File: test_peak_finding.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (300 lines) | stat: -rw-r--r-- 10,955 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from __future__ import division, print_function, absolute_import

import copy

import numpy as np
from numpy.testing import (TestCase, run_module_suite, assert_equal,
    assert_array_equal, assert_)
from scipy.signal._peak_finding import (argrelmax, argrelmin,
    find_peaks_cwt, _identify_ridge_lines)
from scipy._lib.six import xrange


def _gen_gaussians(center_locs, sigmas, total_length):
    xdata = np.arange(0, total_length).astype(float)
    out_data = np.zeros(total_length, dtype=float)
    for ind, sigma in enumerate(sigmas):
        tmp = (xdata - center_locs[ind]) / sigma
        out_data += np.exp(-(tmp**2))
    return out_data


def _gen_gaussians_even(sigmas, total_length):
    num_peaks = len(sigmas)
    delta = total_length / (num_peaks + 1)
    center_locs = np.linspace(delta, total_length - delta, num=num_peaks).astype(int)
    out_data = _gen_gaussians(center_locs, sigmas, total_length)
    return out_data, center_locs


def _gen_ridge_line(start_locs, max_locs, length, distances, gaps):
    """
    Generate coordinates for a ridge line.

    Will be a series of coordinates, starting a start_loc (length 2).
    The maximum distance between any adjacent columns will be
    `max_distance`, the max distance between adjacent rows
    will be `map_gap'.

    `max_locs` should be the size of the intended matrix. The
    ending coordinates are guaranteed to be less than `max_locs`,
    although they may not approach `max_locs` at all.
    """

    def keep_bounds(num, max_val):
        out = max(num, 0)
        out = min(out, max_val)
        return out

    gaps = copy.deepcopy(gaps)
    distances = copy.deepcopy(distances)

    locs = np.zeros([length, 2], dtype=int)
    locs[0, :] = start_locs
    total_length = max_locs[0] - start_locs[0] - sum(gaps)
    if total_length < length:
        raise ValueError('Cannot generate ridge line according to constraints')
    dist_int = length / len(distances) - 1
    gap_int = length / len(gaps) - 1
    for ind in xrange(1, length):
        nextcol = locs[ind - 1, 1]
        nextrow = locs[ind - 1, 0] + 1
        if (ind % dist_int == 0) and (len(distances) > 0):
            nextcol += ((-1)**ind)*distances.pop()
        if (ind % gap_int == 0) and (len(gaps) > 0):
            nextrow += gaps.pop()
        nextrow = keep_bounds(nextrow, max_locs[0])
        nextcol = keep_bounds(nextcol, max_locs[1])
        locs[ind, :] = [nextrow, nextcol]

    return [locs[:, 0], locs[:, 1]]


class TestRidgeLines(TestCase):

    def test_empty(self):
        test_matr = np.zeros([20, 100])
        lines = _identify_ridge_lines(test_matr, 2*np.ones(20), 1)
        assert_(len(lines) == 0)

    def test_minimal(self):
        test_matr = np.zeros([20, 100])
        test_matr[0, 10] = 1
        lines = _identify_ridge_lines(test_matr, 2*np.ones(20), 1)
        assert_(len(lines) == 1)

        test_matr = np.zeros([20, 100])
        test_matr[0:2, 10] = 1
        lines = _identify_ridge_lines(test_matr, 2*np.ones(20), 1)
        assert_(len(lines) == 1)

    def test_single_pass(self):
        distances = [0, 1, 2, 5]
        gaps = [0, 1, 2, 0, 1]
        test_matr = np.zeros([20, 50]) + 1e-12
        length = 12
        line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
        test_matr[line[0], line[1]] = 1
        max_distances = max(distances)*np.ones(20)
        identified_lines = _identify_ridge_lines(test_matr, max_distances, max(gaps) + 1)
        assert_array_equal(identified_lines, [line])

    def test_single_bigdist(self):
        distances = [0, 1, 2, 5]
        gaps = [0, 1, 2, 4]
        test_matr = np.zeros([20, 50])
        length = 12
        line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
        test_matr[line[0], line[1]] = 1
        max_dist = 3
        max_distances = max_dist*np.ones(20)
        #This should get 2 lines, since the distance is too large
        identified_lines = _identify_ridge_lines(test_matr, max_distances, max(gaps) + 1)
        assert_(len(identified_lines) == 2)

        for iline in identified_lines:
            adists = np.diff(iline[1])
            np.testing.assert_array_less(np.abs(adists), max_dist)

            agaps = np.diff(iline[0])
            np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)

    def test_single_biggap(self):
        distances = [0, 1, 2, 5]
        max_gap = 3
        gaps = [0, 4, 2, 1]
        test_matr = np.zeros([20, 50])
        length = 12
        line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
        test_matr[line[0], line[1]] = 1
        max_dist = 6
        max_distances = max_dist*np.ones(20)
        #This should get 2 lines, since the gap is too large
        identified_lines = _identify_ridge_lines(test_matr, max_distances, max_gap)
        assert_(len(identified_lines) == 2)

        for iline in identified_lines:
            adists = np.diff(iline[1])
            np.testing.assert_array_less(np.abs(adists), max_dist)

            agaps = np.diff(iline[0])
            np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)

    def test_single_biggaps(self):
        distances = [0]
        max_gap = 1
        gaps = [3, 6]
        test_matr = np.zeros([50, 50])
        length = 30
        line = _gen_ridge_line([0, 25], test_matr.shape, length, distances, gaps)
        test_matr[line[0], line[1]] = 1
        max_dist = 1
        max_distances = max_dist*np.ones(50)
        #This should get 3 lines, since the gaps are too large
        identified_lines = _identify_ridge_lines(test_matr, max_distances, max_gap)
        assert_(len(identified_lines) == 3)

        for iline in identified_lines:
            adists = np.diff(iline[1])
            np.testing.assert_array_less(np.abs(adists), max_dist)

            agaps = np.diff(iline[0])
            np.testing.assert_array_less(np.abs(agaps), max(gaps) + 0.1)


class TestArgrel(TestCase):

    def test_empty(self):
        # Regression test for gh-2832.
        # When there are no relative extrema, make sure that
        # the number of empty arrays returned matches the
        # dimension of the input.

