File: scomplex.c

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (147 lines) | stat: -rw-r--r-- 2,838 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

/*! @file scomplex.c
 * \brief Common arithmetic for complex type
 *
 * <pre>
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 *
 * This file defines common arithmetic operations for complex type.
 * </pre>
 */

#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "slu_scomplex.h"


/*! \brief Complex Division c = a/b */
void c_div(complex *c, complex *a, complex *b)
{
    float ratio, den;
    float abr, abi, cr, ci;
  
    if( (abr = b->r) < 0.)
	abr = - abr;
    if( (abi = b->i) < 0.)
	abi = - abi;
    if( abr <= abi ) {
	if (abi == 0) {
	    fprintf(stderr, "z_div.c: division by zero\n");
            exit(-1);
	}	  
	ratio = b->r / b->i ;
	den = b->i * (1 + ratio*ratio);
	cr = (a->r*ratio + a->i) / den;
	ci = (a->i*ratio - a->r) / den;
    } else {
	ratio = b->i / b->r ;
	den = b->r * (1 + ratio*ratio);
	cr = (a->r + a->i*ratio) / den;
	ci = (a->i - a->r*ratio) / den;
    }
    c->r = cr;
    c->i = ci;
}


/*! \brief Returns sqrt(z.r^2 + z.i^2) */
double c_abs(complex *z)
{
    float temp;
    float real = z->r;
    float imag = z->i;

    if (real < 0) real = -real;
    if (imag < 0) imag = -imag;
    if (imag > real) {
	temp = real;
	real = imag;
	imag = temp;
    }
    if ((real+imag) == real) return(real);
  
    temp = imag/real;
    temp = real*sqrt(1.0 + temp*temp);  /*overflow!!*/
    return (temp);
}


/*! \brief Approximates the abs. Returns abs(z.r) + abs(z.i) */
double c_abs1(complex *z)
{
    float real = z->r;
    float imag = z->i;
  
    if (real < 0) real = -real;
    if (imag < 0) imag = -imag;

    return (real + imag);
}

/*! \brief Return the exponentiation */
void c_exp(complex *r, complex *z)
{
    float expx;

    expx = exp(z->r);
    r->r = expx * cos(z->i);
    r->i = expx * sin(z->i);
}

/*! \brief Return the complex conjugate */
void r_cnjg(complex *r, complex *z)
{
    r->r = z->r;
    r->i = -z->i;
}

/*! \brief Return the imaginary part */
double r_imag(complex *z)
{
    return (z->i);
}


/*! \brief SIGN functions for complex number. Returns z/abs(z) */
complex c_sgn(complex *z)
{
    register float t = c_abs(z);
    register complex retval;

    if (t == 0.0) {
	retval.r = 1.0, retval.i = 0.0;
    } else {
	retval.r = z->r / t, retval.i = z->i / t;
    }

    return retval;
}

/*! \brief Square-root of a complex number. */
complex c_sqrt(complex *z)
{
    complex retval;
    register float cr, ci, real, imag;

    real = z->r;
    imag = z->i;

    if ( imag == 0.0 ) {
        retval.r = sqrt(real);
        retval.i = 0.0;
    } else {
        ci = (sqrt(real*real + imag*imag) - real) / 2.0;
        ci = sqrt(ci);
        cr = imag / (2.0 * ci);
        retval.r = cr;
        retval.i = ci;
    }

    return retval;
}