1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
|
"""Tools for spectral analysis.
"""
from __future__ import division, print_function, absolute_import
import numpy as np
from scipy import fftpack
from . import signaltools
from .windows import get_window
from ._spectral import lombscargle
import warnings
from scipy._lib.six import string_types
__all__ = ['periodogram', 'welch', 'lombscargle', 'csd', 'coherence',
'spectrogram']
def periodogram(x, fs=1.0, window=None, nfft=None, detrend='constant',
return_onesided=True, scaling='density', axis=-1):
"""
Estimate power spectral density using a periodogram.
Parameters
----------
x : array_like
Time series of measurement values
fs : float, optional
Sampling frequency of the `x` time series. Defaults to 1.0.
window : str or tuple or array_like, optional
Desired window to use. See `get_window` for a list of windows and
required parameters. If `window` is an array it will be used
directly as the window. Defaults to None; equivalent to 'boxcar'.
nfft : int, optional
Length of the FFT used. If None the length of `x` will be used.
detrend : str or function or False, optional
Specifies how to detrend `x` prior to computing the spectrum. If
`detrend` is a string, it is passed as the ``type`` argument to
`detrend`. If it is a function, it should return a detrended array.
If `detrend` is False, no detrending is done. Defaults to 'constant'.
return_onesided : bool, optional
If True, return a one-sided spectrum for real data. If False return
a two-sided spectrum. Note that for complex data, a two-sided
spectrum is always returned.
scaling : { 'density', 'spectrum' }, optional
Selects between computing the power spectral density ('density')
where `Pxx` has units of V**2/Hz and computing the power spectrum
('spectrum') where `Pxx` has units of V**2, if `x` is measured in V
and fs is measured in Hz. Defaults to 'density'
axis : int, optional
Axis along which the periodogram is computed; the default is over
the last axis (i.e. ``axis=-1``).
Returns
-------
f : ndarray
Array of sample frequencies.
Pxx : ndarray
Power spectral density or power spectrum of `x`.
Notes
-----
.. versionadded:: 0.12.0
See Also
--------
welch: Estimate power spectral density using Welch's method
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
Examples
--------
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> np.random.seed(1234)
Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by
0.001 V**2/Hz of white noise sampled at 10 kHz.
>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
Compute and plot the power spectral density.
>>> f, Pxx_den = signal.periodogram(x, fs)
>>> plt.semilogy(f, Pxx_den)
>>> plt.ylim([1e-7, 1e2])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD [V**2/Hz]')
>>> plt.show()
If we average the last half of the spectral density, to exclude the
peak, we can recover the noise power on the signal.
>>> np.mean(Pxx_den[256:])
0.0018156616014838548
Now compute and plot the power spectrum.
>>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')
>>> plt.figure()
>>> plt.semilogy(f, np.sqrt(Pxx_spec))
>>> plt.ylim([1e-4, 1e1])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Linear spectrum [V RMS]')
>>> plt.show()
The peak height in the power spectrum is an estimate of the RMS amplitude.
>>> np.sqrt(Pxx_spec.max())
2.0077340678640727
"""
x = np.asarray(x)
if x.size == 0:
return np.empty(x.shape), np.empty(x.shape)
if window is None:
window = 'boxcar'
if nfft is None:
nperseg = x.shape[axis]
elif nfft == x.shape[axis]:
nperseg = nfft
elif nfft > x.shape[axis]:
nperseg = x.shape[axis]
elif nfft < x.shape[axis]:
s = [np.s_[:]]*len(x.shape)
s[axis] = np.s_[:nfft]
x = x[s]
nperseg = nfft
nfft = None
return welch(x, fs, window, nperseg, 0, nfft, detrend, return_onesided,
scaling, axis)
def welch(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None,
detrend='constant', return_onesided=True, scaling='density', axis=-1):
"""
Estimate power spectral density using Welch's method.
Welch's method [1]_ computes an estimate of the power spectral density
by dividing the data into overlapping segments, computing a modified
periodogram for each segment and averaging the periodograms.
