1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
"""LInked List sparse matrix class
"""
from __future__ import division, print_function, absolute_import
__docformat__ = "restructuredtext en"
__all__ = ['lil_matrix','isspmatrix_lil']
import numpy as np
from scipy._lib.six import xrange
from .base import spmatrix, isspmatrix
from .sputils import (getdtype, isshape, isscalarlike, IndexMixin,
upcast_scalar, get_index_dtype, isintlike)
from . import _csparsetools
class lil_matrix(spmatrix, IndexMixin):
"""Row-based linked list sparse matrix
This is a structure for constructing sparse matrices incrementally.
Note that inserting a single item can take linear time in the worst case;
to construct a matrix efficiently, make sure the items are pre-sorted by
index, per row.
This can be instantiated in several ways:
lil_matrix(D)
with a dense matrix or rank-2 ndarray D
lil_matrix(S)
with another sparse matrix S (equivalent to S.tolil())
lil_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of nonzero elements
data
LIL format data array of the matrix
rows
LIL format row index array of the matrix
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Advantages of the LIL format
- supports flexible slicing
- changes to the matrix sparsity structure are efficient
Disadvantages of the LIL format
- arithmetic operations LIL + LIL are slow (consider CSR or CSC)
- slow column slicing (consider CSC)
- slow matrix vector products (consider CSR or CSC)
Intended Usage
- LIL is a convenient format for constructing sparse matrices
- once a matrix has been constructed, convert to CSR or
CSC format for fast arithmetic and matrix vector operations
- consider using the COO format when constructing large matrices
Data Structure
- An array (``self.rows``) of rows, each of which is a sorted
list of column indices of non-zero elements.
- The corresponding nonzero values are stored in similar
fashion in ``self.data``.
"""
format = 'lil'
def __init__(self, arg1, shape=None, dtype=None, copy=False):
spmatrix.__init__(self)
self.dtype = getdtype(dtype, arg1, default=float)
# First get the shape
if isspmatrix(arg1):
if isspmatrix_lil(arg1) and copy:
A = arg1.copy()
else:
A = arg1.tolil()
if dtype is not None:
A = A.astype(dtype)
self.shape = A.shape
self.dtype = A.dtype
self.rows = A.rows
self.data = A.data
elif isinstance(arg1,tuple):
if isshape(arg1):
if shape is not None:
raise ValueError('invalid use of shape parameter')
M, N = arg1
self.shape = (M,N)
self.rows = np.empty((M,), dtype=object)
self.data = np.empty((M,), dtype=object)
for i in range(M):
self.rows[i] = []
self.data[i] = []
else:
raise TypeError('unrecognized lil_matrix constructor usage')
else:
# assume A is dense
try:
A = np.asmatrix(arg1)
except TypeError:
raise TypeError('unsupported matrix type')
else:
from .csr import csr_matrix
A = csr_matrix(A, dtype=dtype).tolil()
self.shape = A.shape
self.dtype = A.dtype
self.rows = A.rows
self.data = A.data
def set_shape(self,shape):
shape = tuple(shape)
if len(shape) != 2:
raise ValueError("Only two-dimensional sparse arrays "
"are supported.")
try:
shape = int(shape[0]),int(shape[1]) # floats, other weirdness
except:
raise TypeError('invalid shape')
if not (shape[0] >= 0 and shape[1] >= 0):
raise ValueError('invalid shape')
if (self._shape != shape) and (self._shape is not None):
try:
self = self.reshape(shape)
except NotImplementedError:
raise NotImplementedError("Reshaping not implemented for %s." %
self.__class__.__name__)
self._shape = shape
shape = property(fget=spmatrix.get_shape, fset=set_shape)
def __iadd__(self,other):
self[:,:] = self + other
return self
def __isub__(self,other):
self[:,:] = self - other
return self
def __imul__(self,other):
if isscalarlike(other):
self[:,:] = self * other
return self
else:
return NotImplemented
def __itruediv__(self,other):
if isscalarlike(other):
self[:,:] = self / other
return self
else:
return NotImplemented
# Whenever the dimensions change, empty lists should be created for each
# row
def getnnz(self, axis=None):
if axis is None:
return sum([len(rowvals) for rowvals in self.data])
if axis < 0:
axis += 2
if axis == 0:
out = np.zeros(self.shape[1], dtype=np.intp)
for row in self.rows:
out[row] += 1
return out
elif axis == 1:
return np.array([len(rowvals) for rowvals in self.data], dtype=np.intp)
else:
raise ValueError('axis out of bounds')
def count_nonzero(self):
return sum(np.count_nonzero(rowvals) for rowvals in self.data)
getnnz.__doc__ = spmatrix.getnnz.__doc__
count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__
def __str__(self):
val = ''
for i, row in enumerate(self.rows):
for pos, j in enumerate(row):
val += " %s\t%s\n" % (str((i, j)), str(self.data[i][pos]))
return val[:-1]
def getrowview(self, i):
"""Returns a view of the 'i'th row (without copying).
