1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
"""Dictionary Of Keys based matrix"""
from __future__ import division, print_function, absolute_import
__docformat__ = "restructuredtext en"
__all__ = ['dok_matrix', 'isspmatrix_dok']
import functools
import operator
import numpy as np
from scipy._lib.six import zip as izip, xrange, iteritems, itervalues
from .base import spmatrix, isspmatrix
from .sputils import (isdense, getdtype, isshape, isintlike, isscalarlike,
upcast, upcast_scalar, IndexMixin, get_index_dtype)
try:
from operator import isSequenceType as _is_sequence
except ImportError:
def _is_sequence(x):
return (hasattr(x, '__len__') or hasattr(x, '__next__')
or hasattr(x, 'next'))
class dok_matrix(spmatrix, IndexMixin, dict):
"""
Dictionary Of Keys based sparse matrix.
This is an efficient structure for constructing sparse
matrices incrementally.
This can be instantiated in several ways:
dok_matrix(D)
with a dense matrix, D
dok_matrix(S)
with a sparse matrix, S
dok_matrix((M,N), [dtype])
create the matrix with initial shape (M,N)
dtype is optional, defaulting to dtype='d'
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of nonzero elements
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Allows for efficient O(1) access of individual elements.
Duplicates are not allowed.
Can be efficiently converted to a coo_matrix once constructed.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import dok_matrix
>>> S = dok_matrix((5, 5), dtype=np.float32)
>>> for i in range(5):
... for j in range(5):
... S[i, j] = i + j # Update element
"""
format = 'dok'
def __init__(self, arg1, shape=None, dtype=None, copy=False):
dict.__init__(self)
spmatrix.__init__(self)
self.dtype = getdtype(dtype, default=float)
if isinstance(arg1, tuple) and isshape(arg1): # (M,N)
M, N = arg1
self.shape = (M, N)
elif isspmatrix(arg1): # Sparse ctor
if isspmatrix_dok(arg1) and copy:
arg1 = arg1.copy()
else:
arg1 = arg1.todok()
if dtype is not None:
arg1 = arg1.astype(dtype)
self.update(arg1)
self.shape = arg1.shape
self.dtype = arg1.dtype
else: # Dense ctor
try:
arg1 = np.asarray(arg1)
except:
raise TypeError('invalid input format')
if len(arg1.shape) != 2:
raise TypeError('expected rank <=2 dense array or matrix')
from .coo import coo_matrix
d = coo_matrix(arg1, dtype=dtype).todok()
self.update(d)
self.shape = arg1.shape
self.dtype = d.dtype
def getnnz(self, axis=None):
if axis is not None:
raise NotImplementedError("getnnz over an axis is not implemented "
"for DOK format")
return dict.__len__(self)
def count_nonzero(self):
return sum(x != 0 for x in itervalues(self))
getnnz.__doc__ = spmatrix.getnnz.__doc__
count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__
def __len__(self):
return dict.__len__(self)
def get(self, key, default=0.):
"""This overrides the dict.get method, providing type checking
but otherwise equivalent functionality.
"""
try:
i, j = key
assert isintlike(i) and isintlike(j)
except (AssertionError, TypeError, ValueError):
raise IndexError('index must be a pair of integers')
if (i < 0 or i >= self.shape[0] or j < 0 or j >= self.shape[1]):
raise IndexError('index out of bounds')
return dict.get(self, key, default)
def __getitem__(self, index):
"""If key=(i,j) is a pair of integers, return the corresponding
element. If either i or j is a slice or sequence, return a new sparse
matrix with just these elements.