Parameters
----------
x : array_like
Time series of measurement values
fs : float, optional
Sampling frequency of the `x` time series. Defaults to 1.0.
window : str or tuple or array_like, optional
Desired window to use. See `get_window` for a list of windows and
required parameters. If `window` is array_like it will be used
directly as the window and its length will be used for nperseg.
Defaults to 'hann'.
nperseg : int, optional
Length of each segment. Defaults to 256.
noverlap : int, optional
Number of points to overlap between segments. If None,
``noverlap = nperseg // 2``. Defaults to None.
nfft : int, optional
Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is `nperseg`. Defaults to None.
detrend : str or function or False, optional
Specifies how to detrend each segment. If `detrend` is a string,
it is passed as the ``type`` argument to `detrend`. If it is a
function, it takes a segment and returns a detrended segment.
If `detrend` is False, no detrending is done. Defaults to 'constant'.
return_onesided : bool, optional
If True, return a one-sided spectrum for real data. If False return
a two-sided spectrum. Note that for complex data, a two-sided
spectrum is always returned.
scaling : { 'density', 'spectrum' }, optional
Selects between computing the power spectral density ('density')
where `Pxx` has units of V**2/Hz and computing the power spectrum
('spectrum') where `Pxx` has units of V**2, if `x` is measured in V
and fs is measured in Hz. Defaults to 'density'
axis : int, optional
Axis along which the periodogram is computed; the default is over
the last axis (i.e. ``axis=-1``).
Returns
-------
f : ndarray
Array of sample frequencies.
Pxx : ndarray
Power spectral density or power spectrum of x.
See Also
--------
periodogram: Simple, optionally modified periodogram
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
Notes
-----
An appropriate amount of overlap will depend on the choice of window
and on your requirements. For the default 'hann' window an
overlap of 50% is a reasonable trade off between accurately estimating
the signal power, while not over counting any of the data. Narrower
windows may require a larger overlap.
If `noverlap` is 0, this method is equivalent to Bartlett's method [2]_.
.. versionadded:: 0.12.0
References
----------
.. [1] P. Welch, "The use of the fast Fourier transform for the
estimation of power spectra: A method based on time averaging
over short, modified periodograms", IEEE Trans. Audio
Electroacoust. vol. 15, pp. 70-73, 1967.
.. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
Biometrika, vol. 37, pp. 1-16, 1950.
Examples
--------
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> np.random.seed(1234)
Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by
0.001 V**2/Hz of white noise sampled at 10 kHz.
>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
Compute and plot the power spectral density.
>>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
>>> plt.semilogy(f, Pxx_den)
>>> plt.ylim([0.5e-3, 1])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD [V**2/Hz]')
>>> plt.show()
If we average the last half of the spectral density, to exclude the
peak, we can recover the noise power on the signal.
>>> np.mean(Pxx_den[256:])
0.0009924865443739191
Now compute and plot the power spectrum.
>>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum')
>>> plt.figure()
>>> plt.semilogy(f, np.sqrt(Pxx_spec))
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Linear spectrum [V RMS]')
>>> plt.show()
The peak height in the power spectrum is an estimate of the RMS amplitude.
>>> np.sqrt(Pxx_spec.max())
2.0077340678640727
"""
freqs, Pxx = csd(x, x, fs, window, nperseg, noverlap, nfft, detrend,
return_onesided, scaling, axis)
return freqs, Pxx.real
def csd(x, y, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None,
detrend='constant', return_onesided=True, scaling='density', axis=-1):
"""
Estimate the cross power spectral density, Pxy, using Welch's method.
Parameters
----------
x : array_like
Time series of measurement values
y : array_like
Time series of measurement values
fs : float, optional
Sampling frequency of the `x` and `y` time series. Defaults to 1.0.
window : str or tuple or array_like, optional
Desired window to use. See `get_window` for a list of windows and
required parameters. If `window` is array_like it will be used
directly as the window and its length will be used for nperseg.
