File: lil.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (524 lines) | stat: -rw-r--r-- 17,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
"""LInked List sparse matrix class
"""

from __future__ import division, print_function, absolute_import

__docformat__ = "restructuredtext en"

__all__ = ['lil_matrix','isspmatrix_lil']

import numpy as np

from scipy._lib.six import xrange
from .base import spmatrix, isspmatrix
from .sputils import (getdtype, isshape, isscalarlike, IndexMixin,
                      upcast_scalar, get_index_dtype, isintlike)
from . import _csparsetools


class lil_matrix(spmatrix, IndexMixin):
    """Row-based linked list sparse matrix

    This is a structure for constructing sparse matrices incrementally.
    Note that inserting a single item can take linear time in the worst case;
    to construct a matrix efficiently, make sure the items are pre-sorted by
    index, per row.

    This can be instantiated in several ways:
        lil_matrix(D)
            with a dense matrix or rank-2 ndarray D

        lil_matrix(S)
            with another sparse matrix S (equivalent to S.tolil())

        lil_matrix((M, N), [dtype])
            to construct an empty matrix with shape (M, N)
            dtype is optional, defaulting to dtype='d'.

    Attributes
    ----------
    dtype : dtype
        Data type of the matrix
    shape : 2-tuple
        Shape of the matrix
    ndim : int
        Number of dimensions (this is always 2)
    nnz
        Number of nonzero elements
    data
        LIL format data array of the matrix
    rows
        LIL format row index array of the matrix

    Notes
    -----

    Sparse matrices can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    Advantages of the LIL format
        - supports flexible slicing
        - changes to the matrix sparsity structure are efficient

    Disadvantages of the LIL format
        - arithmetic operations LIL + LIL are slow (consider CSR or CSC)
        - slow column slicing (consider CSC)
        - slow matrix vector products (consider CSR or CSC)

    Intended Usage
        - LIL is a convenient format for constructing sparse matrices
        - once a matrix has been constructed, convert to CSR or
          CSC format for fast arithmetic and matrix vector operations
        - consider using the COO format when constructing large matrices

    Data Structure
        - An array (``self.rows``) of rows, each of which is a sorted
          list of column indices of non-zero elements.
        - The corresponding nonzero values are stored in similar
          fashion in ``self.data``.


    """
    format = 'lil'

    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        spmatrix.__init__(self)
        self.dtype = getdtype(dtype, arg1, default=float)

        # First get the shape
        if isspmatrix(arg1):
            if isspmatrix_lil(arg1) and copy:
                A = arg1.copy()
            else:
                A = arg1.tolil()

            if dtype is not None:
                A = A.astype(dtype)

            self.shape = A.shape
            self.dtype = A.dtype
            self.rows = A.rows
            self.data = A.data
        elif isinstance(arg1,tuple):
            if isshape(arg1):
                if shape is not None:
                    raise ValueError('invalid use of shape parameter')
                M, N = arg1
                self.shape = (M,N)
                self.rows = np.empty((M,), dtype=object)
                self.data = np.empty((M,), dtype=object)
                for i in range(M):
                    self.rows[i] = []
                    self.data[i] = []
            else:
                raise TypeError('unrecognized lil_matrix constructor usage')
        else:
            # assume A is dense
            try:
                A = np.asmatrix(arg1)
            except TypeError:
                raise TypeError('unsupported matrix type')
            else:
                from .csr import csr_matrix
                A = csr_matrix(A, dtype=dtype).tolil()

                self.shape = A.shape
                self.dtype = A.dtype
                self.rows = A.rows
                self.data = A.data

    def set_shape(self,shape):
        shape = tuple(shape)

        if len(shape) != 2:
            raise ValueError("Only two-dimensional sparse arrays "
                                     "are supported.")
        try:
            shape = int(shape[0]),int(shape[1])  # floats, other weirdness
        except:
            raise TypeError('invalid shape')

