp2)[fslice].copy()
        if not complex_result:
            ret = ret.real

    if mode == "full":
        return ret
    elif mode == "same":
        return _centered(ret, s1)
    elif mode == "valid":
        return _centered(ret, s1 - s2 + 1)
    else:
        raise ValueError("Acceptable mode flags are 'valid',"
                         " 'same', or 'full'.")


def convolve(in1, in2, mode='full'):
    """
    Convolve two N-dimensional arrays.

    Convolve `in1` and `in2`, with the output size determined by the
    `mode` argument.

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
        If operating in 'valid' mode, either `in1` or `in2` must be
        at least as large as the other in every dimension.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear convolution
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.

    Returns
    -------
    convolve : array
        An N-dimensional array containing a subset of the discrete linear
        convolution of `in1` with `in2`.

    See also
    --------
    numpy.polymul : performs polynomial multiplication (same operation, but
                    also accepts poly1d objects)

    Examples
    --------
    Smooth a square pulse using a Hann window:

    >>> from scipy import signal
    >>> sig = np.repeat([0., 1., 0.], 100)
    >>> win = signal.hann(50)
    >>> filtered = signal.convolve(sig, win, mode='same') / sum(win)

    >>> import matplotlib.pyplot as plt
    >>> fig, (ax_orig, ax_win, ax_filt) = plt.subplots(3, 1, sharex=True)
    >>> ax_orig.plot(sig)
    >>> ax_orig.set_title('Original pulse')
    >>> ax_orig.margins(0, 0.1)
    >>> ax_win.plot(win)
    >>> ax_win.set_title('Filter impulse response')
    >>> ax_win.margins(0, 0.1)
    >>> ax_filt.plot(filtered)
    >>> ax_filt.set_title('Filtered signal')
    >>> ax_filt.margins(0, 0.1)
    >>> fig.tight_layout()
    >>> fig.show()

    """
    volume = asarray(in1)
    kernel = asarray(in2)

    if volume.ndim == kernel.ndim == 0:
        return volume * kernel

    if _inputs_swap_needed(mode, volume.shape, kernel.shape):
        # Convolution is commutative; order doesn't have any effect on output
        volume, kernel = kernel, volume

    # fastpath to faster numpy 1d convolve (but numpy's 'same' mode uses the
    # size of the larger input, not the first.)
    if volume.ndim == kernel.ndim == 1 and (volume.size >= kernel.size or
                                            mode != 'same'):
        return np.convolve(volume, kernel, mode)

    # Reverse in all dimensions
    reverse = [slice(None, None, -1)] * kernel.ndim

    # .conj() does nothing to real arrays and is faster than iscomplexobj()
    return correlate(volume, kernel[reverse].conj(), mode)


def order_filter(a, domain, rank):
    """
    Perform an order filter on an N-dimensional array.

    Perform an order filter on the array in.  The domain argument acts as a
    mask centered over each pixel.  The non-zero elements of domain are
    used to select elements surrounding each input pixel which are placed
    in a list.   The list is sorted, and the output for that pixel is the
    element corresponding to rank in the sorted list.

    Parameters
    ----------
    a : ndarray
        The N-dimensional input array.
    domain : array_like
        A mask array with the same number of dimensions as `a`.
        Each dimension should have an odd number of elements.
    rank : int
        A non-negative integer which selects the element from the
        sorted list (0 corresponds to the smallest element, 1 is the
        next smallest element, etc.).

    Returns
    -------
    out : ndarray
        The results of the order filter in an array with the same
        shape as `a`.

    Examples
    --------
    >>> from scipy import signal
    >>> x = np.arange(25).reshape(5, 5)
    >>> domain = np.identity(3)
    >>> x
    array([[ 0,  1,  2,  3,  4],
           [ 5,  6,  7,  8,  9],
           [10, 11, 12, 13, 14],
           [15, 16, 17, 18, 19],
           [20, 21, 22, 23, 24]])
    >>> signal.order_filter(x, domain, 0)
    array([[  0.,   0.,   0.,   0.,   0.],
           [  0.,   0.,   1.,   2.,   0.],
           [  0.,   5.,   6.,   7.,   0.],
           [  0.,  10.,  11.,  12.,   0.],
           [  0.,   0.,   0.,   0.,   0.]])
    >>> signal.order_filter(x, domain, 2)
    array([[  6.,   7.,   8.,   9.,   4.],
           [ 11.,  12.,  13.,  14.,   9.],
           [ 16.,  17.,  18.,  19.,  14.],
           [ 21.,  22.,  23.,  24.,  19.],
           [ 20.,  21.,  22.,  23.,  24.]])

    """
    domain = asarray(domain)
    size = domain.shape
    for k in range(len(size)):
        if (size[k] % 2) != 1:
            raise ValueError("Each dimension of domain argument "
                             " should have an odd number of elements.")
    return sigtools._order_filterND(a, domain, rank)


def medfilt(volume, kernel_size=None):
    """
    Perform a median filter on an N-dimensional array.

    Apply a median filter to the input array using a local window-size
    given by `kernel_size`.

    Parameters
    ----------
    volume : array_like
        An N-dimensional input array.
    kernel_size : array_like, optional
        A scalar or an N-length list giving the size of the median filter
        window in each dimension.  Elements of `kernel_size` should be odd.
        If `kernel_size` is a scalar, then this scalar is used as the size in
        each dimension. Default size is 3 for each dimension.

    Returns
    -------
    out : ndarray
        An array the same size as input containing the median filtered
        result.

    """
    volume = atleast_1d(volume)
    if kernel_size is None:
        kernel_size = [3] * volume.ndim
    kernel_size = asarray(kernel_size)
    if kernel_size.shape == ():
        kernel_size = np.repeat(kernel_size.item(), volume.ndim)

    for k in range(volume.ndim):
        if (kernel_size[k] % 2) != 1:
            raise ValueError("Each element of kernel_size should be odd.")

    domain = ones(kernel_size)

    numels = product(kernel_size, axis=0)
    order = numels // 2
    return sigtools._order_filterND(volume, domain, order)


def wiener(im, mysize=None, noise=None):
    """
    Perform a Wiener filter on an N-dimensional array.

    Apply a Wiener filter to the N-dimensional array `im`.

    Parameters
    ----------
    im : ndarray
        An N-dimensional array.
    mysize : int or array_like, optional
        A scalar or an N-length list giving the size of the Wiener filter
        window in each dimension.  Elements of mysize should be odd.
        If mysize is a scalar, then this scalar is used as the size
        in each dimension.
    noise : float, optional
        The noise-power to use. If None, then noise is estimated as the
        average of the local variance of the input.

    Returns
    -------
    out : ndarray
        Wiener filtered result with the same shape as `im`.

    """
    im = asarray(im)
    if mysize is None:
        mysize = [3] * im.ndim
    mysize = asarray(mysize)
    if mysize.shape == ():
        mysize = np.repeat(mysize.item(), im.ndim)

    # Estimate the local mean
    lMean = correlate(im, ones(mysize), 'same') / product(mysize, axis=0)

    # Estimate the local variance
    lVar = (correlate(im ** 2, ones(mysize), 'same') / product(mysize, axis=0)
            - lMean ** 2)

    # Estimate the noise power if needed.
    if noise is None:
        noise = mean(ravel(lVar), axis=0)

    res = (im - lMean)
    res *= (1 - noise / lVar)
    res += lMean
    out = where(lVar < noise, lMean, res)

    return out


def convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0):
    """
    Convolve two 2-dimensional arrays.

    Convolve `in1` and `in2` with output size determined by `mode`, and
    boundary conditions determined by `boundary` and `fillvalue`.

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
        If operating in 'valid' mode, either `in1` or `in2` must be
        at least as large as the other in every dimension.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear convolution
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.

    boundary : str {'fill', 'wrap', 'symm'}, optional
        A flag indicating how to handle boundaries:

        ``fill``
           pad input arrays with fillvalue. (default)
        ``wrap``
           circular boundary conditions.
        ``symm``
           symmetrical boundary conditions.

    fillvalue : scalar, optional
        Value to fill pad input arrays with. Default is 0.

    Returns
    -------
    out : ndarray
        A 2-dimensional array containing a subset of the discrete linear
        convolution of `in1` with `in2`.

    Examples
    --------
    Compute the gradient of an image by 2D convolution with a complex Scharr
    operator.  (Horizontal operator is real, vertical is imaginary.)  Use
    symmetric boundary condition to avoid creating edges at the image
    boundaries.

    >>> from scipy import signal
    >>> from scipy import misc
    >>> ascent = misc.ascent()
    >>> scharr = np.array([[ -3-3j, 0-10j,  +3 -3j],
    ...                    [-10+0j, 0+ 0j, +10 +0j],
    ...                    [ -3+3j, 0+10j,  +3 +3j]]) # Gx + j*Gy
    >>> grad = signal.convolve2d(ascent, scharr, boundary='symm', mode='same')

    >>> import matplotlib.pyplot as plt
    >>> fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(3, 1, figsize=(6, 15))
    >>> ax_orig.imshow(ascent, cmap='gray')
    >>> ax_orig.set_title('Original')
    >>> ax_orig.set_axis_off()
    >>> ax_mag.imshow(np.absolute(grad), cmap='gray')
    >>> ax_mag.set_title('Gradient magnitude')
    >>> ax_mag.set_axis_off()
    >>> ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles
    >>> ax_ang.set_title('Gradient orientation')
    >>> ax_ang.set_axis_off()
    >>> fig.show()

    """
    in1 = asarray(in1)
    in2 = asarray(in2)

    if not in1.ndim == in2.ndim == 2:
        raise ValueError('convolve2d inputs must both be 2D arrays')

    if _inputs_swap_needed(mode, in1.shape, in2.shape):
        in1, in2 = in2, in1

    val = _valfrommode(mode)
    bval = _bvalfromboundary(boundary)

    with warnings.catch_warnings():
        warnings.simplefilter('ignore', np.ComplexWarning)
        # FIXME: some cast generates a warning here
        out = sigtools._convolve2d(in1, in2, 1, val, bval, fillvalue)

    return out


def correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0):
    """
    Cross-correlate two 2-dimensional arrays.

    Cross correlate `in1` and `in2` with output size determined by `mode`, and
    boundary conditions determined by `boundary` and `fillvalue`.

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
        If operating in 'valid' mode, either `in1` or `in2` must be
        at least as large as the other in every dimension.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear cross-correlation
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.

    boundary : str {'fill', 'wrap', 'symm'}, optional
        A flag indicating how to handle boundaries:

        ``fill``
           pad input arrays with fillvalue. (default)
        ``wrap``
           circular boundary conditions.
        ``symm``
           symmetrical boundary conditions.

    fillvalue : scalar, optional
        Value to fill pad input arrays with. Default is 0.

    Returns
    -------
    correlate2d : ndarray
        A 2-dimensional array containing a subset of the discrete linear
        cross-correlation of `in1` with `in2`.