Defaults to 'hann'.
nperseg : int, optional
Length of each segment. Defaults to 256.
noverlap: int, optional
Number of points to overlap between segments. If None,
``noverlap = nperseg // 2``. Defaults to None.
nfft : int, optional
Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is `nperseg`. Defaults to None.
detrend : str or function or False, optional
Specifies how to detrend each segment. If `detrend` is a string,
it is passed as the ``type`` argument to `detrend`. If it is a
function, it takes a segment and returns a detrended segment.
If `detrend` is False, no detrending is done. Defaults to 'constant'.
return_onesided : bool, optional
If True, return a one-sided spectrum for real data. If False return
a two-sided spectrum. Note that for complex data, a two-sided
spectrum is always returned.
scaling : { 'density', 'spectrum' }, optional
Selects between computing the cross spectral density ('density')
where `Pxy` has units of V**2/Hz and computing the cross spectrum
('spectrum') where `Pxy` has units of V**2, if `x` and `y` are
measured in V and fs is measured in Hz. Defaults to 'density'
axis : int, optional
Axis along which the CSD is computed for both inputs; the default is
over the last axis (i.e. ``axis=-1``).
Returns
-------
f : ndarray
Array of sample frequencies.
Pxy : ndarray
Cross spectral density or cross power spectrum of x,y.
See Also
--------
periodogram: Simple, optionally modified periodogram
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
welch: Power spectral density by Welch's method. [Equivalent to csd(x,x)]
coherence: Magnitude squared coherence by Welch's method.
Notes
--------
By convention, Pxy is computed with the conjugate FFT of X multiplied by
the FFT of Y.
If the input series differ in length, the shorter series will be
zero-padded to match.
An appropriate amount of overlap will depend on the choice of window
and on your requirements. For the default 'hann' window an
overlap of 50\% is a reasonable trade off between accurately estimating
the signal power, while not over counting any of the data. Narrower
windows may require a larger overlap.
.. versionadded:: 0.16.0
References
----------
.. [1] P. Welch, "The use of the fast Fourier transform for the
estimation of power spectra: A method based on time averaging
over short, modified periodograms", IEEE Trans. Audio
Electroacoust. vol. 15, pp. 70-73, 1967.
.. [2] Rabiner, Lawrence R., and B. Gold. "Theory and Application of
Digital Signal Processing" Prentice-Hall, pp. 414-419, 1975
Examples
--------
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
Generate two test signals with some common features.
>>> fs = 10e3
>>> N = 1e5
>>> amp = 20
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> b, a = signal.butter(2, 0.25, 'low')
>>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
>>> y = signal.lfilter(b, a, x)
>>> x += amp*np.sin(2*np.pi*freq*time)
>>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)
Compute and plot the magnitude of the cross spectral density.
>>> f, Pxy = signal.csd(x, y, fs, nperseg=1024)
>>> plt.semilogy(f, np.abs(Pxy))
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('CSD [V**2/Hz]')
>>> plt.show()
"""
freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap, nfft,
detrend, return_onesided, scaling, axis,
mode='psd')
# Average over windows.
if len(Pxy.shape) >= 2 and Pxy.size > 0:
if Pxy.shape[-1] > 1:
Pxy = Pxy.mean(axis=-1)
else:
Pxy = np.reshape(Pxy, Pxy.shape[:-1])
return freqs, Pxy
def spectrogram(x, fs=1.0, window=('tukey',.25), nperseg=256, noverlap=None,
nfft=None, detrend='constant', return_onesided=True,
scaling='density', axis=-1, mode='psd'):
"""
Compute a spectrogram with consecutive Fourier transforms.
Spectrograms can be used as a way of visualizing the change of a
nonstationary signal's frequency content over time.
Parameters
----------
x : array_like
Time series of measurement values
fs : float, optional
Sampling frequency of the `x` time series. Defaults to 1.0.
window : str or tuple or array_like, optional
Desired window to use. See `get_window` for a list of windows and
required parameters. If `window` is array_like it will be used
directly as the window and its length will be used for nperseg.
