File: data.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (243 lines) | stat: -rw-r--r-- 7,513 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""Base class for sparse matrice with a .data attribute

    subclasses must provide a _with_data() method that
    creates a new matrix with the same sparsity pattern
    as self but with a different data array

"""

from __future__ import division, print_function, absolute_import

import numpy as np

from .base import spmatrix, _ufuncs_with_fixed_point_at_zero
from .sputils import isscalarlike, validateaxis

__all__ = []


# TODO implement all relevant operations
# use .data.__methods__() instead of /=, *=, etc.
class _data_matrix(spmatrix):
    def __init__(self):
        spmatrix.__init__(self)

    def _get_dtype(self):
        return self.data.dtype

    def _set_dtype(self, newtype):
        self.data.dtype = newtype
    dtype = property(fget=_get_dtype, fset=_set_dtype)

    def _deduped_data(self):
        if hasattr(self, 'sum_duplicates'):
            self.sum_duplicates()
        return self.data

    def __abs__(self):
        return self._with_data(abs(self._deduped_data()))

    def _real(self):
        return self._with_data(self.data.real)

    def _imag(self):
        return self._with_data(self.data.imag)

    def __neg__(self):
        return self._with_data(-self.data)

    def __imul__(self, other):  # self *= other
        if isscalarlike(other):
            self.data *= other
            return self
        else:
            return NotImplemented

    def __itruediv__(self, other):  # self /= other
        if isscalarlike(other):
            recip = 1.0 / other
            self.data *= recip
            return self
        else:
            return NotImplemented

    def astype(self, t):
        return self._with_data(self._deduped_data().astype(t))

    def conj(self):
        return self._with_data(self.data.conj())

    def copy(self):
        return self._with_data(self.data.copy(), copy=True)

    def count_nonzero(self):
        return np.count_nonzero(self._deduped_data())

    count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__

    def power(self, n, dtype=None):
        """
        This function performs element-wise power.

        Parameters
        ----------
        n : n is a scalar

        dtype : If dtype is not specified, the current dtype will be preserved.
        """
        if not isscalarlike(n):
            raise NotImplementedError("input is not scalar")

        data = self._deduped_data()
        if dtype is not None:
            data = data.astype(dtype)
        return self._with_data(data ** n)

    ###########################
    # Multiplication handlers #
    ###########################

    def _mul_scalar(self, other):
        return self._with_data(self.data * other)


# Add the numpy unary ufuncs for which func(0) = 0 to _data_matrix.
for npfunc in _ufuncs_with_fixed_point_at_zero:
    name = npfunc.__name__

    def _create_method(op):
        def method(self):
            result = op(self.data)
            x = self._with_data(result, copy=True)
            return x

        method.__doc__ = ("Element-wise %s.\n\n"
                          "See numpy.%s for more information." % (name, name))
        method.__name__ = name

        return method

    setattr(_data_matrix, name, _create_method(npfunc))


class _minmax_mixin(object):
    """Mixin for min and max methods.

    These are not implemented for dia_matrix, hence the separate class.
    """

    def _min_or_max_axis(self, axis, min_or_max):
        N = self.shape[axis]
        if N == 0:
            raise ValueError("zero-size array to reduction operation")
        M = self.shape[1 - axis]

        mat = self.tocsc() if axis == 0 else self.tocsr()
        mat.sum_duplicates()

        major_index, value = mat._minor_reduce(min_or_max)
        not_full = np.diff(mat.indptr)[major_index] < N
        value[not_full] = min_or_max(value[not_full], 0)

        mask = value != 0
        major_index = np.compress(mask, major_index)
        value = np.compress(mask, value)

        from . import coo_matrix
        if axis == 0:
            return coo_matrix((value, (np.zeros(len(value)), major_index)),
                              dtype=self.dtype, shape=(1, M))
        else:
            return coo_matrix((value, (major_index, np.zeros(len(value)))),
                              dtype=self.dtype, shape=(M, 1))

    def _min_or_max(self, axis, out, min_or_max):
        if out is not None:
            raise ValueError(("Sparse matrices do not support "
                              "an 'out' parameter."))

        validateaxis(axis)

        if axis is None:
            if 0 in self.shape:
                raise ValueError("zero-size array to reduction operation")

            zero = self.dtype.type(0)
            if self.nnz == 0:
                return zero
            m = min_or_max.reduce(self._deduped_data().ravel())
            if self.nnz != np.product(self.shape):
                m = min_or_max(zero, m)
            return m

        if axis < 0:
            axis += 2

        if (axis == 0) or (axis == 1):
            return self._min_or_max_axis(axis, min_or_max)
        else:
            raise ValueError("axis out of range")

    def max(self, axis=None, out=None):
        """
        Return the maximum of the matrix or maximum along an axis.
        This takes all elements into account, not just the non-zero ones.

        Parameters
        ----------
        axis : {-2, -1, 0, 1, None} optional
            Axis along which the sum is computed. The default is to
            compute the maximum over all the matrix elements, returning
            a scalar (i.e. `axis` = `None`).

        out : None, optional
            This argument is in the signature *solely* for NumPy
            compatibility reasons. Do not pass in anything except
            for the default value, as this argument is not used.

        Returns
        -------
        amax : coo_matrix or scalar
            Maximum of `a`. If `axis` is None, the result is a scalar value.
            If `axis` is given, the result is a sparse.coo_matrix of dimension
            ``a.ndim - 1``.

        See Also
        --------
        min : The minimum value of a sparse matrix along a given axis.
        np.matrix.max : NumPy's implementation of 'max' for matrices

        """
        return self._min_or_max(axis, out, np.maximum)

    def min(self, axis=None, out=None):
        """
        Return the minimum of the matrix or maximum along an axis.
        This takes all elements into account, not just the non-zero ones.

        Parameters
        ----------
        axis : {-2, -1, 0, 1, None} optional
            Axis along which the sum is computed. The default is to
            compute the minimum over all the matrix elements, returning
            a scalar (i.e. `axis` = `None`).

        out : None, optional
            This argument is in the signature *solely* for NumPy
            compatibility reasons. Do not pass in anything except for
            the default value, as this argument is not used.

        Returns
        -------
        amin : coo_matrix or scalar
            Minimum of `a`. If `axis` is None, the result is a scalar value.
            If `axis` is given, the result is a sparse.coo_matrix of dimension
            ``a.ndim - 1``.

        See Also
        --------
        max : The maximum value of a sparse matrix along a given axis.
        np.matrix.min : NumPy's implementation of 'min' for matrices

        """
        return self._min_or_max(axis, out, np.minimum)