    Examples
    --------
    Use 2D cross-correlation to find the location of a template in a noisy
    image:

    >>> from scipy import signal
    >>> from scipy import misc
    >>> face = misc.face(gray=True) - misc.face(gray=True).mean()
    >>> template = np.copy(face[300:365, 670:750])  # right eye
    >>> template -= template.mean()
    >>> face = face + np.random.randn(*face.shape) * 50  # add noise
    >>> corr = signal.correlate2d(face, template, boundary='symm', mode='same')
    >>> y, x = np.unravel_index(np.argmax(corr), corr.shape)  # find the match

    >>> import matplotlib.pyplot as plt
    >>> fig, (ax_orig, ax_template, ax_corr) = plt.subplots(3, 1,
    ...                                                     figsize=(6, 15))
    >>> ax_orig.imshow(face, cmap='gray')
    >>> ax_orig.set_title('Original')
    >>> ax_orig.set_axis_off()
    >>> ax_template.imshow(template, cmap='gray')
    >>> ax_template.set_title('Template')
    >>> ax_template.set_axis_off()
    >>> ax_corr.imshow(corr, cmap='gray')
    >>> ax_corr.set_title('Cross-correlation')
    >>> ax_corr.set_axis_off()
    >>> ax_orig.plot(x, y, 'ro')
    >>> fig.show()

    """
    in1 = asarray(in1)
    in2 = asarray(in2)

    if not in1.ndim == in2.ndim == 2:
        raise ValueError('correlate2d inputs must both be 2D arrays')

    swapped_inputs = _inputs_swap_needed(mode, in1.shape, in2.shape)
    if swapped_inputs:
        in1, in2 = in2, in1

    val = _valfrommode(mode)
    bval = _bvalfromboundary(boundary)

    with warnings.catch_warnings():
        warnings.simplefilter('ignore', np.ComplexWarning)
        # FIXME: some cast generates a warning here
        out = sigtools._convolve2d(in1, in2, 0, val, bval, fillvalue)

    if swapped_inputs:
        out = out[::-1, ::-1]

    return out


def medfilt2d(input, kernel_size=3):
    """
    Median filter a 2-dimensional array.

    Apply a median filter to the `input` array using a local window-size
    given by `kernel_size` (must be odd).

    Parameters
    ----------
    input : array_like
        A 2-dimensional input array.
    kernel_size : array_like, optional
        A scalar or a list of length 2, giving the size of the
        median filter window in each dimension.  Elements of
        `kernel_size` should be odd.  If `kernel_size` is a scalar,
        then this scalar is used as the size in each dimension.
        Default is a kernel of size (3, 3).

    Returns
    -------
    out : ndarray
        An array the same size as input containing the median filtered
        result.

    """
    image = asarray(input)
    if kernel_size is None:
        kernel_size = [3] * 2
    kernel_size = asarray(kernel_size)
    if kernel_size.shape == ():
        kernel_size = np.repeat(kernel_size.item(), 2)

    for size in kernel_size:
        if (size % 2) != 1:
            raise ValueError("Each element of kernel_size should be odd.")

    return sigtools._medfilt2d(image, kernel_size)


def lfilter(b, a, x, axis=-1, zi=None):
    """
    Filter data along one-dimension with an IIR or FIR filter.

    Filter a data sequence, `x`, using a digital filter.  This works for many
    fundamental data types (including Object type).  The filter is a direct
    form II transposed implementation of the standard difference equation
    (see Notes).

    Parameters
    ----------
    b : array_like
        The numerator coefficient vector in a 1-D sequence.
    a : array_like
        The denominator coefficient vector in a 1-D sequence.  If ``a[0]``
        is not 1, then both `a` and `b` are normalized by ``a[0]``.
    x : array_like
        An N-dimensional input array.
    axis : int, optional
        The axis of the input data array along which to apply the
        linear filter. The filter is applied to each subarray along
        this axis.  Default is -1.
    zi : array_like, optional
        Initial conditions for the filter delays.  It is a vector
        (or array of vectors for an N-dimensional input) of length
        ``max(len(a), len(b)) - 1``.  If `zi` is None or is not given then
        initial rest is assumed.  See `lfiltic` for more information.

    Returns
    -------
    y : array
        The output of the digital filter.
    zf : array, optional
        If `zi` is None, this is not returned, otherwise, `zf` holds the
        final filter delay values.

    See Also
    --------
    lfiltic : Construct initial conditions for `lfilter`.
    lfilter_zi : Compute initial state (steady state of step response) for
                 `lfilter`.
    filtfilt : A forward-backward filter, to obtain a filter with linear phase.
    savgol_filter : A Savitzky-Golay filter.
    sosfilt: Filter data using cascaded second-order sections.
    sosfiltfilt: A forward-backward filter using second-order sections.

    Notes
    -----
    The filter function is implemented as a direct II transposed structure.
    This means that the filter implements::

       a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M]
                             - a[1]*y[n-1] - ... - a[N]*y[n-N]

    where `M` is the degree of the numerator, `N` is the degree of the
    denominator, and `n` is the sample number.  It is implemented using
    the following difference equations (assuming M = N)::

         a[0]*y[n] = b[0] * x[n]               + d[0][n-1]
           d[0][n] = b[1] * x[n] - a[1] * y[n] + d[1][n-1]
           d[1][n] = b[2] * x[n] - a[2] * y[n] + d[2][n-1]
         ...
         d[N-2][n] = b[N-1]*x[n] - a[N-1]*y[n] + d[N-1][n-1]
         d[N-1][n] = b[N] * x[n] - a[N] * y[n]

    where `d` are the state variables.

    The rational transfer function describing this filter in the
    z-transform domain is::

                             -1              -M
                 b[0] + b[1]z  + ... + b[M] z
         Y(z) = -------------------------------- X(z)
                             -1              -N
                 a[0] + a[1]z  + ... + a[N] z

    Examples
    --------
    Generate a noisy signal to be filtered:

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(-1, 1, 201)
    >>> x = (np.sin(2*np.pi*0.75*t*(1-t) + 2.1) + 0.1*np.sin(2*np.pi*1.25*t + 1)
    ...      + 0.18*np.cos(2*np.pi*3.85*t))
    >>> xn = x + np.random.randn(len(t)) * 0.08

    Create an order 3 lowpass butterworth filter:

    >>> b, a = signal.butter(3, 0.05)

    Apply the filter to xn.  Use lfilter_zi to choose the initial condition of
    the filter:

    >>> zi = signal.lfilter_zi(b, a)
    >>> z, _ = signal.lfilter(b, a, xn, zi=zi*xn[0])

    Apply the filter again, to have a result filtered at an order the same as
    filtfilt:

    >>> z2, _ = signal.lfilter(b, a, z, zi=zi*z[0])

    Use filtfilt to apply the filter:

    >>> y = signal.filtfilt(b, a, xn)

    Plot the original signal and the various filtered versions:

    >>> plt.figure
    >>> plt.plot(t, xn, 'b', alpha=0.75)
    >>> plt.plot(t, z, 'r--', t, z2, 'r', t, y, 'k')
    >>> plt.legend(('noisy signal', 'lfilter, once', 'lfilter, twice',
    ...             'filtfilt'), loc='best')
    >>> plt.grid(True)
    >>> plt.show()

    """
    a = np.atleast_1d(a)
    if len(a) == 1:
        # This path only supports types fdgFDGO to mirror _linear_filter below.
        # Any of b, a, x, or zi can set the dtype, but there is no default
        # casting of other types; instead a NotImplementedError is raised.
        b = np.asarray(b)
        a = np.asarray(a)
        if b.ndim != 1 and a.ndim != 1:
            raise ValueError('object of too small depth for desired array')
        x = np.asarray(x)
        inputs = [b, a, x]
        if zi is not None:
            # _linear_filter does not broadcast zi, but does do expansion of singleton dims.
            zi = np.asarray(zi)
            if zi.ndim != x.ndim:
                raise ValueError('object of too small depth for desired array')
            expected_shape = list(x.shape)
            expected_shape[axis] = b.shape[0] - 1
            expected_shape = tuple(expected_shape)
            # check the trivial case where zi is the right shape first
            if zi.shape != expected_shape:
                strides = zi.ndim * [None]
                if axis < 0:
                    axis += zi.ndim
                for k in range(zi.ndim):
                    if k == axis and zi.shape[k] == expected_shape[k]:
                        strides[k] = zi.strides[k]
                    elif k != axis and zi.shape[k] == expected_shape[k]:
                        strides[k] = zi.strides[k]
                    elif k != axis and zi.shape[k] == 1:
                        strides[k] = 0
                    else:
                        raise ValueError('Unexpected shape for zi: expected '
                                         '%s, found %s.' %
                                         (expected_shape, zi.shape))
                zi = np.lib.stride_tricks.as_strided(zi, expected_shape, strides)
            inputs.append(zi)
        dtype = np.result_type(*inputs)

        if dtype.char not in 'fdgFDGO':
            raise NotImplementedError("input type '%s' not supported" % dtype)

        b = np.array(b, dtype=dtype)
        a = np.array(a, dtype=dtype, copy=False)
        b /= a[0]
        x = np.array(x, dtype=dtype, copy=False)

        out_full = np.apply_along_axis(lambda y: np.convolve(b, y), axis, x)
        ind = out_full.ndim * [slice(None)]
        if zi is not None:
            ind[axis] = slice(zi.shape[axis])
            out_full[ind] += zi

        ind[axis] = slice(out_full.shape[axis] - len(b) + 1)
        out = out_full[ind]

        if zi is None:
            return out
        else:
            ind[axis] = slice(out_full.shape[axis] - len(b) + 1, None)
            zf = out_full[ind]
            return out, zf
    else:
        if zi is None:
            return sigtools._linear_filter(b, a, x, axis)
        else:
            return sigtools._linear_filter(b, a, x, axis, zi)


def lfiltic(b, a, y, x=None):
    """
    Construct initial conditions for lfilter.

    Given a linear filter (b, a) and initial conditions on the output `y`
    and the input `x`, return the initial conditions on the state vector zi
    which is used by `lfilter` to generate the output given the input.

    Parameters
    ----------
    b : array_like
        Linear filter term.
    a : array_like
        Linear filter term.
    y : array_like
        Initial conditions.

        If ``N = len(a) - 1``, then ``y = {y[-1], y[-2], ..., y[-N]}``.

        If `y` is too short, it is padded with zeros.
    x : array_like, optional
        Initial conditions.

        If ``M = len(b) - 1``, then ``x = {x[-1], x[-2], ..., x[-M]}``.

        If `x` is not given, its initial conditions are assumed zero.

        If `x` is too short, it is padded with zeros.

    Returns
    -------
    zi : ndarray
        The state vector ``zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]}``,
        where ``K = max(M, N)``.