Defaults to a Tukey window with shape parameter of 0.25.
nperseg : int, optional
Length of each segment. Defaults to 256.
noverlap : int, optional
Number of points to overlap between segments. If None,
``noverlap = nperseg // 8``. Defaults to None.
nfft : int, optional
Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is `nperseg`. Defaults to None.
detrend : str or function or False, optional
Specifies how to detrend each segment. If `detrend` is a string,
it is passed as the ``type`` argument to `detrend`. If it is a
function, it takes a segment and returns a detrended segment.
If `detrend` is False, no detrending is done. Defaults to 'constant'.
return_onesided : bool, optional
If True, return a one-sided spectrum for real data. If False return
a two-sided spectrum. Note that for complex data, a two-sided
spectrum is always returned.
scaling : { 'density', 'spectrum' }, optional
Selects between computing the power spectral density ('density')
where `Pxx` has units of V**2/Hz and computing the power spectrum
('spectrum') where `Pxx` has units of V**2, if `x` is measured in V
and fs is measured in Hz. Defaults to 'density'
axis : int, optional
Axis along which the spectrogram is computed; the default is over
the last axis (i.e. ``axis=-1``).
mode : str, optional
Defines what kind of return values are expected. Options are ['psd',
'complex', 'magnitude', 'angle', 'phase'].
Returns
-------
f : ndarray
Array of sample frequencies.
t : ndarray
Array of segment times.
Sxx : ndarray
Spectrogram of x. By default, the last axis of Sxx corresponds to the
segment times.
See Also
--------
periodogram: Simple, optionally modified periodogram
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
welch: Power spectral density by Welch's method.
csd: Cross spectral density by Welch's method.
Notes
-----
An appropriate amount of overlap will depend on the choice of window
and on your requirements. In contrast to welch's method, where the entire
data stream is averaged over, one may wish to use a smaller overlap (or
perhaps none at all) when computing a spectrogram, to maintain some
statistical independence between individual segments.
.. versionadded:: 0.16.0
References
----------
.. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time
Signal Processing", Prentice Hall, 1999.
Examples
--------
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
Generate a test signal, a 2 Vrms sine wave whose frequency linearly changes
with time from 1kHz to 2kHz, corrupted by 0.001 V**2/Hz of white noise
sampled at 10 kHz.
>>> fs = 10e3
>>> N = 1e5
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> freq = np.linspace(1e3, 2e3, N)
>>> x = amp * np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
Compute and plot the spectrogram.
>>> f, t, Sxx = signal.spectrogram(x, fs)
>>> plt.pcolormesh(t, f, Sxx)
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()
"""
# Less overlap than welch, so samples are more statisically independent
if noverlap is None:
noverlap = nperseg // 8
freqs, time, Pxy = _spectral_helper(x, x, fs, window, nperseg, noverlap,
nfft, detrend, return_onesided, scaling,
axis, mode=mode)
return freqs, time, Pxy
def coherence(x, y, fs=1.0, window='hann', nperseg=256, noverlap=None,
nfft=None, detrend='constant', axis=-1):
"""
Estimate the magnitude squared coherence estimate, Cxy, of discrete-time
signals X and Y using Welch's method.
Cxy = abs(Pxy)**2/(Pxx*Pyy), where Pxx and Pyy are power spectral density
estimates of X and Y, and Pxy is the cross spectral density estimate of X
and Y.
Parameters
----------
x : array_like
Time series of measurement values
y : array_like
Time series of measurement values
fs : float, optional
Sampling frequency of the `x` and `y` time series. Defaults to 1.0.
window : str or tuple or array_like, optional
Desired window to use. See `get_window` for a list of windows and
required parameters. If `window` is array_like it will be used
directly as the window and its length will be used for nperseg.
Defaults to 'hann'.
nperseg : int, optional
Length of each segment. Defaults to 256.
noverlap: int, optional
Number of points to overlap between segments. If None,
``noverlap = nperseg // 2``. Defaults to None.
nfft : int, optional
Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is `nperseg`. Defaults to None.
detrend : str or function or False, optional
Specifies how to detrend each segment. If `detrend` is a string,
it is passed as the ``type`` argument to `detrend`. If it is a
function, it takes a segment and returns a detrended segment.