        if not (shape[0] >= 0 and shape[1] >= 0):
            raise ValueError('invalid shape')

        if (self._shape != shape) and (self._shape is not None):
            try:
                self = self.reshape(shape)
            except NotImplementedError:
                raise NotImplementedError("Reshaping not implemented for %s." %
                                          self.__class__.__name__)
        self._shape = shape

    shape = property(fget=spmatrix.get_shape, fset=set_shape)

    def __iadd__(self,other):
        self[:,:] = self + other
        return self

    def __isub__(self,other):
        self[:,:] = self - other
        return self

    def __imul__(self,other):
        if isscalarlike(other):
            self[:,:] = self * other
            return self
        else:
            return NotImplemented

    def __itruediv__(self,other):
        if isscalarlike(other):
            self[:,:] = self / other
            return self
        else:
            return NotImplemented

    # Whenever the dimensions change, empty lists should be created for each
    # row

    def getnnz(self, axis=None):
        if axis is None:
            return sum([len(rowvals) for rowvals in self.data])
        if axis < 0:
            axis += 2
        if axis == 0:
            out = np.zeros(self.shape[1], dtype=np.intp)
            for row in self.rows:
                out[row] += 1
            return out
        elif axis == 1:
            return np.array([len(rowvals) for rowvals in self.data], dtype=np.intp)
        else:
            raise ValueError('axis out of bounds')

    def count_nonzero(self):
        return sum(np.count_nonzero(rowvals) for rowvals in self.data)

    getnnz.__doc__ = spmatrix.getnnz.__doc__
    count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__

    def __str__(self):
        val = ''
        for i, row in enumerate(self.rows):
            for pos, j in enumerate(row):
                val += "  %s\t%s\n" % (str((i, j)), str(self.data[i][pos]))
        return val[:-1]

    def getrowview(self, i):
        """Returns a view of the 'i'th row (without copying).
        """
        new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
        new.rows[0] = self.rows[i]
        new.data[0] = self.data[i]
        return new

    def getrow(self, i):
        """Returns a copy of the 'i'th row.
        """
        i = self._check_row_bounds(i)
        new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
        new.rows[0] = self.rows[i][:]
        new.data[0] = self.data[i][:]
        return new

    def _check_row_bounds(self, i):
        if i < 0:
            i += self.shape[0]
        if i < 0 or i >= self.shape[0]:
            raise IndexError('row index out of bounds')
        return i

    def _check_col_bounds(self, j):
        if j < 0:
            j += self.shape[1]
        if j < 0 or j >= self.shape[1]:
            raise IndexError('column index out of bounds')
        return j

    def __getitem__(self, index):
        """Return the element(s) index=(i, j), where j may be a slice.
        This always returns a copy for consistency, since slices into
        Python lists return copies.
        """

        # Scalar fast path first
        if isinstance(index, tuple) and len(index) == 2:
            i, j = index
            # Use isinstance checks for common index types; this is
            # ~25-50% faster than isscalarlike. Other types are
            # handled below.
            if ((isinstance(i, int) or isinstance(i, np.integer)) and
                    (isinstance(j, int) or isinstance(j, np.integer))):
                v = _csparsetools.lil_get1(self.shape[0], self.shape[1],
                                           self.rows, self.data,
                                           i, j)
                return self.dtype.type(v)

        # Utilities found in IndexMixin
        i, j = self._unpack_index(index)

        # Proper check for other scalar index types
        i_intlike = isintlike(i)
        j_intlike = isintlike(j)

        if i_intlike and j_intlike:
            v = _csparsetools.lil_get1(self.shape[0], self.shape[1],
                                       self.rows, self.data,
                                       i, j)
            return self.dtype.type(v)
        elif j_intlike or isinstance(j, slice):
            # column slicing fast path
            if j_intlike:
                j = self._check_col_bounds(j)
                j = slice(j, j+1)