    See Also
    --------
    lfilter, lfilter_zi

    """
    N = np.size(a) - 1
    M = np.size(b) - 1
    K = max(M, N)
    y = asarray(y)
    if y.dtype.kind in 'bui':
        # ensure calculations are floating point
        y = y.astype(np.float64)
    zi = zeros(K, y.dtype)
    if x is None:
        x = zeros(M, y.dtype)
    else:
        x = asarray(x)
        L = np.size(x)
        if L < M:
            x = r_[x, zeros(M - L)]
    L = np.size(y)
    if L < N:
        y = r_[y, zeros(N - L)]

    for m in range(M):
        zi[m] = sum(b[m + 1:] * x[:M - m], axis=0)

    for m in range(N):
        zi[m] -= sum(a[m + 1:] * y[:N - m], axis=0)

    return zi


def deconvolve(signal, divisor):
    """Deconvolves ``divisor`` out of ``signal``.

    Returns the quotient and remainder such that
    ``signal = convolve(divisor, quotient) + remainder``

    Parameters
    ----------
    signal : array_like
        Signal data, typically a recorded signal
    divisor : array_like
        Divisor data, typically an impulse response or filter that was
        applied to the original signal

    Returns
    -------
    quotient : ndarray
        Quotient, typically the recovered original signal
    remainder : ndarray
        Remainder

    Examples
    --------
    Deconvolve a signal that's been filtered:

    >>> from scipy import signal
    >>> original = [0, 1, 0, 0, 1, 1, 0, 0]
    >>> impulse_response = [2, 1]
    >>> recorded = signal.convolve(impulse_response, original)
    >>> recorded
    array([0, 2, 1, 0, 2, 3, 1, 0, 0])
    >>> recovered, remainder = signal.deconvolve(recorded, impulse_response)
    >>> recovered
    array([ 0.,  1.,  0.,  0.,  1.,  1.,  0.,  0.])

    See also
    --------
    numpy.polydiv : performs polynomial division (same operation, but
                    also accepts poly1d objects)

    """
    num = atleast_1d(signal)
    den = atleast_1d(divisor)
    N = len(num)
    D = len(den)
    if D > N:
        quot = []
        rem = num
    else:
        input = ones(N - D + 1, float)
        input[1:] = 0
        quot = lfilter(num, den, input)
        rem = num - convolve(den, quot, mode='full')
    return quot, rem


def hilbert(x, N=None, axis=-1):
    """
    Compute the analytic signal, using the Hilbert transform.

    The transformation is done along the last axis by default.

    Parameters
    ----------
    x : array_like
        Signal data.  Must be real.
    N : int, optional
        Number of Fourier components.  Default: ``x.shape[axis]``
    axis : int, optional
        Axis along which to do the transformation.  Default: -1.

    Returns
    -------
    xa : ndarray
        Analytic signal of `x`, of each 1-D array along `axis`

    Notes
    -----
    The analytic signal ``x_a(t)`` of signal ``x(t)`` is:

    .. math:: x_a = F^{-1}(F(x) 2U) = x + i y

    where `F` is the Fourier transform, `U` the unit step function,
    and `y` the Hilbert transform of `x`. [1]_

    In other words, the negative half of the frequency spectrum is zeroed
    out, turning the real-valued signal into a complex signal.  The Hilbert
    transformed signal can be obtained from ``np.imag(hilbert(x))``, and the
    original signal from ``np.real(hilbert(x))``.

    Examples
    ---------
    In this example we use the Hilbert transform to determine the amplitude
    envelope and instantaneous frequency of an amplitude-modulated signal.

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.signal import hilbert, chirp

    >>> duration = 1.0
    >>> fs = 400.0
    >>> samples = int(fs*duration)
    >>> t = np.arange(samples) / fs

    We create a chirp of which the frequency increases from 20 Hz to 100 Hz and
    apply an amplitude modulation.

    >>> signal = chirp(t, 20.0, t[-1], 100.0)
    >>> signal *= (1.0 + 0.5 * np.sin(2.0*np.pi*3.0*t) )

    The amplitude envelope is given by magnitude of the analytic signal. The
    instantaneous frequency can be obtained by differentiating the instantaneous
    phase in respect to time. The instantaneous phase corresponds to the phase
    angle of the analytic signal.

    >>> analytic_signal = hilbert(signal)
    >>> amplitude_envelope = np.abs(analytic_signal)
    >>> instantaneous_phase = np.unwrap(np.angle(analytic_signal))
    >>> instantaneous_frequency = np.diff(instantaneous_phase) / (2.0*np.pi) * fs

    >>> fig = plt.figure()
    >>> ax0 = fig.add_subplot(211)
    >>> ax0.plot(t, signal, label='signal')
    >>> ax0.plot(t, amplitude_envelope, label='envelope')
    >>> ax0.set_xlabel("time in seconds")
    >>> ax0.legend()
    >>> ax1 = fig.add_subplot(212)
    >>> ax1.plot(t[1:], instantaneous_frequency)
    >>> ax1.set_xlabel("time in seconds")
    >>> ax1.set_ylim(0.0, 120.0)

    References
    ----------
    .. [1] Wikipedia, "Analytic signal".
           http://en.wikipedia.org/wiki/Analytic_signal
    .. [2] Leon Cohen, "Time-Frequency Analysis", 1995. Chapter 2.
    .. [3] Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing,
           Third Edition, 2009. Chapter 12. ISBN 13: 978-1292-02572-8

    """
    x = asarray(x)
    if iscomplexobj(x):
        raise ValueError("x must be real.")
    if N is None:
        N = x.shape[axis]
    if N <= 0:
        raise ValueError("N must be positive.")

    Xf = fftpack.fft(x, N, axis=axis)
    h = zeros(N)
    if N % 2 == 0:
        h[0] = h[N // 2] = 1
        h[1:N // 2] = 2
    else:
        h[0] = 1
        h[1:(N + 1) // 2] = 2

    if x.ndim > 1:
        ind = [newaxis] * x.ndim
        ind[axis] = slice(None)
        h = h[ind]
    x = fftpack.ifft(Xf * h, axis=axis)
    return x


def hilbert2(x, N=None):
    """
    Compute the '2-D' analytic signal of `x`

    Parameters
    ----------
    x : array_like
        2-D signal data.
    N : int or tuple of two ints, optional
        Number of Fourier components. Default is ``x.shape``

    Returns
    -------
    xa : ndarray
        Analytic signal of `x` taken along axes (0,1).

    References
    ----------
    .. [1] Wikipedia, "Analytic signal",
        http://en.wikipedia.org/wiki/Analytic_signal

    """
    x = atleast_2d(x)
    if x.ndim > 2:
        raise ValueError("x must be 2-D.")
    if iscomplexobj(x):
        raise ValueError("x must be real.")
    if N is None:
        N = x.shape
    elif isinstance(N, int):
        if N <= 0:
            raise ValueError("N must be positive.")
        N = (N, N)
    elif len(N) != 2 or np.any(np.asarray(N) <= 0):
        raise ValueError("When given as a tuple, N must hold exactly "
                         "two positive integers")

    Xf = fftpack.fft2(x, N, axes=(0, 1))
    h1 = zeros(N[0], 'd')
    h2 = zeros(N[1], 'd')
    for p in range(2):
        h = eval("h%d" % (p + 1))
        N1 = N[p]
        if N1 % 2 == 0:
            h[0] = h[N1 // 2] = 1
            h[1:N1 // 2] = 2
        else:
            h[0] = 1
            h[1:(N1 + 1) // 2] = 2
        exec("h%d = h" % (p + 1), globals(), locals())

    h = h1[:, newaxis] * h2[newaxis, :]
    k = x.ndim
    while k > 2:
        h = h[:, newaxis]
        k -= 1
    x = fftpack.ifft2(Xf * h, axes=(0, 1))
    return x


def cmplx_sort(p):
    """Sort roots based on magnitude.

    Parameters
    ----------
    p : array_like
        The roots to sort, as a 1-D array.

    Returns
    -------
    p_sorted : ndarray
        Sorted roots.
    indx : ndarray
        Array of indices needed to sort the input `p`.

    """
    p = asarray(p)
    if iscomplexobj(p):
        indx = argsort(abs(p))
    else:
        indx = argsort(p)
    return take(p, indx, 0), indx


def unique_roots(p, tol=1e-3, rtype='min'):
    """
    Determine unique roots and their multiplicities from a list of roots.

    Parameters
    ----------
    p : array_like
        The list of roots.
    tol : float, optional
        The tolerance for two roots to be considered equal. Default is 1e-3.
    rtype : {'max', 'min, 'avg'}, optional
        How to determine the returned root if multiple roots are within
        `tol` of each other.

          - 'max': pick the maximum of those roots.
          - 'min': pick the minimum of those roots.
          - 'avg': take the average of those roots.

    Returns
    -------
    pout : ndarray
        The list of unique roots, sorted from low to high.
    mult : ndarray
        The multiplicity of each root.

    Notes
    -----
    This utility function is not specific to roots but can be used for any
    sequence of values for which uniqueness and multiplicity has to be
    determined. For a more general routine, see `numpy.unique`.

    Examples
    --------
    >>> from scipy import signal
    >>> vals = [0, 1.3, 1.31, 2.8, 1.25, 2.2, 10.3]
    >>> uniq, mult = signal.unique_roots(vals, tol=2e-2, rtype='avg')

    Check which roots have multiplicity larger than 1:

    >>> uniq[mult > 1]
    array([ 1.305])

    """
    if rtype in ['max', 'maximum']:
        comproot = np.max
    elif rtype in ['min', 'minimum']:
        comproot = np.min
    elif rtype in ['avg', 'mean']:
        comproot = np.mean
    else:
        raise ValueError("`rtype` must be one of "
                         "{'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}")
    p = asarray(p) * 1.0
    tol = abs(tol)
    p, indx = cmplx_sort(p)
    pout = []
    mult = []
    indx = -1
    curp = p[0] + 5 * tol
    sameroots = []
    for k in range(len(p)):
        tr = p[k]
        if abs(tr - curp) < tol:
            sameroots.append(tr)
            curp = comproot(sameroots)
            pout[indx] = curp
            mult[indx] += 1
        else:
            pout.append(tr)
            curp = tr
            sameroots = [tr]
            indx += 1
            mult.append(1)
    return array(pout), array(mult)


def invres(r, p, k, tol=1e-3, rtype='avg'):
    """
    Compute b(s) and a(s) from partial fraction expansion.

    If `M` is the degree of numerator `b` and `N` the degree of denominator
    `a`::

              b(s)     b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
      H(s) = ------ = ------------------------------------------
              a(s)     a[0] s**(N) + a[1] s**(N-1) + ... + a[N]

    then the partial-fraction expansion H(s) is defined as::

               r[0]       r[1]             r[-1]
           = -------- + -------- + ... + --------- + k(s)
             (s-p[0])   (s-p[1])         (s-p[-1])

    If there are any repeated roots (closer together than `tol`), then H(s)
    has terms like::

          r[i]      r[i+1]              r[i+n-1]
        -------- + ----------- + ... + -----------
        (s-p[i])  (s-p[i])**2          (s-p[i])**n

    This function is used for polynomials in positive powers of s or z,
    such as analog filters or digital filters in controls engineering.  For
    negative powers of z (typical for digital filters in DSP), use `invresz`.