If `detrend` is False, no detrending is done. Defaults to 'constant'.
axis : int, optional
Axis along which the coherence is computed for both inputs; the default is
over the last axis (i.e. ``axis=-1``).
Returns
-------
f : ndarray
Array of sample frequencies.
Cxy : ndarray
Magnitude squared coherence of x and y.
See Also
--------
periodogram: Simple, optionally modified periodogram
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
welch: Power spectral density by Welch's method.
csd: Cross spectral density by Welch's method.
Notes
--------
An appropriate amount of overlap will depend on the choice of window
and on your requirements. For the default 'hann' window an
overlap of 50\% is a reasonable trade off between accurately estimating
the signal power, while not over counting any of the data. Narrower
windows may require a larger overlap.
.. versionadded:: 0.16.0
References
----------
.. [1] P. Welch, "The use of the fast Fourier transform for the
estimation of power spectra: A method based on time averaging
over short, modified periodograms", IEEE Trans. Audio
Electroacoust. vol. 15, pp. 70-73, 1967.
.. [2] Stoica, Petre, and Randolph Moses, "Spectral Analysis of Signals"
Prentice Hall, 2005
Examples
--------
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
Generate two test signals with some common features.
>>> fs = 10e3
>>> N = 1e5
>>> amp = 20
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> b, a = signal.butter(2, 0.25, 'low')
>>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
>>> y = signal.lfilter(b, a, x)
>>> x += amp*np.sin(2*np.pi*freq*time)
>>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)
Compute and plot the coherence.
>>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024)
>>> plt.semilogy(f, Cxy)
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Coherence')
>>> plt.show()
"""
freqs, Pxx = welch(x, fs, window, nperseg, noverlap, nfft, detrend,
axis=axis)
_, Pyy = welch(y, fs, window, nperseg, noverlap, nfft, detrend, axis=axis)
_, Pxy = csd(x, y, fs, window, nperseg, noverlap, nfft, detrend, axis=axis)
Cxy = np.abs(Pxy)**2 / Pxx / Pyy
return freqs, Cxy
def _spectral_helper(x, y, fs=1.0, window='hann', nperseg=256,
noverlap=None, nfft=None, detrend='constant',
return_onesided=True, scaling='spectrum', axis=-1,
mode='psd'):
"""
Calculate various forms of windowed FFTs for PSD, CSD, etc.
This is a helper function that implements the commonality between the
psd, csd, and spectrogram functions. It is not designed to be called
externally. The windows are not averaged over; the result from each window
is returned.
Parameters
---------
x : array_like
Array or sequence containing the data to be analyzed.
y : array_like
Array or sequence containing the data to be analyzed. If this is
the same object in memoery as x (i.e. _spectral_helper(x, x, ...)),
the extra computations are spared.
fs : float, optional
Sampling frequency of the time series. Defaults to 1.0.
window : str or tuple or array_like, optional
Desired window to use. See `get_window` for a list of windows and
required parameters. If `window` is array_like it will be used
directly as the window and its length will be used for nperseg.
Defaults to 'hann'.
nperseg : int, optional
Length of each segment. Defaults to 256.
noverlap : int, optional
Number of points to overlap between segments. If None,
``noverlap = nperseg // 2``. Defaults to None.
nfft : int, optional
Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is `nperseg`. Defaults to None.
detrend : str or function or False, optional
Specifies how to detrend each segment. If `detrend` is a string,
it is passed as the ``type`` argument to `detrend`. If it is a
function, it takes a segment and returns a detrended segment.
If `detrend` is False, no detrending is done. Defaults to 'constant'.
return_onesided : bool, optional
If True, return a one-sided spectrum for real data. If False return
a two-sided spectrum. Note that for complex data, a two-sided
spectrum is always returned.
scaling : { 'density', 'spectrum' }, optional
Selects between computing the cross spectral density ('density')
where `Pxy` has units of V**2/Hz and computing the cross spectrum
('spectrum') where `Pxy` has units of V**2, if `x` and `y` are
measured in V and fs is measured in Hz. Defaults to 'density'
axis : int, optional
Axis along which the periodogram is computed; the default is over
the last axis (i.e. ``axis=-1``).
mode : str, optional
Defines what kind of return values are expected. Options are ['psd',
'complex', 'magnitude', 'angle', 'phase'].