        empty_array = np.array([], dtype=int)

        z1 = np.zeros(5)

        i = argrelmin(z1)
        assert_equal(len(i), 1)
        assert_array_equal(i[0], empty_array)

        z2 = np.zeros((3,5))

        row, col = argrelmin(z2, axis=0)
        assert_array_equal(row, empty_array)
        assert_array_equal(col, empty_array)

        row, col = argrelmin(z2, axis=1)
        assert_array_equal(row, empty_array)
        assert_array_equal(col, empty_array)

    def test_basic(self):
        # Note: the docstrings for the argrel{min,max,extrema} functions
        # do not give a guarantee of the order of the indices, so we'll
        # sort them before testing.

        x = np.array([[1, 2, 2, 3, 2],
                      [2, 1, 2, 2, 3],
                      [3, 2, 1, 2, 2],
                      [2, 3, 2, 1, 2],
                      [1, 2, 3, 2, 1]])

        row, col = argrelmax(x, axis=0)
        order = np.argsort(row)
        assert_equal(row[order], [1, 2, 3])
        assert_equal(col[order], [4, 0, 1])

        row, col = argrelmax(x, axis=1)
        order = np.argsort(row)
        assert_equal(row[order], [0, 3, 4])
        assert_equal(col[order], [3, 1, 2])

        row, col = argrelmin(x, axis=0)
        order = np.argsort(row)
        assert_equal(row[order], [1, 2, 3])
        assert_equal(col[order], [1, 2, 3])

        row, col = argrelmin(x, axis=1)
        order = np.argsort(row)
        assert_equal(row[order], [1, 2, 3])
        assert_equal(col[order], [1, 2, 3])

    def test_highorder(self):
        order = 2
        sigmas = [1.0, 2.0, 10.0, 5.0, 15.0]
        test_data, act_locs = _gen_gaussians_even(sigmas, 500)
        test_data[act_locs + order] = test_data[act_locs]*0.99999
        test_data[act_locs - order] = test_data[act_locs]*0.99999
        rel_max_locs = argrelmax(test_data, order=order, mode='clip')[0]

        assert_(len(rel_max_locs) == len(act_locs))
        assert_((rel_max_locs == act_locs).all())

    def test_2d_gaussians(self):
        sigmas = [1.0, 2.0, 10.0]
        test_data, act_locs = _gen_gaussians_even(sigmas, 100)
        rot_factor = 20
        rot_range = np.arange(0, len(test_data)) - rot_factor
        test_data_2 = np.vstack([test_data, test_data[rot_range]])
        rel_max_rows, rel_max_cols = argrelmax(test_data_2, axis=1, order=1)

        for rw in xrange(0, test_data_2.shape[0]):
            inds = (rel_max_rows == rw)

            assert_(len(rel_max_cols[inds]) == len(act_locs))
            assert_((act_locs == (rel_max_cols[inds] - rot_factor*rw)).all())


class TestFindPeaks(TestCase):

    def test_find_peaks_exact(self):
        """
        Generate a series of gaussians and attempt to find the peak locations.
        """
        sigmas = [5.0, 3.0, 10.0, 20.0, 10.0, 50.0]
        num_points = 500
        test_data, act_locs = _gen_gaussians_even(sigmas, num_points)
        widths = np.arange(0.1, max(sigmas))
        found_locs = find_peaks_cwt(test_data, widths, gap_thresh=2, min_snr=0,
                                         min_length=None)
        np.testing.assert_array_equal(found_locs, act_locs,
                        "Found maximum locations did not equal those expected")

    def test_find_peaks_withnoise(self):
        """
        Verify that peak locations are (approximately) found
        for a series of gaussians with added noise.
        """
        sigmas = [5.0, 3.0, 10.0, 20.0, 10.0, 50.0]
        num_points = 500
        test_data, act_locs = _gen_gaussians_even(sigmas, num_points)
        widths = np.arange(0.1, max(sigmas))
        noise_amp = 0.07
        np.random.seed(18181911)
        test_data += (np.random.rand(num_points) - 0.5)*(2*noise_amp)
        found_locs = find_peaks_cwt(test_data, widths, min_length=15,
                                         gap_thresh=1, min_snr=noise_amp / 5)

        np.testing.assert_equal(len(found_locs), len(act_locs), 'Different number' +
                                'of peaks found than expected')
        diffs = np.abs(found_locs - act_locs)
        max_diffs = np.array(sigmas) / 5
        np.testing.assert_array_less(diffs, max_diffs, 'Maximum location differed' +
                                     'by more than %s' % (max_diffs))

    def test_find_peaks_nopeak(self):
        """
        Verify that no peak is found in
        data that's just noise.
        """
        noise_amp = 1.0
        num_points = 100
        np.random.seed(181819141)
        test_data = (np.random.rand(num_points) - 0.5)*(2*noise_amp)
        widths = np.arange(10, 50)
        found_locs = find_peaks_cwt(test_data, widths, min_snr=5, noise_perc=30)
        np.testing.assert_equal(len(found_locs), 0)


if __name__ == "__main__":
    run_module_suite()