    Parameters
    ----------
    r : array_like
        Residues.
    p : array_like
        Poles.
    k : array_like
        Coefficients of the direct polynomial term.
    tol : float, optional
        The tolerance for two roots to be considered equal. Default is 1e-3.
    rtype : {'max', 'min, 'avg'}, optional
        How to determine the returned root if multiple roots are within
        `tol` of each other.

          - 'max': pick the maximum of those roots.
          - 'min': pick the minimum of those roots.
          - 'avg': take the average of those roots.

    Returns
    -------
    b : ndarray
        Numerator polynomial coefficients.
    a : ndarray
        Denominator polynomial coefficients.

    See Also
    --------
    residue, invresz, unique_roots

    """
    extra = k
    p, indx = cmplx_sort(p)
    r = take(r, indx, 0)
    pout, mult = unique_roots(p, tol=tol, rtype=rtype)
    p = []
    for k in range(len(pout)):
        p.extend([pout[k]] * mult[k])
    a = atleast_1d(poly(p))
    if len(extra) > 0:
        b = polymul(extra, a)
    else:
        b = [0]
    indx = 0
    for k in range(len(pout)):
        temp = []
        for l in range(len(pout)):
            if l != k:
                temp.extend([pout[l]] * mult[l])
        for m in range(mult[k]):
            t2 = temp[:]
            t2.extend([pout[k]] * (mult[k] - m - 1))
            b = polyadd(b, r[indx] * atleast_1d(poly(t2)))
            indx += 1
    b = real_if_close(b)
    while allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1):
        b = b[1:]
    return b, a


def residue(b, a, tol=1e-3, rtype='avg'):
    """
    Compute partial-fraction expansion of b(s) / a(s).

    If `M` is the degree of numerator `b` and `N` the degree of denominator
    `a`::

              b(s)     b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
      H(s) = ------ = ------------------------------------------
              a(s)     a[0] s**(N) + a[1] s**(N-1) + ... + a[N]

    then the partial-fraction expansion H(s) is defined as::

               r[0]       r[1]             r[-1]
           = -------- + -------- + ... + --------- + k(s)
             (s-p[0])   (s-p[1])         (s-p[-1])

    If there are any repeated roots (closer together than `tol`), then H(s)
    has terms like::

          r[i]      r[i+1]              r[i+n-1]
        -------- + ----------- + ... + -----------
        (s-p[i])  (s-p[i])**2          (s-p[i])**n

    This function is used for polynomials in positive powers of s or z,
    such as analog filters or digital filters in controls engineering.  For
    negative powers of z (typical for digital filters in DSP), use `residuez`.

    Parameters
    ----------
    b : array_like
        Numerator polynomial coefficients.
    a : array_like
        Denominator polynomial coefficients.

    Returns
    -------
    r : ndarray
        Residues.
    p : ndarray
        Poles.
    k : ndarray
        Coefficients of the direct polynomial term.

    See Also
    --------
    invres, residuez, numpy.poly, unique_roots

    """

    b, a = map(asarray, (b, a))
    rscale = a[0]
    k, b = polydiv(b, a)
    p = roots(a)
    r = p * 0.0
    pout, mult = unique_roots(p, tol=tol, rtype=rtype)
    p = []
    for n in range(len(pout)):
        p.extend([pout[n]] * mult[n])
    p = asarray(p)
    # Compute the residue from the general formula
    indx = 0
    for n in range(len(pout)):
        bn = b.copy()
        pn = []
        for l in range(len(pout)):
            if l != n:
                pn.extend([pout[l]] * mult[l])
        an = atleast_1d(poly(pn))
        # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is
        # multiplicity of pole at po[n]
        sig = mult[n]
        for m in range(sig, 0, -1):
            if sig > m:
                # compute next derivative of bn(s) / an(s)
                term1 = polymul(polyder(bn, 1), an)
                term2 = polymul(bn, polyder(an, 1))
                bn = polysub(term1, term2)
                an = polymul(an, an)
            r[indx + m - 1] = (polyval(bn, pout[n]) / polyval(an, pout[n])
                               / factorial(sig - m))
        indx += sig
    return r / rscale, p, k


def residuez(b, a, tol=1e-3, rtype='avg'):
    """
    Compute partial-fraction expansion of b(z) / a(z).

    If `M` is the degree of numerator `b` and `N` the degree of denominator
    `a`::

                b(z)     b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
        H(z) = ------ = ------------------------------------------
                a(z)     a[0] + a[1] z**(-1) + ... + a[N] z**(-N)

    then the partial-fraction expansion H(z) is defined as::

                 r[0]                   r[-1]
         = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
           (1-p[0]z**(-1))         (1-p[-1]z**(-1))

    If there are any repeated roots (closer than `tol`), then the partial
    fraction expansion has terms like::

             r[i]              r[i+1]                    r[i+n-1]
        -------------- + ------------------ + ... + ------------------
        (1-p[i]z**(-1))  (1-p[i]z**(-1))**2         (1-p[i]z**(-1))**n

    This function is used for polynomials in negative powers of z,
    such as digital filters in DSP.  For positive powers, use `residue`.

    Parameters
    ----------
    b : array_like
        Numerator polynomial coefficients.
    a : array_like
        Denominator polynomial coefficients.

    Returns
    -------
    r : ndarray
        Residues.
    p : ndarray
        Poles.
    k : ndarray
        Coefficients of the direct polynomial term.

    See also
    --------
    invresz, residue, unique_roots

    """
    b, a = map(asarray, (b, a))
    gain = a[0]
    brev, arev = b[::-1], a[::-1]
    krev, brev = polydiv(brev, arev)
    if krev == []:
        k = []
    else:
        k = krev[::-1]
    b = brev[::-1]
    p = roots(a)
    r = p * 0.0
    pout, mult = unique_roots(p, tol=tol, rtype=rtype)
    p = []
    for n in range(len(pout)):
        p.extend([pout[n]] * mult[n])
    p = asarray(p)
    # Compute the residue from the general formula (for discrete-time)
    #  the polynomial is in z**(-1) and the multiplication is by terms
    #  like this (1-p[i] z**(-1))**mult[i].  After differentiation,
    #  we must divide by (-p[i])**(m-k) as well as (m-k)!
    indx = 0
    for n in range(len(pout)):
        bn = brev.copy()
        pn = []
        for l in range(len(pout)):
            if l != n:
                pn.extend([pout[l]] * mult[l])
        an = atleast_1d(poly(pn))[::-1]
        # bn(z) / an(z) is (1-po[n] z**(-1))**Nn * b(z) / a(z) where Nn is
        # multiplicity of pole at po[n] and b(z) and a(z) are polynomials.
        sig = mult[n]
        for m in range(sig, 0, -1):
            if sig > m:
                # compute next derivative of bn(s) / an(s)
                term1 = polymul(polyder(bn, 1), an)
                term2 = polymul(bn, polyder(an, 1))
                bn = polysub(term1, term2)
                an = polymul(an, an)
            r[indx + m - 1] = (polyval(bn, 1.0 / pout[n]) /
                               polyval(an, 1.0 / pout[n]) /
                               factorial(sig - m) / (-pout[n]) ** (sig - m))
        indx += sig
    return r / gain, p, k


def invresz(r, p, k, tol=1e-3, rtype='avg'):
    """
    Compute b(z) and a(z) from partial fraction expansion.

    If `M` is the degree of numerator `b` and `N` the degree of denominator
    `a`::

                b(z)     b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
        H(z) = ------ = ------------------------------------------
                a(z)     a[0] + a[1] z**(-1) + ... + a[N] z**(-N)

    then the partial-fraction expansion H(z) is defined as::

                 r[0]                   r[-1]
         = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
           (1-p[0]z**(-1))         (1-p[-1]z**(-1))

    If there are any repeated roots (closer than `tol`), then the partial
    fraction expansion has terms like::

             r[i]              r[i+1]                    r[i+n-1]
        -------------- + ------------------ + ... + ------------------
        (1-p[i]z**(-1))  (1-p[i]z**(-1))**2         (1-p[i]z**(-1))**n

    This function is used for polynomials in negative powers of z,
    such as digital filters in DSP.  For positive powers, use `invres`.

    Parameters
    ----------
    r : array_like
        Residues.
    p : array_like
        Poles.
    k : array_like
        Coefficients of the direct polynomial term.
    tol : float, optional
        The tolerance for two roots to be considered equal. Default is 1e-3.
    rtype : {'max', 'min, 'avg'}, optional
        How to determine the returned root if multiple roots are within
        `tol` of each other.

          - 'max': pick the maximum of those roots.
          - 'min': pick the minimum of those roots.
          - 'avg': take the average of those roots.

    Returns
    -------
    b : ndarray
        Numerator polynomial coefficients.
    a : ndarray
        Denominator polynomial coefficients.

    See Also
    --------
    residuez, unique_roots, invres

    """
    extra = asarray(k)
    p, indx = cmplx_sort(p)
    r = take(r, indx, 0)
    pout, mult = unique_roots(p, tol=tol, rtype=rtype)
    p = []
    for k in range(len(pout)):
        p.extend([pout[k]] * mult[k])
    a = atleast_1d(poly(p))
    if len(extra) > 0:
        b = polymul(extra, a)
    else:
        b = [0]
    indx = 0
    brev = asarray(b)[::-1]
    for k in range(len(pout)):
        temp = []
        # Construct polynomial which does not include any of this root
        for l in range(len(pout)):
            if l != k:
                temp.extend([pout[l]] * mult[l])
        for m in range(mult[k]):
            t2 = temp[:]
            t2.extend([pout[k]] * (mult[k] - m - 1))
            brev = polyadd(brev, (r[indx] * atleast_1d(poly(t2)))[::-1])
            indx += 1
    b = real_if_close(brev[::-1])
    return b, a


def resample(x, num, t=None, axis=0, window=None):
    """
    Resample `x` to `num` samples using Fourier method along the given axis.

    The resampled signal starts at the same value as `x` but is sampled
    with a spacing of ``len(x) / num * (spacing of x)``.  Because a
    Fourier method is used, the signal is assumed to be periodic.

    Parameters
    ----------
    x : array_like
        The data to be resampled.
    num : int
        The number of samples in the resampled signal.
    t : array_like, optional
        If `t` is given, it is assumed to be the sample positions
        associated with the signal data in `x`.
    axis : int, optional
        The axis of `x` that is resampled.  Default is 0.
    window : array_like, callable, string, float, or tuple, optional
        Specifies the window applied to the signal in the Fourier
        domain.  See below for details.

    Returns
    -------
    resampled_x or (resampled_x, resampled_t)
        Either the resampled array, or, if `t` was given, a tuple
        containing the resampled array and the corresponding resampled
        positions.

    See also
    --------
    decimate : Downsample the signal after applying an FIR or IIR filter.
    resample_poly : Resample using polyphase filtering and an FIR filter.

    Notes
    -----
    The argument `window` controls a Fourier-domain window that tapers
    the Fourier spectrum before zero-padding to alleviate ringing in
    the resampled values for sampled signals you didn't intend to be
    interpreted as band-limited.

    If `window` is a function, then it is called with a vector of inputs
    indicating the frequency bins (i.e. fftfreq(x.shape[axis]) ).