"""
new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
new.rows[0] = self.rows[i]
new.data[0] = self.data[i]
return new
def getrow(self, i):
"""Returns a copy of the 'i'th row.
"""
i = self._check_row_bounds(i)
new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
new.rows[0] = self.rows[i][:]
new.data[0] = self.data[i][:]
return new
def _check_row_bounds(self, i):
if i < 0:
i += self.shape[0]
if i < 0 or i >= self.shape[0]:
raise IndexError('row index out of bounds')
return i
def _check_col_bounds(self, j):
if j < 0:
j += self.shape[1]
if j < 0 or j >= self.shape[1]:
raise IndexError('column index out of bounds')
return j
def __getitem__(self, index):
"""Return the element(s) index=(i, j), where j may be a slice.
This always returns a copy for consistency, since slices into
Python lists return copies.
"""
# Scalar fast path first
if isinstance(index, tuple) and len(index) == 2:
i, j = index
# Use isinstance checks for common index types; this is
# ~25-50% faster than isscalarlike. Other types are
# handled below.
if ((isinstance(i, int) or isinstance(i, np.integer)) and
(isinstance(j, int) or isinstance(j, np.integer))):
v = _csparsetools.lil_get1(self.shape[0], self.shape[1],
self.rows, self.data,
i, j)
return self.dtype.type(v)
# Utilities found in IndexMixin
i, j = self._unpack_index(index)
# Proper check for other scalar index types
i_intlike = isintlike(i)
j_intlike = isintlike(j)
if i_intlike and j_intlike:
v = _csparsetools.lil_get1(self.shape[0], self.shape[1],
self.rows, self.data,
i, j)
return self.dtype.type(v)
elif j_intlike or isinstance(j, slice):
# column slicing fast path
if j_intlike:
j = self._check_col_bounds(j)
j = slice(j, j+1)
if i_intlike:
i = self._check_row_bounds(i)
i = xrange(i, i+1)
i_shape = None
elif isinstance(i, slice):
i = xrange(*i.indices(self.shape[0]))
i_shape = None
else:
i = np.atleast_1d(i)
i_shape = i.shape
if i_shape is None or len(i_shape) == 1:
return self._get_row_ranges(i, j)
i, j = self._index_to_arrays(i, j)
if i.size == 0:
return lil_matrix(i.shape, dtype=self.dtype)
new = lil_matrix(i.shape, dtype=self.dtype)
i, j = _prepare_index_for_memoryview(i, j)
_csparsetools.lil_fancy_get(self.shape[0], self.shape[1],
self.rows, self.data,
new.rows, new.data,
i, j)
return new
def _get_row_ranges(self, rows, col_slice):
"""
Fast path for indexing in the case where column index is slice.
This gains performance improvement over brute force by more
efficient skipping of zeros, by accessing the elements
column-wise in order.
Parameters
----------
rows : sequence or xrange
Rows indexed. If xrange, must be within valid bounds.
col_slice : slice
Columns indexed
"""
j_start, j_stop, j_stride = col_slice.indices(self.shape[1])
col_range = xrange(j_start, j_stop, j_stride)
nj = len(col_range)
new = lil_matrix((len(rows), nj), dtype=self.dtype)
_csparsetools.lil_get_row_ranges(self.shape[0], self.shape[1],
self.rows, self.data,
new.rows, new.data,
rows,
j_start, j_stop, j_stride, nj)
return new
def __setitem__(self, index, x):
# Scalar fast path first
if isinstance(index, tuple) and len(index) == 2:
i, j = index
# Use isinstance checks for common index types; this is
# ~25-50% faster than isscalarlike. Scalar index
# assignment for other types is handled below together
# with fancy indexing.
if ((isinstance(i, int) or isinstance(i, np.integer)) and
(isinstance(j, int) or isinstance(j, np.integer))):
x = self.dtype.type(x)
if x.size > 1:
# Triggered if input was an ndarray
raise ValueError("Trying to assign a sequence to an item")
_csparsetools.lil_insert(self.shape[0], self.shape[1],
self.rows, self.data, i, j, x)
return
# General indexing
i, j = self._unpack_index(index)
# shortcut for common case of full matrix assign:
if (isspmatrix(x) and isinstance(i, slice) and i == slice(None) and
isinstance(j, slice) and j == slice(None)
and x.shape == self.shape):
x = lil_matrix(x, dtype=self.dtype)
self.rows = x.rows
self.data = x.data
return
i, j = self._index_to_arrays(i, j)
if isspmatrix(x):
x = x.toarray()
# Make x and i into the same shape
x = np.asarray(x, dtype=self.dtype)
x, _ = np.broadcast_arrays(x, i)
if x.shape != i.shape:
raise ValueError("shape mismatch in assignment")
# Set values
i, j, x = _prepare_index_for_memoryview(i, j, x)
_csparsetools.lil_fancy_set(self.shape[0], self.shape[1],
self.rows, self.data,
i, j, x)
def _mul_scalar(self, other):
if other == 0:
# Multiply by zero: return the zero matrix
new = lil_matrix(self.shape, dtype=self.dtype)
else:
res_dtype = upcast_scalar(self.dtype, other)
new = self.copy()
new = new.astype(res_dtype)
# Multiply this scalar by every element.
for j, rowvals in enumerate(new.data):
new.data[j] = [val*other for val in rowvals]
return new
def __truediv__(self, other): # self / other
if isscalarlike(other):
new = self.copy()
# Divide every element by this scalar
for j, rowvals in enumerate(new.data):
new.data[j] = [val/other for val in rowvals]
return new
else:
return self.tocsr() / other
def copy(self):
from copy import deepcopy
new = lil_matrix(self.shape, dtype=self.dtype)
new.data = deepcopy(self.data)
new.rows = deepcopy(self.rows)
return new
copy.__doc__ = spmatrix.copy.__doc__
def reshape(self, shape, order='C'):
if type(order) != str or order != 'C':
raise ValueError(("Sparse matrices do not support "
"an 'order' parameter."))
if type(shape) != tuple:
raise TypeError("a tuple must be passed in for 'shape'")
if len(shape) != 2:
raise ValueError("a length-2 tuple must be passed in for 'shape'")
new = lil_matrix(shape, dtype=self.dtype)
j_max = self.shape[1]
# Size is ambiguous for sparse matrices, so in order to check 'total
# dimension', we need to take the product of their dimensions instead
if new.shape[0] * new.shape[1] != self.shape[0] * self.shape[1]:
raise ValueError("the product of the dimensions for the new sparse "
"matrix must equal that of the original matrix")
for i, row in enumerate(self.rows):
for col, j in enumerate(row):
new_r, new_c = np.unravel_index(i*j_max + j, shape)
new[new_r, new_c] = self[i, j]
return new
reshape.__doc__ = spmatrix.reshape.__doc__
def toarray(self, order=None, out=None):
"""See the docstring for `spmatrix.toarray`."""
d = self._process_toarray_args(order, out)
for i, row in enumerate(self.rows):
for pos, j in enumerate(row):
d[i, j] = self.data[i][pos]
return d
def transpose(self, axes=None, copy=False):
return self.tocsr().transpose(axes=axes, copy=copy).tolil()
def tolil(self, copy=False):
if copy:
return self.copy()
else:
return self
tolil.__doc__ = spmatrix.tolil.__doc__
def tocsr(self, copy=False):
lst = [len(x) for x in self.rows]
idx_dtype = get_index_dtype(maxval=max(self.shape[1], sum(lst)))
indptr = np.asarray(lst, dtype=idx_dtype)
indptr = np.concatenate((np.array([0], dtype=idx_dtype),
np.cumsum(indptr, dtype=idx_dtype)))
indices = []
for x in self.rows:
indices.extend(x)
indices = np.asarray(indices, dtype=idx_dtype)
data = []
for x in self.data:
data.extend(x)
data = np.asarray(data, dtype=self.dtype)
from .csr import csr_matrix
return csr_matrix((data, indices, indptr), shape=self.shape)
tocsr.__doc__ = spmatrix.tocsr.__doc__
def _prepare_index_for_memoryview(i, j, x=None):
"""
Convert index and data arrays to form suitable for passing to the
Cython fancy getset routines.
The conversions are necessary since to (i) ensure the integer
index arrays are in one of the accepted types, and (ii) to ensure
the arrays are writable so that Cython memoryview support doesn't
choke on them.
Parameters
----------
i, j
Index arrays
x : optional
Data arrays
Returns
-------
i, j, x
Re-formatted arrays (x is omitted, if input was None)
"""
if i.dtype > j.dtype:
j = j.astype(i.dtype)
elif i.dtype < j.dtype:
i = i.astype(j.dtype)
if not i.flags.writeable or i.dtype not in (np.int32, np.int64):
i = i.astype(np.intp)
if not j.flags.writeable or j.dtype not in (np.int32, np.int64):
j = j.astype(np.intp)
if x is not None:
if not x.flags.writeable:
x = x.copy()
return i, j, x
else:
return i, j
def isspmatrix_lil(x):
return isinstance(x, lil_matrix)
|