            if i_intlike:
                i = self._check_row_bounds(i)
                i = xrange(i, i+1)
                i_shape = None
            elif isinstance(i, slice):
                i = xrange(*i.indices(self.shape[0]))
                i_shape = None
            else:
                i = np.atleast_1d(i)
                i_shape = i.shape

            if i_shape is None or len(i_shape) == 1:
                return self._get_row_ranges(i, j)

        i, j = self._index_to_arrays(i, j)
        if i.size == 0:
            return lil_matrix(i.shape, dtype=self.dtype)

        new = lil_matrix(i.shape, dtype=self.dtype)

        i, j = _prepare_index_for_memoryview(i, j)
        _csparsetools.lil_fancy_get(self.shape[0], self.shape[1],
                                    self.rows, self.data,
                                    new.rows, new.data,
                                    i, j)
        return new

    def _get_row_ranges(self, rows, col_slice):
        """
        Fast path for indexing in the case where column index is slice.

        This gains performance improvement over brute force by more
        efficient skipping of zeros, by accessing the elements
        column-wise in order.

        Parameters
        ----------
        rows : sequence or xrange
            Rows indexed. If xrange, must be within valid bounds.
        col_slice : slice
            Columns indexed

        """
        j_start, j_stop, j_stride = col_slice.indices(self.shape[1])
        col_range = xrange(j_start, j_stop, j_stride)
        nj = len(col_range)
        new = lil_matrix((len(rows), nj), dtype=self.dtype)

        _csparsetools.lil_get_row_ranges(self.shape[0], self.shape[1],
                                         self.rows, self.data,
                                         new.rows, new.data,
                                         rows,
                                         j_start, j_stop, j_stride, nj)

        return new

    def __setitem__(self, index, x):
        # Scalar fast path first
        if isinstance(index, tuple) and len(index) == 2:
            i, j = index
            # Use isinstance checks for common index types; this is
            # ~25-50% faster than isscalarlike. Scalar index
            # assignment for other types is handled below together
            # with fancy indexing.
            if ((isinstance(i, int) or isinstance(i, np.integer)) and
                    (isinstance(j, int) or isinstance(j, np.integer))):
                x = self.dtype.type(x)
                if x.size > 1:
                    # Triggered if input was an ndarray
                    raise ValueError("Trying to assign a sequence to an item")
                _csparsetools.lil_insert(self.shape[0], self.shape[1],
                                         self.rows, self.data, i, j, x)
                return

        # General indexing
        i, j = self._unpack_index(index)

        # shortcut for common case of full matrix assign:
        if (isspmatrix(x) and isinstance(i, slice) and i == slice(None) and
                isinstance(j, slice) and j == slice(None)
                and x.shape == self.shape):
            x = lil_matrix(x, dtype=self.dtype)
            self.rows = x.rows
            self.data = x.data
            return

        i, j = self._index_to_arrays(i, j)

        if isspmatrix(x):
            x = x.toarray()

        # Make x and i into the same shape
        x = np.asarray(x, dtype=self.dtype)
        x, _ = np.broadcast_arrays(x, i)

        if x.shape != i.shape:
            raise ValueError("shape mismatch in assignment")

        # Set values
        i, j, x = _prepare_index_for_memoryview(i, j, x)
        _csparsetools.lil_fancy_set(self.shape[0], self.shape[1],
                                    self.rows, self.data,
                                    i, j, x)

    def _mul_scalar(self, other):
        if other == 0:
            # Multiply by zero: return the zero matrix
            new = lil_matrix(self.shape, dtype=self.dtype)
        else:
            res_dtype = upcast_scalar(self.dtype, other)

            new = self.copy()
            new = new.astype(res_dtype)
            # Multiply this scalar by every element.
            for j, rowvals in enumerate(new.data):
                new.data[j] = [val*other for val in rowvals]
        return new

    def __truediv__(self, other):           # self / other
        if isscalarlike(other):
            new = self.copy()
            # Divide every element by this scalar
            for j, rowvals in enumerate(new.data):
                new.data[j] = [val/other for val in rowvals]
            return new
        else:
            return self.tocsr() / other

    def copy(self):
        from copy import deepcopy
        new = lil_matrix(self.shape, dtype=self.dtype)
        new.data = deepcopy(self.data)
        new.rows = deepcopy(self.rows)
        return new

    copy.__doc__ = spmatrix.copy.__doc__

    def reshape(self, shape, order='C'):
        if type(order) != str or order != 'C':
            raise ValueError(("Sparse matrices do not support "
                              "an 'order' parameter."))