    If `window` is an array of the same length as `x.shape[axis]` it is
    assumed to be the window to be applied directly in the Fourier
    domain (with dc and low-frequency first).

    For any other type of `window`, the function `scipy.signal.get_window`
    is called to generate the window.

    The first sample of the returned vector is the same as the first
    sample of the input vector.  The spacing between samples is changed
    from ``dx`` to ``dx * len(x) / num``.

    If `t` is not None, then it represents the old sample positions,
    and the new sample positions will be returned as well as the new
    samples.

    As noted, `resample` uses FFT transformations, which can be very
    slow if the number of input or output samples is large and prime;
    see `scipy.fftpack.fft`.

    Examples
    --------
    Note that the end of the resampled data rises to meet the first
    sample of the next cycle:

    >>> from scipy import signal

    >>> x = np.linspace(0, 10, 20, endpoint=False)
    >>> y = np.cos(-x**2/6.0)
    >>> f = signal.resample(y, 100)
    >>> xnew = np.linspace(0, 10, 100, endpoint=False)

    >>> import matplotlib.pyplot as plt
    >>> plt.plot(x, y, 'go-', xnew, f, '.-', 10, y[0], 'ro')
    >>> plt.legend(['data', 'resampled'], loc='best')
    >>> plt.show()
    """
    x = asarray(x)
    X = fftpack.fft(x, axis=axis)
    Nx = x.shape[axis]
    if window is not None:
        if callable(window):
            W = window(fftpack.fftfreq(Nx))
        elif isinstance(window, ndarray):
            if window.shape != (Nx,):
                raise ValueError('window must have the same length as data')
            W = window
        else:
            W = fftpack.ifftshift(get_window(window, Nx))
        newshape = [1] * x.ndim
        newshape[axis] = len(W)
        W.shape = newshape
        X = X * W
    sl = [slice(None)] * x.ndim
    newshape = list(x.shape)
    newshape[axis] = num
    N = int(np.minimum(num, Nx))
    Y = zeros(newshape, 'D')
    sl[axis] = slice(0, (N + 1) // 2)
    Y[sl] = X[sl]
    sl[axis] = slice(-(N - 1) // 2, None)
    Y[sl] = X[sl]
    y = fftpack.ifft(Y, axis=axis) * (float(num) / float(Nx))

    if x.dtype.char not in ['F', 'D']:
        y = y.real

    if t is None:
        return y
    else:
        new_t = arange(0, num) * (t[1] - t[0]) * Nx / float(num) + t[0]
        return y, new_t


def resample_poly(x, up, down, axis=0, window=('kaiser', 5.0)):
    """
    Resample `x` along the given axis using polyphase filtering.

    The signal `x` is upsampled by the factor `up`, a zero-phase low-pass
    FIR filter is applied, and then it is downsampled by the factor `down`.
    The resulting sample rate is ``up / down`` times the original sample
    rate. Values beyond the boundary of the signal are assumed to be zero
    during the filtering step.

    Parameters
    ----------
    x : array_like
        The data to be resampled.
    up : int
        The upsampling factor.
    down : int
        The downsampling factor.
    axis : int, optional
        The axis of `x` that is resampled. Default is 0.
    window : string, tuple, or array_like, optional
        Desired window to use to design the low-pass filter, or the FIR filter
        coefficients to employ. See below for details.

    Returns
    -------
    resampled_x : array
        The resampled array.

    See also
    --------
    decimate : Downsample the signal after applying an FIR or IIR filter.
    resample : Resample up or down using the FFT method.

    Notes
    -----
    This polyphase method will likely be faster than the Fourier method
    in `scipy.signal.resample` when the number of samples is large and
    prime, or when the number of samples is large and `up` and `down`
    share a large greatest common denominator. The length of the FIR
    filter used will depend on ``max(up, down) // gcd(up, down)``, and
    the number of operations during polyphase filtering will depend on
    the filter length and `down` (see `scipy.signal.upfirdn` for details).

    The argument `window` specifies the FIR low-pass filter design.

    If `window` is an array_like it is assumed to be the FIR filter
    coefficients. Note that the FIR filter is applied after the upsampling
    step, so it should be designed to operate on a signal at a sampling
    frequency higher than the original by a factor of `up//gcd(up, down)`.
    This function's output will be centered with respect to this array, so it
    is best to pass a symmetric filter with an odd number of samples if, as
    is usually the case, a zero-phase filter is desired.

    For any other type of `window`, the functions `scipy.signal.get_window`
    and `scipy.signal.firwin` are called to generate the appropriate filter
    coefficients.

    The first sample of the returned vector is the same as the first
    sample of the input vector. The spacing between samples is changed
    from ``dx`` to ``dx * up / float(down)``.

    Examples
    --------
    Note that the end of the resampled data rises to meet the first
    sample of the next cycle for the FFT method, and gets closer to zero
    for the polyphase method:

    >>> from scipy import signal

    >>> x = np.linspace(0, 10, 20, endpoint=False)
    >>> y = np.cos(-x**2/6.0)
    >>> f_fft = signal.resample(y, 100)
    >>> f_poly = signal.resample_poly(y, 100, 20)
    >>> xnew = np.linspace(0, 10, 100, endpoint=False)

    >>> import matplotlib.pyplot as plt
    >>> plt.plot(xnew, f_fft, 'b.-', xnew, f_poly, 'r.-')
    >>> plt.plot(x, y, 'ko-')
    >>> plt.plot(10, y[0], 'bo', 10, 0., 'ro')  # boundaries
    >>> plt.legend(['resample', 'resamp_poly', 'data'], loc='best')
    >>> plt.show()
    """
    x = asarray(x)
    up = int(up)
    down = int(down)
    if up < 1 or down < 1:
        raise ValueError('up and down must be >= 1')

    # Determine our up and down factors
    # Use a rational approimation to save computation time on really long
    # signals
    g_ = gcd(up, down)
    up //= g_
    down //= g_
    if up == down == 1:
        return x.copy()
    n_out = x.shape[axis] * up
    n_out = n_out // down + bool(n_out % down)

    if isinstance(window, (list, np.ndarray)):
        window = asarray(window)
        if window.ndim > 1:
            raise ValueError('window must be 1-D')
        half_len = (window.size - 1) // 2
        h = window
    else:
        # Design a linear-phase low-pass FIR filter
        max_rate = max(up, down)
        f_c = 1. / max_rate  # cutoff of FIR filter (rel. to Nyquist)
        half_len = 10 * max_rate  # reasonable cutoff for our sinc-like function
        h = firwin(2 * half_len + 1, f_c, window=window)
    h *= up

    # Zero-pad our filter to put the output samples at the center
    n_pre_pad = (down - half_len % down)
    n_post_pad = 0
    n_pre_remove = (half_len + n_pre_pad) // down
    # We should rarely need to do this given our filter lengths...
    while _output_len(len(h) + n_pre_pad + n_post_pad, x.shape[axis],
                      up, down) < n_out + n_pre_remove:
        n_post_pad += 1
    h = np.concatenate((np.zeros(n_pre_pad), h, np.zeros(n_post_pad)))
    ufd = _UpFIRDn(h, x.dtype, up, down)
    n_pre_remove_end = n_pre_remove + n_out

    def apply_remove(x):
        """Apply the upfirdn filter and remove excess"""
        return ufd.apply_filter(x)[n_pre_remove:n_pre_remove_end]

    y = np.apply_along_axis(apply_remove, axis, x)
    return y


def vectorstrength(events, period):
    '''
    Determine the vector strength of the events corresponding to the given
    period.

    The vector strength is a measure of phase synchrony, how well the
    timing of the events is synchronized to a single period of a periodic
    signal.

    If multiple periods are used, calculate the vector strength of each.
    This is called the "resonating vector strength".

    Parameters
    ----------
    events : 1D array_like
        An array of time points containing the timing of the events.
    period : float or array_like
        The period of the signal that the events should synchronize to.
        The period is in the same units as `events`.  It can also be an array
        of periods, in which case the outputs are arrays of the same length.

    Returns
    -------
    strength : float or 1D array
        The strength of the synchronization.  1.0 is perfect synchronization
        and 0.0 is no synchronization.  If `period` is an array, this is also
        an array with each element containing the vector strength at the
        corresponding period.
    phase : float or array
        The phase that the events are most strongly synchronized to in radians.
        If `period` is an array, this is also an array with each element
        containing the phase for the corresponding period.

    References
    ----------
    van Hemmen, JL, Longtin, A, and Vollmayr, AN. Testing resonating vector
        strength: Auditory system, electric fish, and noise.
        Chaos 21, 047508 (2011);
        doi: 10.1063/1.3670512
    van Hemmen, JL.  Vector strength after Goldberg, Brown, and von Mises:
        biological and mathematical perspectives.  Biol Cybern.
        2013 Aug;107(4):385-96. doi: 10.1007/s00422-013-0561-7.
    van Hemmen, JL and Vollmayr, AN.  Resonating vector strength: what happens
        when we vary the "probing" frequency while keeping the spike times
        fixed.  Biol Cybern. 2013 Aug;107(4):491-94.
        doi: 10.1007/s00422-013-0560-8
    '''
    events = asarray(events)
    period = asarray(period)
    if events.ndim > 1:
        raise ValueError('events cannot have dimensions more than 1')
    if period.ndim > 1:
        raise ValueError('period cannot have dimensions more than 1')

    # we need to know later if period was originally a scalar
    scalarperiod = not period.ndim

    events = atleast_2d(events)
    period = atleast_2d(period)
    if (period <= 0).any():
        raise ValueError('periods must be positive')

    # this converts the times to vectors
    vectors = exp(dot(2j*pi/period.T, events))

    # the vector strength is just the magnitude of the mean of the vectors
    # the vector phase is the angle of the mean of the vectors
    vectormean = mean(vectors, axis=1)
    strength = abs(vectormean)
    phase = angle(vectormean)

    # if the original period was a scalar, return scalars
    if scalarperiod:
        strength = strength[0]
        phase = phase[0]
    return strength, phase


def detrend(data, axis=-1, type='linear', bp=0):
    """
    Remove linear trend along axis from data.

    Parameters
    ----------
    data : array_like
        The input data.
    axis : int, optional
        The axis along which to detrend the data. By default this is the
        last axis (-1).
    type : {'linear', 'constant'}, optional
        The type of detrending. If ``type == 'linear'`` (default),
        the result of a linear least-squares fit to `data` is subtracted
        from `data`.
        If ``type == 'constant'``, only the mean of `data` is subtracted.
    bp : array_like of ints, optional
        A sequence of break points. If given, an individual linear fit is
        performed for each part of `data` between two break points.
        Break points are specified as indices into `data`.

    Returns
    -------
    ret : ndarray
        The detrended input data.