Returns
-------
freqs : ndarray
Array of sample frequencies.
t : ndarray
Array of times corresponding to each data segment
result : ndarray
Array of output data, contents dependant on *mode* kwarg.
References
----------
.. [1] Stack Overflow, "Rolling window for 1D arrays in Numpy?",
http://stackoverflow.com/a/6811241
.. [2] Stack Overflow, "Using strides for an efficient moving average
filter", http://stackoverflow.com/a/4947453
Notes
-----
Adapted from matplotlib.mlab
.. versionadded:: 0.16.0
"""
if mode not in ['psd', 'complex', 'magnitude', 'angle', 'phase']:
raise ValueError("Unknown value for mode %s, must be one of: "
"'default', 'psd', 'complex', "
"'magnitude', 'angle', 'phase'" % mode)
# If x and y are the same object we can save ourselves some computation.
same_data = y is x
if not same_data and mode != 'psd':
raise ValueError("x and y must be equal if mode is not 'psd'")
axis = int(axis)
# Ensure we have np.arrays, get outdtype
x = np.asarray(x)
if not same_data:
y = np.asarray(y)
outdtype = np.result_type(x,y,np.complex64)
else:
outdtype = np.result_type(x,np.complex64)
if not same_data:
# Check if we can broadcast the outer axes together
xouter = list(x.shape)
youter = list(y.shape)
xouter.pop(axis)
youter.pop(axis)
try:
outershape = np.broadcast(np.empty(xouter), np.empty(youter)).shape
except ValueError:
raise ValueError('x and y cannot be broadcast together.')
if same_data:
if x.size == 0:
return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape)
else:
if x.size == 0 or y.size == 0:
outshape = outershape + (min([x.shape[axis], y.shape[axis]]),)
emptyout = np.rollaxis(np.empty(outshape), -1, axis)
return emptyout, emptyout, emptyout
if x.ndim > 1:
if axis != -1:
x = np.rollaxis(x, axis, len(x.shape))
if not same_data and y.ndim > 1:
y = np.rollaxis(y, axis, len(y.shape))
# Check if x and y are the same length, zero-pad if neccesary
if not same_data:
if x.shape[-1] != y.shape[-1]:
if x.shape[-1] < y.shape[-1]:
pad_shape = list(x.shape)
pad_shape[-1] = y.shape[-1] - x.shape[-1]
x = np.concatenate((x, np.zeros(pad_shape)), -1)
else:
pad_shape = list(y.shape)
pad_shape[-1] = x.shape[-1] - y.shape[-1]
y = np.concatenate((y, np.zeros(pad_shape)), -1)
# X and Y are same length now, can test nperseg with either
if x.shape[-1] < nperseg:
warnings.warn('nperseg = {0:d}, is greater than input length = {1:d}, '
'using nperseg = {1:d}'.format(nperseg, x.shape[-1]))
nperseg = x.shape[-1]
nperseg = int(nperseg)
if nperseg < 1:
raise ValueError('nperseg must be a positive integer')
if nfft is None:
nfft = nperseg
elif nfft < nperseg:
raise ValueError('nfft must be greater than or equal to nperseg.')
else:
nfft = int(nfft)
if noverlap is None:
noverlap = nperseg//2
elif noverlap >= nperseg:
raise ValueError('noverlap must be less than nperseg.')