        if type(shape) != tuple:
            raise TypeError("a tuple must be passed in for 'shape'")

        if len(shape) != 2:
            raise ValueError("a length-2 tuple must be passed in for 'shape'")

        new = lil_matrix(shape, dtype=self.dtype)
        j_max = self.shape[1]

        # Size is ambiguous for sparse matrices, so in order to check 'total
        # dimension', we need to take the product of their dimensions instead
        if new.shape[0] * new.shape[1] != self.shape[0] * self.shape[1]:
            raise ValueError("the product of the dimensions for the new sparse "
                             "matrix must equal that of the original matrix")

        for i, row in enumerate(self.rows):
            for col, j in enumerate(row):
                new_r, new_c = np.unravel_index(i*j_max + j, shape)
                new[new_r, new_c] = self[i, j]
        return new

    reshape.__doc__ = spmatrix.reshape.__doc__

    def toarray(self, order=None, out=None):
        """See the docstring for `spmatrix.toarray`."""
        d = self._process_toarray_args(order, out)
        for i, row in enumerate(self.rows):
            for pos, j in enumerate(row):
                d[i, j] = self.data[i][pos]
        return d

    def transpose(self, axes=None, copy=False):
        return self.tocsr().transpose(axes=axes, copy=copy).tolil()

    def tolil(self, copy=False):
        if copy:
            return self.copy()
        else:
            return self

    tolil.__doc__ = spmatrix.tolil.__doc__

    def tocsr(self, copy=False):
        lst = [len(x) for x in self.rows]
        idx_dtype = get_index_dtype(maxval=max(self.shape[1], sum(lst)))
        indptr = np.asarray(lst, dtype=idx_dtype)
        indptr = np.concatenate((np.array([0], dtype=idx_dtype),
                                 np.cumsum(indptr, dtype=idx_dtype)))

        indices = []
        for x in self.rows:
            indices.extend(x)
        indices = np.asarray(indices, dtype=idx_dtype)

        data = []
        for x in self.data:
            data.extend(x)
        data = np.asarray(data, dtype=self.dtype)

        from .csr import csr_matrix
        return csr_matrix((data, indices, indptr), shape=self.shape)

    tocsr.__doc__ = spmatrix.tocsr.__doc__


def _prepare_index_for_memoryview(i, j, x=None):
    """
    Convert index and data arrays to form suitable for passing to the
    Cython fancy getset routines.

    The conversions are necessary since to (i) ensure the integer
    index arrays are in one of the accepted types, and (ii) to ensure
    the arrays are writable so that Cython memoryview support doesn't
    choke on them.

    Parameters
    ----------
    i, j
        Index arrays
    x : optional
        Data arrays

    Returns
    -------
    i, j, x
        Re-formatted arrays (x is omitted, if input was None)

    """
    if i.dtype > j.dtype:
        j = j.astype(i.dtype)
    elif i.dtype < j.dtype:
        i = i.astype(j.dtype)

    if not i.flags.writeable or i.dtype not in (np.int32, np.int64):
        i = i.astype(np.intp)
    if not j.flags.writeable or j.dtype not in (np.int32, np.int64):
        j = j.astype(np.intp)

    if x is not None:
        if not x.flags.writeable:
            x = x.copy()
        return i, j, x
    else:
        return i, j


def isspmatrix_lil(x):
    return isinstance(x, lil_matrix)