"""
zero = self.dtype.type(0)
i, j = self._unpack_index(index)
i_intlike = isintlike(i)
j_intlike = isintlike(j)
if i_intlike and j_intlike:
# Scalar index case
i = int(i)
j = int(j)
if i < 0:
i += self.shape[0]
if i < 0 or i >= self.shape[0]:
raise IndexError('index out of bounds')
if j < 0:
j += self.shape[1]
if j < 0 or j >= self.shape[1]:
raise IndexError('index out of bounds')
return dict.get(self, (i,j), zero)
elif ((i_intlike or isinstance(i, slice)) and
(j_intlike or isinstance(j, slice))):
# Fast path for slicing very sparse matrices
i_slice = slice(i, i+1) if i_intlike else i
j_slice = slice(j, j+1) if j_intlike else j
i_indices = i_slice.indices(self.shape[0])
j_indices = j_slice.indices(self.shape[1])
i_seq = xrange(*i_indices)
j_seq = xrange(*j_indices)
newshape = (len(i_seq), len(j_seq))
newsize = _prod(newshape)
if len(self) < 2*newsize and newsize != 0:
# Switch to the fast path only when advantageous
# (count the iterations in the loops, adjust for complexity)
#
# We also don't handle newsize == 0 here (if
# i/j_intlike, it can mean index i or j was out of
# bounds)
return self._getitem_ranges(i_indices, j_indices, newshape)
i, j = self._index_to_arrays(i, j)
if i.size == 0:
return dok_matrix(i.shape, dtype=self.dtype)
min_i = i.min()
if min_i < -self.shape[0] or i.max() >= self.shape[0]:
raise IndexError('index (%d) out of range -%d to %d)' %
(i.min(), self.shape[0], self.shape[0]-1))
if min_i < 0:
i = i.copy()
i[i < 0] += self.shape[0]
min_j = j.min()
if min_j < -self.shape[1] or j.max() >= self.shape[1]:
raise IndexError('index (%d) out of range -%d to %d)' %
(j.min(), self.shape[1], self.shape[1]-1))
if min_j < 0:
j = j.copy()
j[j < 0] += self.shape[1]
newdok = dok_matrix(i.shape, dtype=self.dtype)
for a in xrange(i.shape[0]):
for b in xrange(i.shape[1]):
v = dict.get(self, (i[a,b], j[a,b]), zero)
if v != 0:
dict.__setitem__(newdok, (a, b), v)
return newdok
def _getitem_ranges(self, i_indices, j_indices, shape):
# performance golf: we don't want Numpy scalars here, they are slow
i_start, i_stop, i_stride = map(int, i_indices)
j_start, j_stop, j_stride = map(int, j_indices)
newdok = dok_matrix(shape, dtype=self.dtype)
for (ii, jj) in self.keys():
# ditto for numpy scalars
ii = int(ii)
jj = int(jj)
a, ra = divmod(ii - i_start, i_stride)
if a < 0 or a >= shape[0] or ra != 0:
continue
b, rb = divmod(jj - j_start, j_stride)
if b < 0 or b >= shape[1] or rb != 0:
continue
dict.__setitem__(newdok, (a, b),
dict.__getitem__(self, (ii, jj)))
return newdok
def __setitem__(self, index, x):
if isinstance(index, tuple) and len(index) == 2:
# Integer index fast path
i, j = index
if (isintlike(i) and isintlike(j) and 0 <= i < self.shape[0]
and 0 <= j < self.shape[1]):
v = np.asarray(x, dtype=self.dtype)
if v.ndim == 0 and v != 0:
dict.__setitem__(self, (int(i), int(j)), v[()])
return
i, j = self._unpack_index(index)
i, j = self._index_to_arrays(i, j)
if isspmatrix(x):
x = x.toarray()
# Make x and i into the same shape
x = np.asarray(x, dtype=self.dtype)
x, _ = np.broadcast_arrays(x, i)
if x.shape != i.shape:
raise ValueError("shape mismatch in assignment")
if np.size(x) == 0:
return
min_i = i.min()
if min_i < -self.shape[0] or i.max() >= self.shape[0]:
raise IndexError('index (%d) out of range -%d to %d)' %
(i.min(), self.shape[0], self.shape[0]-1))
if min_i < 0:
i = i.copy()
i[i < 0] += self.shape[0]
min_j = j.min()
if min_j < -self.shape[1] or j.max() >= self.shape[1]:
raise IndexError('index (%d) out of range -%d to %d)' %
(j.min(), self.shape[1], self.shape[1]-1))
if min_j < 0:
j = j.copy()
j[j < 0] += self.shape[1]
dict.update(self, izip(izip(i.flat, j.flat), x.flat))
if 0 in x:
zeroes = x == 0
for key in izip(i[zeroes].flat, j[zeroes].flat):
if dict.__getitem__(self, key) == 0:
# may have been superseded by later update
del self[key]
def __add__(self, other):
# First check if argument is a scalar
if isscalarlike(other):
res_dtype = upcast_scalar(self.dtype, other)
new = dok_matrix(self.shape, dtype=res_dtype)
# Add this scalar to every element.
M, N = self.shape
for i in xrange(M):
for j in xrange(N):
aij = self.get((i, j), 0) + other
if aij != 0:
new[i, j] = aij
# new.dtype.char = self.dtype.char
elif isinstance(other, dok_matrix):
if other.shape != self.shape:
raise ValueError("matrix dimensions are not equal")
# We could alternatively set the dimensions to the largest of
# the two matrices to be summed. Would this be a good idea?
res_dtype = upcast(self.dtype, other.dtype)
new = dok_matrix(self.shape, dtype=res_dtype)
new.update(self)
with np.errstate(over='ignore'):
for key in other.keys():
new[key] += other[key]
elif isspmatrix(other):
csc = self.tocsc()
new = csc + other
elif isdense(other):
new = self.todense() + other
else:
return NotImplemented
return new
def __radd__(self, other):
# First check if argument is a scalar
if isscalarlike(other):
new = dok_matrix(self.shape, dtype=self.dtype)