    Examples
    --------
    >>> from scipy import signal
    >>> randgen = np.random.RandomState(9)
    >>> npoints = 1000
    >>> noise = randgen.randn(npoints)
    >>> x = 3 + 2*np.linspace(0, 1, npoints) + noise
    >>> (signal.detrend(x) - noise).max() < 0.01
    True

    """
    if type not in ['linear', 'l', 'constant', 'c']:
        raise ValueError("Trend type must be 'linear' or 'constant'.")
    data = asarray(data)
    dtype = data.dtype.char
    if dtype not in 'dfDF':
        dtype = 'd'
    if type in ['constant', 'c']:
        ret = data - expand_dims(mean(data, axis), axis)
        return ret
    else:
        dshape = data.shape
        N = dshape[axis]
        bp = sort(unique(r_[0, bp, N]))
        if np.any(bp > N):
            raise ValueError("Breakpoints must be less than length "
                             "of data along given axis.")
        Nreg = len(bp) - 1
        # Restructure data so that axis is along first dimension and
        #  all other dimensions are collapsed into second dimension
        rnk = len(dshape)
        if axis < 0:
            axis = axis + rnk
        newdims = r_[axis, 0:axis, axis + 1:rnk]
        newdata = reshape(transpose(data, tuple(newdims)),
                          (N, prod(dshape, axis=0) // N))
        newdata = newdata.copy()  # make sure we have a copy
        if newdata.dtype.char not in 'dfDF':
            newdata = newdata.astype(dtype)
        # Find leastsq fit and remove it for each piece
        for m in range(Nreg):
            Npts = bp[m + 1] - bp[m]
            A = ones((Npts, 2), dtype)
            A[:, 0] = cast[dtype](arange(1, Npts + 1) * 1.0 / Npts)
            sl = slice(bp[m], bp[m + 1])
            coef, resids, rank, s = linalg.lstsq(A, newdata[sl])
            newdata[sl] = newdata[sl] - dot(A, coef)
        # Put data back in original shape.
        tdshape = take(dshape, newdims, 0)
        ret = reshape(newdata, tuple(tdshape))
        vals = list(range(1, rnk))
        olddims = vals[:axis] + [0] + vals[axis:]
        ret = transpose(ret, tuple(olddims))
        return ret


def lfilter_zi(b, a):
    """
    Compute an initial state `zi` for the lfilter function that corresponds
    to the steady state of the step response.

    A typical use of this function is to set the initial state so that the
    output of the filter starts at the same value as the first element of
    the signal to be filtered.

    Parameters
    ----------
    b, a : array_like (1-D)
        The IIR filter coefficients. See `lfilter` for more
        information.

    Returns
    -------
    zi : 1-D ndarray
        The initial state for the filter.

    See Also
    --------
    lfilter, lfiltic, filtfilt

    Notes
    -----
    A linear filter with order m has a state space representation (A, B, C, D),
    for which the output y of the filter can be expressed as::

        z(n+1) = A*z(n) + B*x(n)
        y(n)   = C*z(n) + D*x(n)

    where z(n) is a vector of length m, A has shape (m, m), B has shape
    (m, 1), C has shape (1, m) and D has shape (1, 1) (assuming x(n) is
    a scalar).  lfilter_zi solves::

        zi = A*zi + B

    In other words, it finds the initial condition for which the response
    to an input of all ones is a constant.

    Given the filter coefficients `a` and `b`, the state space matrices
    for the transposed direct form II implementation of the linear filter,
    which is the implementation used by scipy.signal.lfilter, are::

        A = scipy.linalg.companion(a).T
        B = b[1:] - a[1:]*b[0]

    assuming `a[0]` is 1.0; if `a[0]` is not 1, `a` and `b` are first
    divided by a[0].

    Examples
    --------
    The following code creates a lowpass Butterworth filter. Then it
    applies that filter to an array whose values are all 1.0; the
    output is also all 1.0, as expected for a lowpass filter.  If the
    `zi` argument of `lfilter` had not been given, the output would have
    shown the transient signal.

    >>> from numpy import array, ones
    >>> from scipy.signal import lfilter, lfilter_zi, butter
    >>> b, a = butter(5, 0.25)
    >>> zi = lfilter_zi(b, a)
    >>> y, zo = lfilter(b, a, ones(10), zi=zi)
    >>> y
    array([1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])

    Another example:

    >>> x = array([0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0])
    >>> y, zf = lfilter(b, a, x, zi=zi*x[0])
    >>> y
    array([ 0.5       ,  0.5       ,  0.5       ,  0.49836039,  0.48610528,
        0.44399389,  0.35505241])

    Note that the `zi` argument to `lfilter` was computed using
    `lfilter_zi` and scaled by `x[0]`.  Then the output `y` has no
    transient until the input drops from 0.5 to 0.0.

    """

    # FIXME: Can this function be replaced with an appropriate
    # use of lfiltic?  For example, when b,a = butter(N,Wn),
    #    lfiltic(b, a, y=numpy.ones_like(a), x=numpy.ones_like(b)).
    #

    # We could use scipy.signal.normalize, but it uses warnings in
    # cases where a ValueError is more appropriate, and it allows
    # b to be 2D.
    b = np.atleast_1d(b)
    if b.ndim != 1:
        raise ValueError("Numerator b must be 1-D.")
    a = np.atleast_1d(a)
    if a.ndim != 1:
        raise ValueError("Denominator a must be 1-D.")

    while len(a) > 1 and a[0] == 0.0:
        a = a[1:]
    if a.size < 1:
        raise ValueError("There must be at least one nonzero `a` coefficient.")

    if a[0] != 1.0:
        # Normalize the coefficients so a[0] == 1.
        b = b / a[0]
        a = a / a[0]

    n = max(len(a), len(b))

    # Pad a or b with zeros so they are the same length.
    if len(a) < n:
        a = np.r_[a, np.zeros(n - len(a))]
    elif len(b) < n:
        b = np.r_[b, np.zeros(n - len(b))]

    IminusA = np.eye(n - 1) - linalg.companion(a).T
    B = b[1:] - a[1:] * b[0]
    # Solve zi = A*zi + B
    zi = np.linalg.solve(IminusA, B)

    # For future reference: we could also use the following
    # explicit formulas to solve the linear system:
    #
    # zi = np.zeros(n - 1)
    # zi[0] = B.sum() / IminusA[:,0].sum()
    # asum = 1.0
    # csum = 0.0
    # for k in range(1,n-1):
    #     asum += a[k]
    #     csum += b[k] - a[k]*b[0]
    #     zi[k] = asum*zi[0] - csum

    return zi


def sosfilt_zi(sos):
    """
    Compute an initial state `zi` for the sosfilt function that corresponds
    to the steady state of the step response.

    A typical use of this function is to set the initial state so that the
    output of the filter starts at the same value as the first element of
    the signal to be filtered.

    Parameters
    ----------
    sos : array_like
        Array of second-order filter coefficients, must have shape
        ``(n_sections, 6)``. See `sosfilt` for the SOS filter format
        specification.

    Returns
    -------
    zi : ndarray
        Initial conditions suitable for use with ``sosfilt``, shape
        ``(n_sections, 2)``.

    See Also
    --------
    sosfilt, zpk2sos

    Notes
    -----
    .. versionadded:: 0.16.0

    Examples
    --------
    Filter a rectangular pulse that begins at time 0, with and without
    the use of the `zi` argument of `scipy.signal.sosfilt`.

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    >>> sos = signal.butter(9, 0.125, output='sos')
    >>> zi = signal.sosfilt_zi(sos)
    >>> x = (np.arange(250) < 100).astype(int)
    >>> f1 = signal.sosfilt(sos, x)
    >>> f2, zo = signal.sosfilt(sos, x, zi=zi)

    >>> plt.plot(x, 'k--', label='x')
    >>> plt.plot(f1, 'b', alpha=0.5, linewidth=2, label='filtered')
    >>> plt.plot(f2, 'g', alpha=0.25, linewidth=4, label='filtered with zi')
    >>> plt.legend(loc='best')
    >>> plt.show()

    """
    sos = np.asarray(sos)
    if sos.ndim != 2 or sos.shape[1] != 6:
        raise ValueError('sos must be shape (n_sections, 6)')

    n_sections = sos.shape[0]
    zi = np.empty((n_sections, 2))
    scale = 1.0
    for section in range(n_sections):
        b = sos[section, :3]
        a = sos[section, 3:]
        zi[section] = scale * lfilter_zi(b, a)
        # If H(z) = B(z)/A(z) is this section's transfer function, then
        # b.sum()/a.sum() is H(1), the gain at omega=0.  That's the steady
        # state value of this section's step response.
        scale *= b.sum() / a.sum()

    return zi


def _filtfilt_gust(b, a, x, axis=-1, irlen=None):
    """Forward-backward IIR filter that uses Gustafsson's method.

    Apply the IIR filter defined by `(b,a)` to `x` twice, first forward
    then backward, using Gustafsson's initial conditions [1]_.

    Let ``y_fb`` be the result of filtering first forward and then backward,
    and let ``y_bf`` be the result of filtering first backward then forward.
    Gustafsson's method is to compute initial conditions for the forward
    pass and the backward pass such that ``y_fb == y_bf``.

    Parameters
    ----------
    b : scalar or 1-D ndarray
        Numerator coefficients of the filter.
    a : scalar or 1-D ndarray
        Denominator coefficients of the filter.
    x : ndarray
        Data to be filtered.
    axis : int, optional
        Axis of `x` to be filtered.  Default is -1.
    irlen : int or None, optional
        The length of the nonnegligible part of the impulse response.
        If `irlen` is None, or if the length of the signal is less than
        ``2 * irlen``, then no part of the impulse response is ignored.

    Returns
    -------
    y : ndarray
        The filtered data.
    x0 : ndarray
        Initial condition for the forward filter.
    x1 : ndarray
        Initial condition for the backward filter.

    Notes
    -----
    Typically the return values `x0` and `x1` are not needed by the
    caller.  The intended use of these return values is in unit tests.

    References
    ----------
    .. [1] F. Gustaffson. Determining the initial states in forward-backward
           filtering. Transactions on Signal Processing, 46(4):988-992, 1996.

    """
    # In the comments, "Gustafsson's paper" and [1] refer to the
    # paper referenced in the docstring.

    b = np.atleast_1d(b)
    a = np.atleast_1d(a)

    order = max(len(b), len(a)) - 1
    if order == 0:
        # The filter is just scalar multiplication, with no state.
        scale = (b[0] / a[0])**2
        y = scale * x
        return y, np.array([]), np.array([])

    if axis != -1 or axis != x.ndim - 1:
        # Move the axis containing the data to the end.
        x = np.swapaxes(x, axis, x.ndim - 1)

    # n is the number of samples in the data to be filtered.
    n = x.shape[-1]

    if irlen is None or n <= 2*irlen:
        m = n
    else:
        m = irlen

    # Create Obs, the observability matrix (called O in the paper).
    # This matrix can be interpreted as the operator that propagates
    # an arbitrary initial state to the output, assuming the input is
    # zero.
    # In Gustafsson's paper, the forward and backward filters are not
    # necessarily the same, so he has both O_f and O_b.  We use the same
    # filter in both directions, so we only need O. The same comment
    # applies to S below.
    Obs = np.zeros((m, order))
    zi = np.zeros(order)
    zi[0] = 1
    Obs[:, 0] = lfilter(b, a, np.zeros(m), zi=zi)[0]
    for k in range(1, order):
        Obs[k:, k] = Obs[:-k, 0]

    # Obsr is O^R (Gustafsson's notation for row-reversed O)
    Obsr = Obs[::-1]

    # Create S.  S is the matrix that applies the filter to the reversed
    # propagated initial conditions.  That is,
    #     out = S.dot(zi)
    # is the same as
    #     tmp, _ = lfilter(b, a, zeros(), zi=zi)  # Propagate ICs.
    #     out = lfilter(b, a, tmp[::-1])          # Reverse and filter.