else:
noverlap = int(noverlap)
# Handle detrending and window functions
if not detrend:
def detrend_func(d):
return d
elif not hasattr(detrend, '__call__'):
def detrend_func(d):
return signaltools.detrend(d, type=detrend, axis=-1)
elif axis != -1:
# Wrap this function so that it receives a shape that it could
# reasonably expect to receive.
def detrend_func(d):
d = np.rollaxis(d, -1, axis)
d = detrend(d)
return np.rollaxis(d, axis, len(d.shape))
else:
detrend_func = detrend
if isinstance(window, string_types) or type(window) is tuple:
win = get_window(window, nperseg)
else:
win = np.asarray(window)
if len(win.shape) != 1:
raise ValueError('window must be 1-D')
if win.shape[0] != nperseg:
raise ValueError('window must have length of nperseg')
if np.result_type(win,np.complex64) != outdtype:
win = win.astype(outdtype)
if mode == 'psd':
if scaling == 'density':
scale = 1.0 / (fs * (win*win).sum())
elif scaling == 'spectrum':
scale = 1.0 / win.sum()**2
else:
raise ValueError('Unknown scaling: %r' % scaling)
else:
scale = 1
if return_onesided is True:
if np.iscomplexobj(x):
sides = 'twosided'
else:
sides = 'onesided'
if not same_data:
if np.iscomplexobj(y):
sides = 'twosided'
else:
sides = 'twosided'
if sides == 'twosided':
num_freqs = nfft
elif sides == 'onesided':
if nfft % 2:
num_freqs = (nfft + 1)//2
else:
num_freqs = nfft//2 + 1
# Perform the windowed FFTs
result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft)
result = result[..., :num_freqs]
freqs = fftpack.fftfreq(nfft, 1/fs)[:num_freqs]
if not same_data:
# All the same operations on the y data
result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft)
result_y = result_y[..., :num_freqs]
result = np.conjugate(result) * result_y
elif mode == 'psd':
result = np.conjugate(result) * result
elif mode == 'magnitude':
result = np.absolute(result)
elif mode == 'angle' or mode == 'phase':
result = np.angle(result)
elif mode == 'complex':
pass
result *= scale
if sides == 'onesided':
if nfft % 2:
result[...,1:] *= 2
else:
# Last point is unpaired Nyquist freq point, don't double
result[...,1:-1] *= 2
t = np.arange(nperseg/2, x.shape[-1] - nperseg/2 + 1, nperseg - noverlap)/float(fs)
if sides != 'twosided' and not nfft % 2:
# get the last value correctly, it is negative otherwise
freqs[-1] *= -1
# we unwrap the phase here to handle the onesided vs. twosided case
if mode == 'phase':
result = np.unwrap(result, axis=-1)
result = result.astype(outdtype)
# All imaginary parts are zero anyways
if same_data and mode != 'complex':
result = result.real
# Output is going to have new last axis for window index
if axis != -1:
# Specify as positive axis index
if axis < 0:
axis = len(result.shape)-1-axis
# Roll frequency axis back to axis where the data came from
result = np.rollaxis(result, -1, axis)
else:
# Make sure window/time index is last axis
result = np.rollaxis(result, -1, -2)
return freqs, t, result
def _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft):
"""
Calculate windowed FFT, for internal use by scipy.signal._spectral_helper
This is a helper function that does the main FFT calculation for
_spectral helper. All input valdiation is performed there, and the data
axis is assumed to be the last axis of x. It is not designed to be called
externally. The windows are not averaged over; the result from each window
is returned.
Returns
-------
result : ndarray
Array of FFT data
References
----------
.. [1] Stack Overflow, "Repeat NumPy array without replicating data?",
http://stackoverflow.com/a/5568169
Notes
-----
Adapted from matplotlib.mlab
.. versionadded:: 0.16.0
"""
# Created strided array of data segments
if nperseg == 1 and noverlap == 0:
result = x[..., np.newaxis]
else:
step = nperseg - noverlap
shape = x.shape[:-1]+((x.shape[-1]-noverlap)//step, nperseg)
strides = x.strides[:-1]+(step*x.strides[-1], x.strides[-1])
result = np.lib.stride_tricks.as_strided(x, shape=shape,
strides=strides)
# Detrend each data segment individually
result = detrend_func(result)
# Apply window by multiplication
result = win * result
# Perform the fft. Acts on last axis by default. Zero-pads automatically
result = fftpack.fft(result, n=nfft)
return result
|