# Add this scalar to every element.
M, N = self.shape
for i in xrange(M):
for j in xrange(N):
aij = self.get((i, j), 0) + other
if aij != 0:
new[i, j] = aij
elif isinstance(other, dok_matrix):
if other.shape != self.shape:
raise ValueError("matrix dimensions are not equal")
new = dok_matrix(self.shape, dtype=self.dtype)
new.update(self)
for key in other:
new[key] += other[key]
elif isspmatrix(other):
csc = self.tocsc()
new = csc + other
elif isdense(other):
new = other + self.todense()
else:
return NotImplemented
return new
def __neg__(self):
new = dok_matrix(self.shape, dtype=self.dtype)
for key in self.keys():
new[key] = -self[key]
return new
def _mul_scalar(self, other):
res_dtype = upcast_scalar(self.dtype, other)
# Multiply this scalar by every element.
new = dok_matrix(self.shape, dtype=res_dtype)
for (key, val) in iteritems(self):
new[key] = val * other
return new
def _mul_vector(self, other):
# matrix * vector
result = np.zeros(self.shape[0], dtype=upcast(self.dtype,other.dtype))
for (i,j),v in iteritems(self):
result[i] += v * other[j]
return result
def _mul_multivector(self, other):
# matrix * multivector
M,N = self.shape
n_vecs = other.shape[1] # number of column vectors
result = np.zeros((M,n_vecs), dtype=upcast(self.dtype,other.dtype))
for (i,j),v in iteritems(self):
result[i,:] += v * other[j,:]
return result
def __imul__(self, other):
if isscalarlike(other):
# Multiply this scalar by every element.
for (key, val) in iteritems(self):
self[key] = val * other
# new.dtype.char = self.dtype.char
return self
else:
return NotImplemented
def __truediv__(self, other):
if isscalarlike(other):
res_dtype = upcast_scalar(self.dtype, other)
new = dok_matrix(self.shape, dtype=res_dtype)
# Multiply this scalar by every element.
for (key, val) in iteritems(self):
new[key] = val / other
# new.dtype.char = self.dtype.char
return new
else:
return self.tocsr() / other
def __itruediv__(self, other):
if isscalarlike(other):
# Multiply this scalar by every element.
for (key, val) in iteritems(self):
self[key] = val / other
return self
else:
return NotImplemented
# What should len(sparse) return? For consistency with dense matrices,
# perhaps it should be the number of rows? For now it returns the number
# of non-zeros.
def transpose(self, axes=None, copy=False):
if axes is not None:
raise ValueError(("Sparse matrices do not support "
"an 'axes' parameter because swapping "
"dimensions is the only logical permutation."))
M, N = self.shape
new = dok_matrix((N, M), dtype=self.dtype, copy=copy)
for key, value in iteritems(self):
new[key[1], key[0]] = value
return new
transpose.__doc__ = spmatrix.transpose.__doc__
def conjtransp(self):
""" Return the conjugate transpose
"""
M, N = self.shape
new = dok_matrix((N, M), dtype=self.dtype)
for key, value in iteritems(self):
new[key[1], key[0]] = np.conj(value)
return new
def copy(self):
new = dok_matrix(self.shape, dtype=self.dtype)
new.update(self)
return new
copy.__doc__ = spmatrix.copy.__doc__
def getrow(self, i):
"""Returns a copy of row i of the matrix as a (1 x n)
DOK matrix.
"""
out = self.__class__((1, self.shape[1]), dtype=self.dtype)
for j in range(self.shape[1]):
out[0, j] = self[i, j]
return out
def getcol(self, j):
"""Returns a copy of column j of the matrix as a (m x 1)
DOK matrix.
"""
out = self.__class__((self.shape[0], 1), dtype=self.dtype)
for i in range(self.shape[0]):
out[i, 0] = self[i, j]
return out
def tocoo(self, copy=False):
from .coo import coo_matrix
if self.nnz == 0:
return coo_matrix(self.shape, dtype=self.dtype)
idx_dtype = get_index_dtype(maxval=max(self.shape))
data = np.asarray(_list(self.values()), dtype=self.dtype)
indices = np.asarray(_list(self.keys()), dtype=idx_dtype).T
A = coo_matrix((data, indices), shape=self.shape, dtype=self.dtype)
A.has_canonical_format = True
return A
tocoo.__doc__ = spmatrix.tocoo.__doc__
def todok(self, copy=False):
if copy:
return self.copy()
else:
return self
todok.__doc__ = spmatrix.todok.__doc__
def tocsc(self, copy=False):
return self.tocoo(copy=False).tocsc(copy=copy)
tocsc.__doc__ = spmatrix.tocsc.__doc__
def resize(self, shape):
""" Resize the matrix in-place to dimensions given by 'shape'.
Any non-zero elements that lie outside the new shape are removed.
"""
if not isshape(shape):
raise TypeError("dimensions must be a 2-tuple of positive"
" integers")
newM, newN = shape
M, N = self.shape
if newM < M or newN < N:
# Remove all elements outside new dimensions
for (i, j) in list(self.keys()):
if i >= newM or j >= newN:
del self[i, j]
self._shape = shape
def _list(x):
"""Force x to a list."""
if not isinstance(x, list):
x = list(x)
return x
def isspmatrix_dok(x):
return isinstance(x, dok_matrix)
def _prod(x):
"""Product of a list of numbers; ~40x faster vs np.prod for Python tuples"""
if len(x) == 0:
return 1
return functools.reduce(operator.mul, x)
|