    # Equations (5) & (6) of [1]
    S = lfilter(b, a, Obs[::-1], axis=0)

    # Sr is S^R (row-reversed S)
    Sr = S[::-1]

    # M is [(S^R - O), (O^R - S)]
    if m == n:
        M = np.hstack((Sr - Obs, Obsr - S))
    else:
        # Matrix described in section IV of [1].
        M = np.zeros((2*m, 2*order))
        M[:m, :order] = Sr - Obs
        M[m:, order:] = Obsr - S

    # Naive forward-backward and backward-forward filters.
    # These have large transients because the filters use zero initial
    # conditions.
    y_f = lfilter(b, a, x)
    y_fb = lfilter(b, a, y_f[..., ::-1])[..., ::-1]

    y_b = lfilter(b, a, x[..., ::-1])[..., ::-1]
    y_bf = lfilter(b, a, y_b)

    delta_y_bf_fb = y_bf - y_fb
    if m == n:
        delta = delta_y_bf_fb
    else:
        start_m = delta_y_bf_fb[..., :m]
        end_m = delta_y_bf_fb[..., -m:]
        delta = np.concatenate((start_m, end_m), axis=-1)

    # ic_opt holds the "optimal" initial conditions.
    # The following code computes the result shown in the formula
    # of the paper between equations (6) and (7).
    if delta.ndim == 1:
        ic_opt = linalg.lstsq(M, delta)[0]
    else:
        # Reshape delta so it can be used as an array of multiple
        # right-hand-sides in linalg.lstsq.
        delta2d = delta.reshape(-1, delta.shape[-1]).T
        ic_opt0 = linalg.lstsq(M, delta2d)[0].T
        ic_opt = ic_opt0.reshape(delta.shape[:-1] + (M.shape[-1],))

    # Now compute the filtered signal using equation (7) of [1].
    # First, form [S^R, O^R] and call it W.
    if m == n:
        W = np.hstack((Sr, Obsr))
    else:
        W = np.zeros((2*m, 2*order))
        W[:m, :order] = Sr
        W[m:, order:] = Obsr

    # Equation (7) of [1] says
    #     Y_fb^opt = Y_fb^0 + W * [x_0^opt; x_{N-1}^opt]
    # `wic` is (almost) the product on the right.
    # W has shape (m, 2*order), and ic_opt has shape (..., 2*order),
    # so we can't use W.dot(ic_opt).  Instead, we dot ic_opt with W.T,
    # so wic has shape (..., m).
    wic = ic_opt.dot(W.T)

    # `wic` is "almost" the product of W and the optimal ICs in equation
    # (7)--if we're using a truncated impulse response (m < n), `wic`
    # contains only the adjustments required for the ends of the signal.
    # Here we form y_opt, taking this into account if necessary.
    y_opt = y_fb
    if m == n:
        y_opt += wic
    else:
        y_opt[..., :m] += wic[..., :m]
        y_opt[..., -m:] += wic[..., -m:]

    x0 = ic_opt[..., :order]
    x1 = ic_opt[..., -order:]
    if axis != -1 or axis != x.ndim - 1:
        # Restore the data axis to its original position.
        x0 = np.swapaxes(x0, axis, x.ndim - 1)
        x1 = np.swapaxes(x1, axis, x.ndim - 1)
        y_opt = np.swapaxes(y_opt, axis, x.ndim - 1)

    return y_opt, x0, x1


def filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad',
             irlen=None):
    """
    A forward-backward filter.

    This function applies a linear filter twice, once forward and once
    backwards.  The combined filter has linear phase.

    The function provides options for handling the edges of the signal.

    When `method` is "pad", the function pads the data along the given axis
    in one of three ways: odd, even or constant.  The odd and even extensions
    have the corresponding symmetry about the end point of the data.  The
    constant extension extends the data with the values at the end points. On
    both the forward and backward passes, the initial condition of the
    filter is found by using `lfilter_zi` and scaling it by the end point of
    the extended data.

    When `method` is "gust", Gustafsson's method [1]_ is used.  Initial
    conditions are chosen for the forward and backward passes so that the
    forward-backward filter gives the same result as the backward-forward
    filter.

    Parameters
    ----------
    b : (N,) array_like
        The numerator coefficient vector of the filter.
    a : (N,) array_like
        The denominator coefficient vector of the filter.  If ``a[0]``
        is not 1, then both `a` and `b` are normalized by ``a[0]``.
    x : array_like
        The array of data to be filtered.
    axis : int, optional
        The axis of `x` to which the filter is applied.
        Default is -1.
    padtype : str or None, optional
        Must be 'odd', 'even', 'constant', or None.  This determines the
        type of extension to use for the padded signal to which the filter
        is applied.  If `padtype` is None, no padding is used.  The default
        is 'odd'.
    padlen : int or None, optional
        The number of elements by which to extend `x` at both ends of
        `axis` before applying the filter.  This value must be less than
        ``x.shape[axis] - 1``.  ``padlen=0`` implies no padding.
        The default value is ``3 * max(len(a), len(b))``.
    method : str, optional
        Determines the method for handling the edges of the signal, either
        "pad" or "gust".  When `method` is "pad", the signal is padded; the
        type of padding is determined by `padtype` and `padlen`, and `irlen`
        is ignored.  When `method` is "gust", Gustafsson's method is used,
        and `padtype` and `padlen` are ignored.
    irlen : int or None, optional
        When `method` is "gust", `irlen` specifies the length of the
        impulse response of the filter.  If `irlen` is None, no part
        of the impulse response is ignored.  For a long signal, specifying
        `irlen` can significantly improve the performance of the filter.

    Returns
    -------
    y : ndarray
        The filtered output with the same shape as `x`.

    See Also
    --------
    sosfiltfilt, lfilter_zi, lfilter, lfiltic, savgol_filter, sosfilt

    Notes
    -----
    The option to use Gustaffson's method was added in scipy version 0.16.0.

    References
    ----------
    .. [1] F. Gustaffson, "Determining the initial states in forward-backward
           filtering", Transactions on Signal Processing, Vol. 46, pp. 988-992,
           1996.

    Examples
    --------
    The examples will use several functions from `scipy.signal`.

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    First we create a one second signal that is the sum of two pure sine
    waves, with frequencies 5 Hz and 250 Hz, sampled at 2000 Hz.

    >>> t = np.linspace(0, 1.0, 2001)
    >>> xlow = np.sin(2 * np.pi * 5 * t)
    >>> xhigh = np.sin(2 * np.pi * 250 * t)
    >>> x = xlow + xhigh

    Now create a lowpass Butterworth filter with a cutoff of 0.125 times
    the Nyquist rate, or 125 Hz, and apply it to ``x`` with `filtfilt`.
    The result should be approximately ``xlow``, with no phase shift.

    >>> b, a = signal.butter(8, 0.125)
    >>> y = signal.filtfilt(b, a, x, padlen=150)
    >>> np.abs(y - xlow).max()
    9.1086182074789912e-06

    We get a fairly clean result for this artificial example because
    the odd extension is exact, and with the moderately long padding,
    the filter's transients have dissipated by the time the actual data
    is reached.  In general, transient effects at the edges are
    unavoidable.

    The following example demonstrates the option ``method="gust"``.

    First, create a filter.

    >>> b, a = signal.ellip(4, 0.01, 120, 0.125)  # Filter to be applied.
    >>> np.random.seed(123456)

    `sig` is a random input signal to be filtered.

    >>> n = 60
    >>> sig = np.random.randn(n)**3 + 3*np.random.randn(n).cumsum()

    Apply `filtfilt` to `sig`, once using the Gustafsson method, and
    once using padding, and plot the results for comparison.

    >>> fgust = signal.filtfilt(b, a, sig, method="gust")
    >>> fpad = signal.filtfilt(b, a, sig, padlen=50)
    >>> plt.plot(sig, 'k-', label='input')
    >>> plt.plot(fgust, 'b-', linewidth=4, label='gust')
    >>> plt.plot(fpad, 'c-', linewidth=1.5, label='pad')
    >>> plt.legend(loc='best')
    >>> plt.show()

    The `irlen` argument can be used to improve the performance
    of Gustafsson's method.

    Estimate the impulse response length of the filter.

    >>> z, p, k = signal.tf2zpk(b, a)
    >>> eps = 1e-9
    >>> r = np.max(np.abs(p))
    >>> approx_impulse_len = int(np.ceil(np.log(eps) / np.log(r)))
    >>> approx_impulse_len
    137

    Apply the filter to a longer signal, with and without the `irlen`
    argument.  The difference between `y1` and `y2` is small.  For long
    signals, using `irlen` gives a significant performance improvement.

    >>> x = np.random.randn(5000)
    >>> y1 = signal.filtfilt(b, a, x, method='gust')
    >>> y2 = signal.filtfilt(b, a, x, method='gust', irlen=approx_impulse_len)
    >>> print(np.max(np.abs(y1 - y2)))
    1.80056858312e-10

    """
    b = np.atleast_1d(b)
    a = np.atleast_1d(a)
    x = np.asarray(x)

    if method not in ["pad", "gust"]:
        raise ValueError("method must be 'pad' or 'gust'.")

    if method == "gust":
        y, z1, z2 = _filtfilt_gust(b, a, x, axis=axis, irlen=irlen)
        return y

    # method == "pad"
    edge, ext = _validate_pad(padtype, padlen, x, axis,
                              ntaps=max(len(a), len(b)))

    # Get the steady state of the filter's step response.
    zi = lfilter_zi(b, a)

    # Reshape zi and create x0 so that zi*x0 broadcasts
    # to the correct value for the 'zi' keyword argument
    # to lfilter.
    zi_shape = [1] * x.ndim
    zi_shape[axis] = zi.size
    zi = np.reshape(zi, zi_shape)
    x0 = axis_slice(ext, stop=1, axis=axis)

    # Forward filter.
    (y, zf) = lfilter(b, a, ext, axis=axis, zi=zi * x0)

    # Backward filter.
    # Create y0 so zi*y0 broadcasts appropriately.
    y0 = axis_slice(y, start=-1, axis=axis)
    (y, zf) = lfilter(b, a, axis_reverse(y, axis=axis), axis=axis, zi=zi * y0)

    # Reverse y.
    y = axis_reverse(y, axis=axis)

    if edge > 0:
        # Slice the actual signal from the extended signal.
        y = axis_slice(y, start=edge, stop=-edge, axis=axis)

    return y


def _validate_pad(padtype, padlen, x, axis, ntaps):
    """Helper to validate padding for filtfilt"""
    if padtype not in ['even', 'odd', 'constant', None]:
        raise ValueError(("Unknown value '%s' given to padtype.  padtype "
                          "must be 'even', 'odd', 'constant', or None.") %
                         padtype)

    if padtype is None:
        padlen = 0

    if padlen is None:
        # Original padding; preserved for backwards compatibility.
        edge = ntaps * 3
    else:
        edge = padlen

    # x's 'axis' dimension must be bigger than edge.
    if x.shape[axis] <= edge:
        raise ValueError("The length of the input vector x must be at least "
                         "padlen, which is %d." % edge)

    if padtype is not None and edge > 0:
        # Make an extension of length `edge` at each
        # end of the input array.
        if padtype == 'even':
            ext = even_ext(x, edge, axis=axis)
        elif padtype == 'odd':
            ext = odd_ext(x, edge, axis=axis)
        else:
            ext = const_ext(x, edge, axis=axis)
    else:
        ext = x
    return edge, ext


def sosfilt(sos, x, axis=-1, zi=None):
    """
    Filter data along one dimension using cascaded second-order sections

    Filter a data sequence, `x`, using a digital IIR filter defined by
    `sos`. This is implemented by performing `lfilter` for each
    second-order section.  See `lfilter` for details.

    Parameters
    ----------
    sos : array_like
        Array of second-order filter coefficients, must have shape
        ``(n_sections, 6)``. Each row corresponds to a second-order
        section, with the first three columns providing the numerator
        coefficients and the last three providing the denominator
        coefficients.
    x : array_like
        An N-dimensional input array.
    axis : int, optional
        The axis of the input data array along which to apply the
        linear filter. The filter is applied to each subarray along
        this axis.  Default is -1.
    zi : array_like, optional
        Initial conditions for the cascaded filter delays.  It is a (at
        least 2D) vector of shape ``(n_sections, ..., 2, ...)``, where
        ``..., 2, ...`` denotes the shape of `x`, but with ``x.shape[axis]``
        replaced by 2.  If `zi` is None or is not given then initial rest
        (i.e. all zeros) is assumed.
        Note that these initial conditions are *not* the same as the initial
        conditions given by `lfiltic` or `lfilter_zi`.

    Returns
    -------
    y : ndarray
        The output of the digital filter.
    zf : ndarray, optional
        If `zi` is None, this is not returned, otherwise, `zf` holds the
        final filter delay values.

    See Also
    --------
    zpk2sos, sos2zpk, sosfilt_zi, sosfiltfilt

    Notes
    -----
    The filter function is implemented as a series of second-order filters
    with direct-form II transposed structure. It is designed to minimize
    numerical precision errors for high-order filters.

    .. versionadded:: 0.16.0

    Examples
    --------
    Plot a 13th-order filter's impulse response using both `lfilter` and
    `sosfilt`, showing the instability that results from trying to do a
    13th-order filter in a single stage (the numerical error pushes some poles
    outside of the unit circle):

    >>> import matplotlib.pyplot as plt
    >>> from scipy import signal
    >>> b, a = signal.ellip(13, 0.009, 80, 0.05, output='ba')
    >>> sos = signal.ellip(13, 0.009, 80, 0.05, output='sos')
    >>> x = np.zeros(700)
    >>> x[0] = 1.
    >>> y_tf = signal.lfilter(b, a, x)
    >>> y_sos = signal.sosfilt(sos, x)
    >>> plt.plot(y_tf, 'r', label='TF')
    >>> plt.plot(y_sos, 'k', label='SOS')
    >>> plt.legend(loc='best')
    >>> plt.show()

    """
    x = np.asarray(x)
    sos, n_sections = _validate_sos(sos)
    use_zi = zi is not None
    if use_zi:
        zi = np.asarray(zi)
        x_zi_shape = list(x.shape)
        x_zi_shape[axis] = 2
        x_zi_shape = tuple([n_sections] + x_zi_shape)
        if zi.shape != x_zi_shape:
            raise ValueError('Invalid zi shape. With axis=%r, an input with '
                             'shape %r, and an sos array with %d sections, zi '
                             'must have shape %r, got %r.' %
                             (axis, x.shape, n_sections, x_zi_shape, zi.shape))
        zf = zeros_like(zi)

    for section in range(n_sections):
        if use_zi:
            x, zf[section] = lfilter(sos[section, :3], sos[section, 3:],
                                     x, axis, zi=zi[section])
        else:
            x = lfilter(sos[section, :3], sos[section, 3:], x, axis)
    out = (x, zf) if use_zi else x
    return out


def sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None):
    """
    A forward-backward filter using cascaded second-order sections.

    See `filtfilt` for more complete information about this method.

    Parameters
    ----------
    sos : array_like
        Array of second-order filter coefficients, must have shape
        ``(n_sections, 6)``. Each row corresponds to a second-order
        section, with the first three columns providing the numerator
        coefficients and the last three providing the denominator
        coefficients.
    x : array_like
        The array of data to be filtered.
    axis : int, optional
        The axis of `x` to which the filter is applied.
        Default is -1.
    padtype : str or None, optional
        Must be 'odd', 'even', 'constant', or None.  This determines the
        type of extension to use for the padded signal to which the filter
        is applied.  If `padtype` is None, no padding is used.  The default
        is 'odd'.
    padlen : int or None, optional
        The number of elements by which to extend `x` at both ends of
        `axis` before applying the filter.  This value must be less than
        ``x.shape[axis] - 1``.  ``padlen=0`` implies no padding.
        The default value is::

            3 * (2 * len(sos) + 1 - min((sos[:, 2] == 0).sum(),
                                        (sos[:, 5] == 0).sum()))

        The extra subtraction at the end attempts to compensate for poles
        and zeros at the origin (e.g. for odd-order filters) to yield
        equivalent estimates of `padlen` to those of `filtfilt` for
        second-order section filters built with `scipy.signal` functions.

    Returns
    -------
    y : ndarray
        The filtered output with the same shape as `x`.

    See Also
    --------
    filtfilt, sosfilt, sosfilt_zi

    Notes
    -----
    .. versionadded:: 0.18.0
    """
    sos, n_sections = _validate_sos(sos)

    # `method` is "pad"...
    ntaps = 2 * n_sections + 1
    ntaps -= min((sos[:, 2] == 0).sum(), (sos[:, 5] == 0).sum())
    edge, ext = _validate_pad(padtype, padlen, x, axis,
                              ntaps=ntaps)

    # These steps follow the same form as filtfilt with modifications
    zi = sosfilt_zi(sos)  # shape (n_sections, 2) --> (n_sections, ..., 2, ...)
    zi_shape = [1] * x.ndim
    zi_shape[axis] = 2
    zi.shape = [n_sections] + zi_shape
    x_0 = axis_slice(ext, stop=1, axis=axis)
    (y, zf) = sosfilt(sos, ext, axis=axis, zi=zi * x_0)
    y_0 = axis_slice(y, start=-1, axis=axis)
    (y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=zi * y_0)
    y = axis_reverse(y, axis=axis)
    if edge > 0:
        y = axis_slice(y, start=edge, stop=-edge, axis=axis)
    return y


def _validate_sos(sos):
    """Helper to validate a SOS input"""
    sos = atleast_2d(sos)
    if sos.ndim != 2:
        raise ValueError('sos array must be 2D')
    n_sections, m = sos.shape
    if m != 6:
        raise ValueError('sos array must be shape (n_sections, 6)')
    if not (sos[:, 3] == 1).all():
        raise ValueError('sos[:, 3] should be all ones')
    return sos, n_sections


def decimate(x, q, n=None, ftype='iir', axis=-1, zero_phase=None):
    """
    Downsample the signal after applying an anti-aliasing filter.

    By default, an order 8 Chebyshev type I filter is used. A 30 point FIR
    filter with Hamming window is used if `ftype` is 'fir'.

    Parameters
    ----------
    x : ndarray
        The signal to be downsampled, as an N-dimensional array.
    q : int
        The downsampling factor. For downsampling factors higher than 13, it is
        recommended to call `decimate` multiple times.
    n : int, optional
        The order of the filter (1 less than the length for 'fir'). Defaults to
        8 for 'iir' and 30 for 'fir'.
    ftype : str {'iir', 'fir'} or ``dlti`` instance, optional
        If 'iir' or 'fir', specifies the type of lowpass filter. If an instance
        of an `dlti` object, uses that object to filter before downsampling.
    axis : int, optional
        The axis along which to decimate.
    zero_phase : bool, optional
        Prevent phase shift by filtering with `filtfilt` instead of `lfilter`
        when using an IIR filter, and shifting the outputs back by the filter's
        group delay when using an FIR filter. A value of ``True`` is
        recommended, since a phase shift is generally not desired. Using
        ``None`` defaults to ``False`` for backwards compatibility. This
        default will change to ``True`` in a future release, so it is best to
        set this argument explicitly.

        .. versionadded:: 0.18.0

    Returns
    -------
    y : ndarray
        The down-sampled signal.

    See Also
    --------
    resample : Resample up or down using the FFT method.
    resample_poly : Resample using polyphase filtering and an FIR filter.

    Notes
    -----
    The ``zero_phase`` keyword was added in 0.18.0.
    The possibility to use instances of ``dlti`` as ``ftype`` was added in
    0.18.0.
    """

    if not isinstance(q, int):
        raise TypeError("q must be an integer")

    if n is not None and not isinstance(n, int):
        raise TypeError("n must be an integer")

    if ftype == 'fir':
        if n is None:
            n = 30
        system = dlti(firwin(n+1, 1. / q, window='hamming'), 1.)
    elif ftype == 'iir':
        if n is None:
            n = 8
        system = dlti(*cheby1(n, 0.05, 0.8 / q))
    elif isinstance(ftype, dlti):
        system = ftype._as_tf()  # Avoids copying if already in TF form
        n = np.max((system.num.size, system.den.size)) - 1
    else:
        raise ValueError('invalid ftype')

    if zero_phase is None:
        warnings.warn(" Note: Decimate's zero_phase keyword argument will "
                      "default to True in a future release. Until then, "
                      "decimate defaults to one-way filtering for backwards "
                      "compatibility. Ideally, always set this argument "
                      "explicitly.", FutureWarning)
        zero_phase = False

    sl = [slice(None)] * x.ndim

    if len(system.den) == 1:  # FIR case
        if zero_phase:
            y = resample_poly(x, 1, q, axis=axis, window=system.num)
        else:
            # upfirdn is generally faster than lfilter by a factor equal to the
            # downsampling factor, since it only calculates the needed outputs
            n_out = x.shape[axis] // q + bool(x.shape[axis] % q)
            y = upfirdn(system.num, x, up=1, down=q, axis=axis)
            sl[axis] = slice(None, n_out, None)

    else:  # IIR case
        if zero_phase:
            y = filtfilt(system.num, system.den, x, axis=axis)
        else:
            y = lfilter(system.num, system.den, x, axis=axis)
        sl[axis] = slice(None, None, q)

    return y[sl]